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The random-magnetic-field classical Heisenberg model is solved in spatial dimensions d ≥

2 using the recently developed Fourier-Legendre renormalization-group theory for 4π steradi-
ans continuously orientable spins, with renormalization-group flows of 12,500 variables. The
random-magnetic-field Heisenberg model is exactly solved in 10 hierarchical models, for d =
2, 2.26, 2.46, 2.58, 2.63, 2.77, 2.89, 3. For non-zero random fields, ferromagnetic order is seen for d > 2.
This ordering shows, at d = 3, reentrance as a function of temperature.

I. HEISENBERG SPINS, LOWER-CRITICAL

DIMENSION, RANDOM MAGNETIC FIELDS

Random magnetic fields and Heisenberg spins (n=3
components, 4π steradians continuously orientable) con-
stitute a double challenge to ordering under quenched
randomness and varying spatial dimensions. In ordering
under quenched randomness, in the previous problem of
random-magnetic-field n = 1 component Ising spins (±1
discretely orientable), after an intense experimental and
theoretical controversy between lower-critical spatial di-
mension dc = 2 claims [1–3] and dc = 3 claims [4], the
issue was settled for dc = 2.[5, 6] That dc is not 3 fell in
contradiction with the prediction of a dimensional shift
of 2 due to random fields, coming from all-order field-
theoretic expansions from d = 6 down to d = 1 [7], which
indeed is a considerable distance to expand upon for a
small-parameter expansion of ǫ = 6− d.

In ordering under varying spatial dimensions d, direct
position-space renormalizaton-group theory has been
successful across the board in determining the lower-
critical dimension dc, below which no ordering occurs,
for all uniform systems and complex quenched random
systems. These renormalization-group studies have in-
deed yielded dc = 1 for the n = 1 component Ising model
[8, 9], dc = 2 for the n = 2 XY model [10] (this study
also yielding the low-temperature critical phase at d = 2),
and 2 < dc < 3 for the n = 3 Heisenberg model [11]. In-
cluding the complexity of quenched randomness, these
studies have yielded dc = 2, as mentioned above, for the
random-field Ising model [5, 6], 3.81 < dc < 4 for the
random-field XY model [12] with a critical line at zero
temperature, in fact a non-integer dc = 2.46 for the Ising
spin-glass with random ferromagnetic and antiferromag-
netic bonds [13], and 2 < dc < 3 for the Heisenberg
spin-glass [14], the latter actually revealing a nematic
phase, namely the occurrence of a liquid-crystal phase
in a dirty magnet. These renormalization-group calcu-
lations have also, for example, shown chaos inherent in
spin-glass phases [15–17], the finite-temperature phase

diagram of high-Tc superconductors [18], the changeover
from first-order to second-order phase transitions under
random bonds [19, 20], and the occurrence of first- and
second-order phase transitions as a function of number
of states q in Potts models [21–23].

In this study, a logically next step is taken, in
studying the random-magnetic-field Heisenberg
spins, with n=3 components, continuously ori-
entable in 4π steradians, using the recently devel-
oped Fourier-Legendre renormalization-group theory
[11, 14]. The random-magnetic-field Heisenberg
model is exactly solved in 10 hierarchical models, for
d = 2, 2.26, 2.46, 2.58, 2.63, 2.77, 2.89, 3. Under non-zero
random fields, ferromagnetic order is seen for d > 2.
This ordering shows, at d = 3, disorder-order-disorder
phase reentrance as a function of temperature.

FIG. 1. From Ref.[24]: Construction of a d = 3 hierarchi-
cal model used in this study. A hierarchical model is con-
structed by repeatedly self-imbedding a graph into each of its
bonds. The random-magnetic-field Heisenberg model is ex-
actly solved in 10 hierarchical models in this study, for d =
2, 2.58, 3 with b = 2 and d = 2, 2.26, 2.46, 2.63, 2.77, 2.89, 3
with b = 3, where b is the length rescaling factor, namely the
number of bonds between the external (open circle) sites. The
exact solution of a hierarchical model proceeds in the oppo-
site direction of its construction [17, 25–27].
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FIG. 2. The calculated phase diagrams of the random-field
Heisenberg model, for d = 2.28 and d = 3 (outer curve).
The exact solutions of a b = 2 hierarchical lattice yield these
results. The calculation shows that no ordering occurs in
d = 2.

