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All higher-spin (s ≥ 1/2) Ising spin glasses are studied by renormalization-group theory in spatial
dimension d = 3. The s-sequence of global phase diagrams, the chaos Lyapunov exponent, and
the spin-glass runaway exponent are calculated. It is found that, in d = 3, a finite-temperature
spin-glass phase occurs for all spin values, including the continuum limit of s → ∞. The phase
diagrams, with increasing spin s, saturate to a limit value. The spin-glass phase, for all s, exhibits
chaotic behavior under rescalings, with the calculated Lyapunov exponent of λ = 1.93 and runaway
exponent of yR = 0.24, showing simultaneous strong-chaos and strong-coupling behaviors. The
ferromagnetic-spinglass-antiferromagnetic phase transitions occurring around pt = 0.37 and 0.63
are unaffected by s, confirming the percolative nature of this phase transition.

I. INTRODUCTION: SPIN-S ISING

SPIN-GLASS SYSTEMS

Frozen disorder of the interactions introduces many
qualitatively and quantitatively new effects to statistical
mechanical systems, such as the immediate (i.e., with in-
finitesimal disorder) conversion of first-order phase tran-
sitions into second-order phase transitions [1–4] or the
creation of an entirely new phase such as the spin-glass
phase [5]. The latter occurs under frozen (quenched)
competing interactions causing local minimum-energy
degeneracies dubbed frustration [6]. The signature of the
spin-glass phase is the appearance of a chaotic sequence
of interactions [7–17] under the successive scale changes
of a renormalization-group transformation. This trans-
lates to a chaotic spin-spin correlation function, as func-
tion of distance, at a given scale.[18] The spin-glass phase
and its rescaling chaos appears with the introduction, by
rewiring, of infinitesimal frustration to the Mattis phase
[19] obtained by random local spin redefinitions (gauge
transformations) in the usual ferromagnetic or antifer-
romagnetic phase.[20] On the other hand, strong chaos,
signalled by a large Lyapunov exponent, of the spin-glass
phase in fully frustated systems continues [25] until the
lower-critical dimension dc ≃ 2.5 of the spin-glass phase
[21–27]. Thus both gradual [20] or abrupt [25] onsets of
chaos are seen.

Most spin-glass studies have been on the classical spin
s = 1/2 Ising model, where locally si = ±1.[29] Spin-
glass studies have also been done on q-state clock models
and their continuum limit the XY model [30, 31], chi-
ral (helical [32]) Potts and clock models, in fact leading
to a chiral spin-glass Potts [33] and clock [34, 35] phases,
and quantum Heisenberg models [36]. The position-space
renormalization-group method appears to be a method
suited for such studies, where the rescaling behavior of
the distribution of the quenched random interactions is
followed and analyzed [37]. This is best effected (Fig. 2)
by use of the Migdal-Kadanoff approximation [38, 39] or,
equivalently, the exact recursion of a hierarchical lattice
[40–43]. In the current work, we quantitatively and glob-
ally study, in spatial dimension d = 3, the Ising spin glass

for all spins s = 1/2, 1, 3/2, 2, 5/2, ... to the limiting value
s → ∞, obtaining the global s-sequence phase diagram
(Fig. 1) and chaotic behaviors.

FIG. 1. Calculated phase diagrams of the spin-s Ising
spin glasses in d = 3. Fom top to bottom, s =
1/2, 1, 3/2, 2, 5/2, 3, ... to s → ∞. There is an accumulation,
from above, of the phase diagrams at the lowermost, but still
at finite-temperature, phase diagram of the continuum limit
s → ∞.

The spin-s Ising model is defined by the Hamiltonian

− βH =
∑

〈ij〉

Jij(si/s)(sj/s) , (1)

where β = 1/kT , at each site i of the lattice the spin
si = ±1/2,±1,±3/2, ...,±s, and 〈ij〉 denotes summation
over all nearest-neighbor site pairs. The division by s
is done to conserve the energy scale across the differ-
ent spin-s models and thereby make meaningful temper-
ature comparisons between them. Note that for s = 1/2,
this formalism yields the much studied si/s = ±1 case.
The bond Jij is ferromagnetic +J > 0 or antiferromag-
netic −J with respective probabilities 1 − p and p. Un-
der renormalization-group tranformation, this ”double-
delta” distribution of interactions is not conserved. A
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more complicated distribution of interactions ensues and
is kept track of, as explained below.

(a)

(b)

FIG. 2. (a) Migdal-Kadanoff approximate renormalization-
group transformation for the d = 3 cubic lattice with the
length-rescaling factor of b = 3. In this intuitive ap-
proximation, bond moving is followed by decimation. (b)
Exact renormalization-group transformation of the d =
3, b = 3 hierarchical lattice for which the Migdal-Kadanoff
renormalization-group recursion relations are exact. The con-
struction of a hierarchical lattice proceeds in the opposite di-
rection of its renormalization-group solution. From [34, 40].

