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Hard-spin mean-field theory has recently been applied to Ising magnets, correctly yielding the
absence and presence of an interface roughening transition respectively in d = 2 and d = 3 dimensions
and producing the ordering-roughening phase diagram for isotropic and anisotropic systems. The
approach has now been extended to the effects of quenched random pinning centers and missing
bonds on the interface of isotropic and anisotropic Ising models in d = 3. We find that these frozen
impurities cause domain boundary roughening that exhibits consecutive thresholding transitions
as a function interaction of anisotropy. For both missing-bond and pinning-center impurities, for
moderately large values the anisotropy, the systems saturate to the ”solid-on-solid” limit, exhibiting
a single universal curve for the domain boundary width as a function of impurity concentration.
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I. INTRODUCTION

Hard-spin mean-field theory [1, 2] has recently been
applied to Ising magnets, correctly yielding the absence
and presence of an interface roughening transition re-
spectively in d = 2 and d = 3 dimensions and producing
the ordering-roughening phase diagram for isotropic and
anisotropic systems.[3] The approach is now extended
to the effects of quenched random pinning centers and
missing bonds on the interface of isotropic and uniax-
ially anisotropic Ising models in d = 3. We find that
these frozen impurities cause domain boundary roughen-
ing that exhibits consecutive thresholding transitions as
a function interaction of anisotropy. We also find that,
for both missing-bond and pinning-center impurities, for
moderately large values the anisotropy, the systems satu-
rate to the ”solid-on-solid” limit, exhibiting a single uni-
versal curve for the domain boundary width as a function
of impurity concentration.

II. THE ANISOTROPIC d = 3 ISING MODEL

WITH IMPURITIES AND HARD-SPIN

MEAN-FIELD THEORY

A. The d=3 Anisotropic Ising Model

The d = 3 anisotropic Ising model is defined by the
Hamiltonian

− βH = Jxy

xy
∑

〈ij〉

sisj + Jz

z
∑

〈ij〉

sisj , (1)

where at each site i of a cubic lattice, the spin takes
on the values si = ±1. The first sum is over the nearest-
neighbor pairs of sites along the x and y spatial directions
and the second sum is over the nearest-neighbor pairs
of sites along the z spatial direction. The system has
ferromagnetic interactions Jxy, Jz > 0, periodic bound-
ary conditions in the x and y directions and oppositely

✈ ✈ ✈ ✈ ✈ ❢ ❢ ❢ ❢ ❢

✈ ✈ ✈ ✈ ✈ ❢ ❢ ❢ ❢ ❢

✈ ✈ ✈ ✈ ✈ ❢ ❢ ❢ ❢ ❢

✈ ✈ ✈ ✈ ✈ ❢ ❢ ❢ ❢ ❢

✈ ✈ ✈ ✈ ✈ ❢ ❢ ❢ ❢ ❢

✈ ✈ ✈ ✈ ✈ ❢ ❢ ❢ ❢ ❢

✈ ✈ ✈ ✈ ✈ ❢ ❢ ❢ ❢ ❢

✈ ✈ ✈ ✈ ✈ ❢ ❢ ❢ ❢ ❢

✈ ✈ ✈ ✈ ✈ ❢ ❢ ❢ ❢ ❢

✈ ✈ ✈ ✈ ✈ ❢ ❢ ❢ ❢ ❢

✈ ❢ ❢ ❢ ❢ ❢ ❢ ❢ ✈ ❢

✈ ❢ ❢ ❢ ❢ ❢ ✈ ❢ ❢ ❢

✈ ❢ ❢ ❢ ❢ ❢ ❢ ❢ ❢ ❢

✈ ✈ ✈ ✈ ❢ ❢ ✈ ❢ ❢ ❢

✈ ✈ ✈ ✈ ❢ ❢ ✈ ❢ ❢ ❢

✈ ✈ ✈ ✈ ❢ ❢ ❢ ❢ ❢ ❢

✈ ✈ ✈ ✈ ✈ ❢ ❢ ❢ ❢ ❢

✈ ✈ ❢ ✈ ✈ ❢ ❢ ❢ ❢ ❢

✈ ✈ ❢ ❢ ✈ ❢ ❢ ❢ ❢ ❢

✈ ✈ ❢ ❢ ❢ ❢ ❢ ❢ ✈ ❢

FIG. 1: A yz plane at temperature 1/Jxy = 0.1. Filled and
empty circles respectively represent the calculated local mag-
netizations with mi > 0 and mi < 0. The left side is for the
pure system, p = 0. The right side is calculated with quenched
random pinning centers with concentration p = 0.24. Islands
that are disconnected from the pinned z boundary plane of
their own sign (typically occurring around an opposite pin-
ning center deep inside a bulk phase) do not enter the in-
terface width calculation and are not shown here. Thus, the
disconnected pieces seen in this figure are actually part of an
overhang, connected to the corresponding z boundary plane
via the other yz planes. The dashed lines delimit the domain
boundary and the separation between these dashed lines gives
the domain boundary width in this yz plane. The same pro-
cedure for determining the interface width is also applied to
the missing bond systems.