II. FOURIER-LEGENDRE

RENORMALIZATION GROUP

The random-field Heisenberg model is defined by the
Hamiltonian

−βH = J
∑
〈ij〉

~si · ~sj +
∑
〈ij〉

~Hj · ~sj , (1)

where the classical spin ~si is the unit spherical vector at
lattice site i and the sums < ij > are over all nearest-

neighbor pairs of sites. In the second term, ~Hj are mag-
netic fields that are frozen in random directions. In our
model, the random magnetic field is attached to every
site, counting from its bond coming from the left, as given

in Eq. (1). We take constant magnitude, | ~Hi| = H , but
random directions in 4π steradians. (This condition is
of course not conserved under renormalization group.)
Note that the dimensionless J and H include a division
by temperature, namely the factor β = 1/kBT . We solve
this model on the hierarchical lattice, as shown in Fig.
1. The formulation of exactly soluble hierarchical models
[17, 25–27] yielded a plethora of exactly soluble models
custom-fitted to the physical problems on hand.[28–39]
The hierarchical model that we use, for length-rescaling
factors b = 2, 3, is the original d = 2, b = 2 hierarchi-
cal model, introduced in Fig. 2(c) of [25] in 1979 and is
a member of the most used family of hierarchical mod-
els, namely the so-called ”diamond” family. We solve
the random-field Heisenberg problem in this model, for
dimensions d = 2, 2.26, 2.46, 2.58, 2.63, 2.77, 2.89, 3.
The solution of a hierarchical model proceeds in the op-

posite direction of its construction. At each scale change,
namely renormalization-group step, the spins on the in-
ternal sites (shown with black circles in Fig. 1) are elimi-
nated by integrating, in the partition function, over their
directions continuously varying over the unit sphere with
angle 4π steradians, thus generating renormalized direct
interaction between the spins on the outer sites (shown
with open circles in Fig. 1). This procedure involves
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FIG. 3. Six calculated phase diagrams of the random-field
Heisenberg model, for d = 2.26, 2.46, 2.63, 2.77, 2.89, 3 (inside
to outer curves). The exact solutions of a b = 3 hierarchi-
cal lattice yield these results. The calculation shows that no
ordering occurs in d = 2. Starting at d = 2.46, temperature
reentrance occurs and is magnified as d = 3 is approached.

decimation, namely the integration over the intermedi-
ate spin in two consecutive bonds in series, and the bond
addition of two bonds connected in paralel to the same
two sites. The derivations for each of these two opera-
tions are given in Refs. [11, 14]
The exponentiated nearest-neighbor Hamiltonian be-

tween sites (i, j) is expanded in terms of the Fourier-
Legendre series,

uij(γ) = e−βHij(~si,~sj) =

∞∑
l=0

λ
(ij)
l Pl(cos γ) (2)

where Pl(cos γ) are the Legendre polynomials and γ is the
angle between the unit vectors (~si, ~sj). The expansion
coefficients λl are determined with

λ
(ij)
l =

2l+ 1

2

∫ 1

−1

uij(γ)Pl(cos γ) d(cos γ). (3)

For decimation,

ũ13(γ13) =

∫
u12(γ12)u23(γ23)

d~s2
4π

, (4)

a simple equation has been derived [11, 14],

λ̃
(13)
l =

λ
(12)
l λ

(23)
l

2l+ 1
, (5)

where tilda denotes decimated. This procedure is re-
peated until the length-rescaling factor b is obtained,
namely until the b bonds in series are replaced by one
decimated bond. For adding two bonds A and B be-
tween sites (i, j),

ũ′
ij(γ12) = ũA

ij(γ12)ũ
B
ij(γ12), (6)

where prime denotes added, a Fourier-Legendre equation
has also been derived [11, 14],

λ̃′
l ==

∞∑
l1=0

∞∑
l2=0

λ̃A
l1
λ̃B
l2
〈l1l200|l1l2l0〉

2
, (7)
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FIG. 4. The fixed distribution, unstable under renormalization group, controlling the phase boundary between the ferromagnetic
and disordered phases in d = 3 for b = 2. The unstable critical fixed distributions of the Fourier-Legendre coefficients λ1, λ2, λ3

are shown here. As explained in the text, at this fixed point, λ0 = 1. The fixed distributions of the 21 other Fourier-Legendre
coefficients λ4−24 entering our calculations are not shown here.