II. METHOD: RENORMALIZATION-GROUP

FLOWS OF THE QUENCHED PROBABILITY

DISTRIBUTION OF THE INTERACTIONS

Under renormalization group, for s > 1/2, the Hamil-
tonian does not conserve its form in Eq.(1). Thus, for
any s, the Hamiltonian is most generally expressed as

− βH =
∑

〈ij〉

E(si, sj) , (2)

With no loss of generality, for each < ij >, the same
constant is subtracted from all terms E(si, sj), so that
the largest energy E(si, sj)max of the spin-spin interac-
tion is zero (and all other E(si, sj) < 0). This formula-
tion makes it possible to follow global renormalization-
group trajectories, necessary for the calculation of phase
boundaries, Lyapunov exponent, and runaway expo-
nent, without running into numerical overflow prob-
lems. As the local renormalization-group transformation,
the Migdal-Kadanoff approximate transformation [38, 39]
and, equivalently, the exact transformation for the d = 3
hierarchical lattice [40–42] is used (Fig. 2). Recent works
using exactly soluble hierarchical models are in Refs. [44–
52]. The length rescaling factor of b = 3 is used, to
preserve under renormalization group the ferromagnetic-
antiferromagnetic symmetry of the system. This local
transformation consists in bond moving followed by dec-
imation, with the above-mentioned subtraction after each
local bond moving and decimation, giving the local renor-
malized energies E′(si, sj) ≤ 0. In our notation, all
renormalized quantities are designated by a prime.
The quenched randomness is included by keeping,

as a distribution, 10000 sets of the nearest-neighbor
interaction energies E(si, sj). At the beginning of

each renormalization-group trajectory, this distribution
is formed from the double-delta distribution character-
ized by interactions ±J with probabilities p, (1 − p).
10000 local renormalization-group transformations deter-
mine each subsequent distribution as explained below.

The local renormalization-group transformation is sim-
ply expressed in terms of the transfer matrix T (si, sj) =

eE(si,sj): Bond moving consists of multiplying elements
at the same position of bd−1 = 9 transfer matrices ran-
domly chosen from the distribution,

T̃ (si, sj) =
9∏

k=1

Tk(si, sj) , (3)

so that a distribution of 10000 bond-moved transfer ma-
trices is generated. Decimation consists of matrix multi-
plication of three randomly chosen bond-moved transfer
matrices,

T
′ = T̃1 · T̃2 · T̃3 , (4)

so that a distribution of 10000 renormalized transfer ma-
trices is generated. Phases are determined by following
trajectories to their asymptotic limit: The asymptotic
limit transfer matrices of trajectories starting in the fer-
romagnetic phase all have 1 in the corner diagonals and
0 at all other positions. The asymptotic limit transfer
matrices of trajectories starting in the antiferromagnetic
phase all have 1 in the corner anti-diagonals and 0 at all
other positions. The asymptotic limit transfer matrices
of trajectories starting in the spin-glass phase all have 1
in the corner diagonals and anti-diagonals, and 0 at all
other positions. The asymptotic limit transfer matrices
of trajectories starting in the disordered phase all have
1 at all other positions. Phase diagrams are obtained by
numerically determining the boundaries, in the unrenor-
malized system, of these asymptotic flows.

III. RESULTS: GLOBAL S-SEQUENCE PHASE

DIAGRAM AND SATURATION

The calculated phase diagrams of the spin-s Ising
spin glasses in d = 3 are shown in Fig. 1. Fom
top to bottom, the phase diagrams are for spin-s =
1/2, 1, 3/2, 2, 5/2, 3, ... to s → ∞. There is an accumula-
tion, from above, of the phase diagrams at the lowermost,
but still at finite-temperature, phase diagram of the con-
tinuum limit s → ∞.