fixed boundary conditions at the two terminal planes in
the z spatial direction, which yields a domain boundary
within the system when in the ordered phase. Thus, the
system is generally uniaxially anisotropic. We system-
atically study the anisotropic Jxy 6= Jz as well as the
isotropic Jxy = Jz cases.

http://arxiv.org/abs/1509.01910v1
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FIG. 2: (Color online) Calculated domain boundary widths
versus impurity concentration p for different anisotropy
Jz/Jxy values, at temperature 1/Jxy = 0.1. In the upper
panel for missing bonds, from the bottom to the top curves,
the anisotropies are Jz/Jxy = 0.1 to 5.0 with 0.1 intervals
and Jz/Jxy = 5.5 to 10 with 0.5 intervals. The dashed curves
are calculated with the predicted threshold anisotropy val-
ues of Jz/Jxy = 1, 2, 3, 4, 5. In the lower panel for pinning
centers, the anisotropies are Jz/Jxy = 0.5 to 2.5 with 0.1
intervals. The dashed curves are calculated with the pre-
dicted threshold anisotropy values of Jz/Jxy = 1, 2. Beyond
Jz/Jxy ≃ 5 and 2.3, respectively for missing bonds and pin-
ning centers, the system saturates to the Jz/Jxy → ∞ ”solid-
on-solid” limit, exhibiting a single universal curve for the do-
main boundary width as a function of impurity concentration,
for all Jz/Jxy

>
∼

5 and Jz/Jxy
>
∼

2.3 respectively.

B. Method: Hard-Spin Mean-Field Theory

In our current study, hard-spin mean-field theory [1, 2],
which has been qualitatively and quantitatively success-
ful in frustrated and unfrustrated, equilibrium and non-
equilibrium magnetic ordering problems [3–17], including
recently the interface roughening transition [3], is used
to study the roughening of an interface by quenched ran-
dom pinning center sites or missing bonds. The self-
consistency equations of hard-spin mean-field theory [2]
are

mi =
∑

{sj}









∏

j

1 +mjsj
2



 tanh





∑

j

Jijsj







 , (2)
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FIG. 3: (Color online) Calculated domain boundary widths
versus anisotropy Jz/Jxy , at temperature 1/Jxy = 0.1. The
consecutive curves, bottom to top, are for impurity concen-
tration values of p = 0.04 to 0.72 (top panel) and 1 (bot-
tom panel) with 0.04 intervals. These values of p are noted
next to the curves. The curves show the deviations from the
isotropic case Jz/Jxy = 1 (vertical dash-dotted line) in the
directions of strongly coupled planes Jz/Jxy > 1 or weakly
coupled planes Jz/Jxy < 1. The predicted threshold values
are shown with the vertical dash-dotted and dashed lines and
are well reproduced by the calculated widths. It is clearly seen
to the right of this figure that beyond Jz/Jxy ≃ 5 and 2.3, re-
spectively for missing bonds and pinning centers, the system
saturates to the Jz/Jxy → ∞ ”solid-on-solid” limit, exhibit-
ing a single universal value for the domain boundary width as
a function of impurity concentration, for all Jz/Jxy

>
∼

5 and
Jz/Jxy

>
∼

2.3 respectively.

where mi =< si > is the local magnetization at site i,
the sum {sj} is over all possible values of the spins sj
at the nearest-neighbor sites j to site i, and mj are the
magnetizations at the nearest-neighbor sites. These cou-
pled equations for all sites are solved by local numerical
iteration, in a 10× 10× 10 system.
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III. DOMAIN BOUNDARY WIDTHS

A. Determination of the Domain Boundary Width

In our study, the domain boundary is roughened in
two ways: (1) Magnetic impurities are included in the
system by pinning randomly chosen sites to si = +1 or to
si = −1. The impurity concentration p in this case is the
ratio of the number of pinned sites to the total number of
sites. The numbers of +1 and −1 pinned sites are fixed
to be equal, to give both domains an equal chance to
advance over its counter. (2) Missing bonds are created
by removing randomly chosen bonds. In this case, the
concentration p is given by the ratio of the number of
removed bonds to the total number of bonds.
The domain boundary width is calculated by first con-

sidering each yz plane. The boundary width in each yz
plane is calculated by counting the number of sites, in the
z direction, between the two furthest opposite magnetiza-
tions in the plane (Fig. 1). This number is averaged over
all the yz planes. The result is then averaged over 100
independent realizations of the quenched randomness.

B. Impurity Effects on

the Domain Boundary Width

Our calculated domain boundary widths, as a func-
tion of impurity (i.e., missing-bond or pinned-site) con-
centration p at temperature 1/Jxy = 0.1, are shown in
Fig. 2. The different curves are for different interaction
anisotropies Jz/Jxy. In the lower panel for pinning-center
impurity, the domain boundary roughens with the intro-
duction of infinitesimal impurity, for all anisotropies: The
curves have finite slope at the pure system. In the upper
panel for missing-bond impurity, the domain boundary
roughens with the introduction of infinitesimal impurity
for strongly coupled planes Jz/Jxy > 2.5, whereas for
weakly coupled planes Jz/Jxy < 2.5, it is seen that in-
finitesimal or small impurity has essentially no effect on
the flat domain boundary. In the latter cases, the curves
reach the pure system with zero slope.
For both missing-bond and pinning-center impurities,

for moderately large values of Jz/Jxy, we find (Figs. 2
and 3) that the systems saturate to the Jz/Jxy → ∞
”solid-on-solid” limit [18]. Thus, the systems exhibit a
single universal curve for the domain boundary width as
a function of impurity concentration, onwards from all
moderately large values of Jz/Jxy.