where the bracket notation is the Clebsch-Gordan co-
efficient with the restrictions l1 + l2 + l = 2s, s ∈ N;
|l1−l2| ≤ l ≤ |l1+l2|. This procedure is repeated until the
bd−1 bonds in parallel are combined, yielding the renor-
malized interaction u′

ij between the outer spins (open cir-
cles) in the graph. Thus, the renormalization-group flows
are in terms of the Fourier-Legendre coefficients λ′

l({λl}).
With no approximation, after every decimation and after
setting up the initial conditions, the coefficients {λl} are
divided by the largest λl. This is equivalent to subtract-
ing a constant term from the Hamiltonian and prevents
numerical overflow problems in flows inside the ordered
phase. We have kept up to l = 24 in our numerical cal-
culations of the trajectories.
The renormalization-group trajectories are effected by

repeated applications of the above transformation. The
initial points of these trajectories are obtained numeri-
cally effecting Eq.(2), obtaining uij for 500 different ran-
dom fields. At every step of the renormalization-group
transformation, by randomly grouping bd unrenormalized
uij , we generate one renormalized u′

ij , 500 times. Thus,
since each uij is defined by 25 Fouries-Legendre coeffi-
cients, our renormalization-group flows are in the (large)
space of 12,500 coefficients.

III. RENORMALIZATION-GROUP FLOWS OF

THE FOURIER-LEGENDRE COEFFICIENTS

AND PHASE TRANSITIONS

Under repeated applications of the renormalization-
group transformation of Sec. II, the Fourier-Legendre
coefficients (FLC) flow to a stable fixed point, which is
the sink of a thermodynamic phase. The sink of the disor-
dered phase has λ0 = 1 and all other FLC equal to zero,
λl>0 = 0, meaning a constant u that is not dependent
on γ, namely a non-interacting system at the sink. This
sink attracts all points of the disordered phase, which it
epitomizes. In d = 2 for H > 0, the disordered sink is
the only sink and therefore the disordered phase is the
only thermodynamic phase of the random-field system.
For d > 2, another sink also occurs with the FLC non-

zero and proportional to 2l+1, making u(γ) a delta func-
tion at zero angular separation of the spins as also seen
in Refs.[11, 14]. This is the sink of the low-temperature
ferromagnetic phase. The disordered sink continues, as
the sink of the high-temperature disordered phase. The
boundary of critical points (Figs. 2 and 3) between these
two phases is controlled by an unstable fixed distribtion,
shown in Fig. 4. The unstable critical fixed distributions
of the Fourier-Legendre coefficients λ1, λ2, λ3 are shown
in Fig. 4. At this fixed point, λ0 = 1. The fixed dis-
tributions of the 21 other Fourier-Legendre coefficients
entering our calculations are not shown here.

IV. PHASE DIAGRAMS AND PHASE

REENTRANCE

The calculated phase diagrams, for eight different spa-
tial dimensions d = 2, 2.26, 2.46, 2.58, 2.63, 2.77, 2.89, 3,
are shown in Figs. 2 and 3. The non-integer dimensions
are constructed by varying, in the hierarchical model
(Fig. 1), the number of parallel strands, which is equal
to bd−1. There is no ordered phase, under random fields,
for d = 2. The ferromagnetic phase persists, up to
a temperature-dependent random-field strength, for all
other studied dimensions. The intercepts of the phase
boundaries, for zero field and zero temperature, are given
in Figs. 5 and 6.
The ferromagnetic-disordered phase bound-

ary shows temperature reentrance in d =
2.46, 2.58, 2.63, 2.77, 2.89, 3, namely, as temperature
is lowered at constant random field J/H (with temper-
ature divided out), the system goes, as usual, from the
disordered phase to the ordered ferromagnetic phase.
However, as the temperature is further lowered, the
system goes from the ordered ferromagnetic phase back
to the disordered phase. Reentrance is the reversal of a
thermodynamic trend as the system proceeds along one
given thermodynamic direction. Since its observation in
liquid crystals by Cladis [40], this at-first-glance strange
phenomenon has attracted attention by the need for
a physical mechanistic explanation, which has been
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FIG. 5. The calculated zero-field critical temperatures with
respect to spatial dimension d, for the b = 2 (squares) and
b = 3 (circles) hierarchical models.
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FIG. 6. The calculated zero-temperature critical fields with
respect to spatial dimension d, for the b = 2 (squares) and
b = 3 (circles) hierarchical models.