The calculated ferromagnetic (at p = 0) and spin-glass
(at p = 0.5) phase transition temperatures as a function
of spin value s are given in Fig. 3. With increasing s both
transition temperatures saturate around s ≃ 4. A similar
behavior was found in q-state clock models saturating at
the continuum XY model transition temperature.[43]
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FIG. 3. The calculated ferromagnetic (at p = 0) and spin-
glass (at p = 0.5) phase transition temperatures as a function
of spin value s. Note that with increasing s both transition
temperatures saturate around s ≃ 4. A similar behavior was
found in q-state clock models.[43]

IV. RESULTS: CHAOS FOR ALL SPINS S,

LYAPUNOV EXPONENT AND RUNAWAY

EXPONENT

For all spin-s, the renormalization-group trajectories
starting within the spin-glass phase are asymptotically
chaotic, as seen in Fig. 4, where the consecutively renor-
malized (combining with neighboring interactions) values
at a given location < ij > are followed. For the interac-
tion Kij , we have used the difference between the largest
value (which is 0 by construction) and the lowest value in
E(si, sj). K is the average of this interaction over the en-
tire distribution at the given renormalization-group step.
The chaotic behavior is strong, as measured by the Lya-
punov exponent [53, 54]

λ = lim
n→∞

1

n

n−1∑

k=0

ln
∣∣∣
dxk+1

dxk

∣∣∣ , (5)

where xk = Kij/K at step k of the renormalization-group
trajectory. Eliminating the first 100 renormalization-
group steps as crossover from initial conditions to asymp-
totic behavior and using the next 1500 steps, Eq.(5)
yielded λ = 1.93 for all spins s.

In addition to strong chaos, the renormalization-group
trajectories show asymptotic strong coupling behavior,

K ′ = byR K , (6)

where yR > 0 is the runaway exponent [25]. Again us-
ing 1500 renormalization-group steps after discarding 100
steps, we find yR = 0.24 for all spins s. Note that this is
a ”weak” strong coupling behavior, as the stronger run-
away exponent of the ferromagnetic and antiferromag-
netic phases is yR = d− 1 = 2.

−3

0

3 s = 0.5

−3

0

3 s = 1

−3

0

3 s = 1.5

−3
0
3

s = 2

−3

0

3 s = 5

−3

0

3 s = 10

0 50 100 150 200 250 300

−3

0

3 s = 15
In
te
ra
ct
io
n 
K
ij/ K

Renormalization-Group Iteration Number n

FIG. 4. The chaotic renormalization-group trajectory of the
interaction Kij at a given location < ij >, for various spin s
values, at spatial dimension d = 3. Note the strong chaotic
behavior for all s, as also reflected by the calculated Lyapunov
exponent λ = 1.93 for all s. The calculated runaway exponent
is yR = 0.24 for all s, showing simultaneous strong-chaos and
strong-coupling behaviors.

V. CONCLUSION

We have calculated the global spin-s sequence of phase
diagrams for all spins s = 1/2, 1, 3/2, 2, 5/2, 3, ..., s→ ∞
for the Ising spin-glass system in spatial dimension d = 3.
The phase diagrams, all with a finite-temperature spin-
glass phase, for increasing spin s saturate to the limit
value of s → ∞. For all spins s, the spin-glass phase has
renormalization-group trajectories that are chaotic, with
calculated Lyapunov exponent λ = 1.93 and runaway
exponent yR = 0.24, thus simultaneously showing strong
chaotic and ”weak” strong-coupling behaviors.
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[25] M. Demirtaş, A. Tuncer, and A. N. Berker, Lower-
Critical Spin-Glass Dimension from 23 Sequenced Hier-
archical Models, Phys. Rev. E 92, 022136 (2015).

[26] A. Maiorano and G. Parisi, Support for the Value 5/2 for
the Spin Glass Lower Critical Dimension at Zero Mag-
netic Field, Proc. Natl. Acad. Sci. USA 115, 5129 (2018).

[27] B. Atalay and A. N. Berker, A Lower Lower-Critical
Spin-Glass Dimension from Quenched Mixed-Spatial-
Dimensional Spin Glasses, Phys. Rev. E 98, 042125
(2018).

[28] G. Grinstein, A. N. Berker, J. Chalupa, and M. Wortis,
Exact Renormalization Group with Griffiths Singulari-
ties and Spin-Glass Behavior: The Random Ising Chain,
Phys. Rev. Lett. 36, 1508 (1976).

[29] I. Morgenstern and K. Binder, Evidence against Spin-
Glass Order in the 2-Dimensional Random-Bond Ising
Model, Phys. Rev. Lett. 43, 1615 (1979).

[30] E. Ilker and A. N. Berker, High q-State Clock Spin
Glasses in Three Dimensions and the Lyapunov Expo-
nents of Chaotic Phases and Chaotic Phase Boundaries,
Phys. Rev. E 87, 032124 (2013).

[31] E. Ilker and A. N. Berker, Odd q-State Clock Spin-Glass
Models in Three Dimensions, Asymmetric Phase Dia-
grams, and Multiple Algebraically Ordered Phases, Phys.
Rev. E 90, 062112 (2014).

[32] M. Kardar and A. N. Berker, Commensurate-
Incommensurate Phase Diagrams for Overlayers from a
Helical Potts Model, Phys. Rev. Lett. 48, 1552 (1982).



5
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