C. Successive Roughening Thresholds

A bunching of the curves is visible, in the domain-
boundary width curves in Fig. 2, especially in the upper
panel for missing-bond impurity. This corresponds to a
thresholded domain boundary roughening, controlled by
the interaction anisotropy. This effect is also visible in

Fig. 3, by the steps in the curves which give the do-
main boundary widths as a function of the interaction
anisotropy Jz/Jxy for different impurity concentrations
p, at temperature 1/Jxy = 0.1.

Thresholded domain boundary roughening can be un-
derstood by considering the effect of increasing the
anisotropy. We first discuss the case of missing-bond im-
purity. Upon increasing Jz, for what value of Jz will a
spin flip, e.g., from +1 to -1, thereby increasing the do-
main boundary width (directly and/or by inducing a flip
cascade)? Increasing Jz can flip a spin and increase the
width only if one of its bonds in the ±z direction is miss-
ing and the non-missing bond connects to a -1 spin. This
flip will then happen for Jz = (q − q′)Jxy, where (q, q′)
are the numbers of xy neighbors bonded to the flipping
spin that are respectively +1, -1. The possible values are
(q, q′) = (4, 0), (3, 0), (2, 0), (1, 0), (3, 1), (2, 1), giving the
threshold values of Jz/Jxy = 1, 2, 3, 4, in fact calculation-
ally seen in the top panels of Figs. 2 and 3. Furthermore,
the simultaneous flip of two neighboring spins gives the
threshold value of Jz/Jxy = 5, also calculationally seen
in the top panels of Figs. 2 and 3. Beyond Jz/Jxy = 5,
the system saturates to the Jz/Jxy → ∞ ”solid-on-solid”
limit [18], exhibiting a single universal curve for the do-
main boundary width as a function of impurity concen-
tration, for all Jz/Jxy >

∼ 5.

We now discuss the case of pinned-site impurity. We
again consider the effect of increasing Jz and investigate
the value of Jz that will flip the spin, e.g., from +1 to -1,
thereby increasing the domain boundary width (again,
directly and/or by inducing a flip cascade). Increasing
Jz can flip this spin only if both of its neighbors in the
±z direction are -1, with one of these being part of a
disconnected island seeded by a pinning center. This flip
will then happen for 2Jz = (q−q′)Jxy, where again q and
q′ are the numbers of xy neighbors bonded to the flip-
ping spin that are respectively +1 and -1. The possible
values are (q, q′) = (4, 0), (3, 1), giving the threshold val-
ues of Jz/Jxy = 1, 2, calculationally seen in the bottom
panels of Figs. 2 and 3. Beyond Jz/Jxy ≃ 2.3, the sys-
tem saturates to the Jz/Jxy → ∞ ”solid-on-solid” limit
[18], exhibiting a single universal curve for the domain
boundary width as a function of impurity concentration,
for all Jz/Jxy >

∼ 2.3.

On a similar vein, in the limit of xy planes weakly cou-
pled due to low Jz/Jxy and high concentration of missing
bonds, the domain boundary gains by the intermediacy
of sending overhangs in the lateral x and y directions,
eventually covering the whole system via randomly mag-
netized xy planes. In this case, the spin is flipped by
the effect of Jxy upon decreasing Jz. This flip occurs at
2Jz = (q−q′)Jxy, where (q, q

′) has to be such that Jz/Jxy
is low. Thus, (q, q′) = (2, 1). (Other pairs of values, (3,0)
and (1,0) do not contribute to this spread of overhangs.)
Indeed, in Fig. 3, a rise in the domain for decreasing
Jz < 0.5 is seen at high missing bond concentration.
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IV. CONCLUSION

The effects of quenched random pinning centers and
missing bonds on the interface of isotropic and uniaxially
anisotropic Ising models in d = 3 have been investigated
by hard-spin mean-field theory. We find that the frozen
impurities cause domain boundary roughening that ex-
hibits consecutive thresholding transitions as a function
interaction of anisotropy Jz/Jxy. The numerical results,
showing the thresholding transitions as the bunching of
domain boundary width versus impurity concentration
curves (Fig. 2) and steps in the domain boundary width
versus anisotropy curves (Fig. 3) agree with our spin-flip
arguments at the interface. For both missing-bond and

pinning-center impurities, for moderately large values of
Jz/Jxy, the systems saturate to the Jz/Jxy → ∞ ”solid-
on-solid” limit, thus exhibiting a single universal curve
for the domain boundary width as a function of impurity
concentration, onwards from all moderately large values
of Jz/Jxy.
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