disparate in disparate systems. Thus, in liquid crystals
the explanation has been the relief of close-packed
dipolar frustration by positional fluctuations (librations)
[41, 42], in closed-loop binary liquid mixtures the
explanation has been the asymmetric orientational
degrees of freedom of the components [43], in surface
adsorption the explanation has been the buffer effect
of the second layer [44]. In spin-glasses, a magnetic
system with quenched randomness as the random-field
system studied here, and where there is orthogonally

bidirectional reentrance, the effect of frustration in
both disordering and changing the nature of ordering
(to spin-glass order) is the cause [45]. In cosmology,
reentrance is due to high-curvature (black hole) gravity
[46, 47]. In Potts and clock model interfacial densities,
in lowering the temperature, when the system orders
in favor of state a, the preponderance of the latter also
increases its interface with the other states. However, as
this preponderance further increases and in fact takes
over the system, the other states are eliminated and
their interface with a thus is also eliminated.[24] In the
current random-field Heisenberg model, we see that at
intermediate temperatures the spins under random fields
heal with the overall ferromagnetic order direction, but
at lower temperatures break the system into domains
dictated by local random fields, destroying long-range
order.

V. CONCLUSION

We have solved, on 10 different hierarchi-
cal latttices and eigth different spatial dimen-
sions d = 2, 2.26, 2.46, 2.58, 2.63, 2.77, 2.89, 3, the
random-field Heisenberg model, using the newly
developed Fourier-Legendre renormalization group,
following the global renormalization-group trajec-
tory of 12,500 Fourier-Legendre coefficients. For
d = 2.26, 2.46, 2.58, 2.63, 2.77, 2.89, 3, the ordered
ferromagnetic phase persists, up to a temperature-
dependent threshold field strength. This is shown in
the calculated phase diagrams (Figs. 2 and 3). For
d = 2.46, 2.58, 2.63, 2.77, 2.89, 3, the phase diagrams
show reentrance, in the sense that the phases disordered-
ordered-disordered are encountered as temperature is
lowered. This calculated result has a phenomenological
explanation.
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[34] B. Steinhurst and A. Teplyaev, Spectral analysis on Bar-
low and Evans’ projective limit fractals, J. Spectr. The-
ory 11, 91 (2021).

[35] A. V. Myshlyavtsev, M. D. Myshlyavtseva, and S. S. Aki-
menko, Classical lattice models with single-node interac-
tions on hierarchical lattices: The two-layer Ising model,
Physica A 558, 124919 (2020).

[36] M. Derevyagin, G. V. Dunne, G. Mograby, and A.
Teplyaev, Perfect quantum state transfer on diamond
fractal graphs, Quantum Information Processing, 19, 328
(2020).

[37] S.-C. Chang, R. K. W. Roeder, and R. Shrock, q-Plane
zeros of the Potts partition function on diamond hierar-
chical graphs, J. Math. Phys. 61, 073301 (2020).

[38] C. Monthus, Real-space renormalization for disordered
systems at the level of large deviations, J. Stat. Mech. -
Theory and Experiment, 013301 (2020).

[39] O. S. Sarıyer, Two-dimensional quantum-spin-1/2 XXZ
magnet in zero magnetic field: Global thermodynamics
from renormalisation group theory, Philos. Mag. 99, 1787
(2019).

[40] P. E. Cladis, New liquid-crystal phase diagram, Phys.
Rev. Lett. 35, 48 (1975).

[41] R. R. Netz and A. N. Berker, Smectic C order, in-plane
domains, and nematic reentrance in a microscopic model
of liquid crystals, Phys. Rev. Lett. 68, 333 (1992).

[42] J. O. Indekeu, A. N. Berker, C. Chiang, and C. W. Gar-
land, Reentrant transition enthalpies of liquid crystals:
The frustrated spin-gas model and experiments, Phys.
Rev. A 35, 1371 (1987).

[43] C. A. Vause and J. S. Walker, Effects of orientational de-
grees of freedom in closed-loop solubility phase diagrams,
Phys. Lett. A 90, 419 (1982).

[44] R. G. Caflisch, A. N. Berker, and M. Kardar, Reentrant
melting of krypton adsorbed on graphite and the helical
Potts-lattice-gas model, Phys. Rev. B 31, 4527 (1985).

[45] E. Ilker and A. N. Berker, High q-state clock spin glasses
in three dimensions and the Lyapunov exponents of
chaotic phases and chaotic phase boundaries, Phys. Rev.
E 87, 032124 (2013).

[46] A. M. Frassino, D. Kubiznak, R. B. Mann, and F.
Simovic, Multiple reentrant phase transitions and triple
points in Lovelock thermodynamics, J. High Energy



6

Phys. 09, 080 (2014).
[47] A. Dehghani, S. H. Hendi, and R. B. Mann, Range

of novel black hole phase transitions via massive grav-

ity: Triple points and N-fold reentrant phase transitions,
Phys. Rev. D 101, 084026 (2020).


