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The global phase diagram of the spinless Falicov-Kimball model in d = 3 spatial dimensions is
obtained by renormalization-group theory. This global phase diagram exhibits five distinct phases.
Four of these phases are charge-ordered (CO) phases, in which the system forms two sublattices with
different electron densities. The CO phases occur at and near half filling of the conduction electrons
for the entire range of localized electron densities. The phase boundaries are second order, except
for the intermediate and large interaction regimes, where a first-order phase boundary occurs in the
central region of the phase diagram, resulting in phase coexistence at and near half filling of both
localized and conduction electrons. These two-phase or three-phase coexistence regions are between
different charge-ordered phases, between charge-ordered and disordered phases, and between dense
and dilute disordered phases. The second-order phase boundaries terminate on the first-order phase
transitions via critical endpoints and double critical endpoints. The first-order phase boundary is
delimited by critical points. The cross-sections of the global phase diagram with respect to the
chemical potentials and densities of the localized and conduction electrons, at all representative
interactions strengths, hopping strengths, and temperatures, are calculated and exhibit ten distinct
topologies.

PACS numbers: 71.10.Hf, 05.30.Fk, 64.60.De, 71.10.Fd

I. INTRODUCTION

The Falicov-Kimball model (FKM) was first proposed
by L. M. Falicov and Kimball [1] to analyze the ther-
modynamics of semiconductor-metal transitions in SmB6

and transition-metal oxides [2–5]. The model incor-
porates two types of electrons: one type can undergo
hopping between sites and the other type cannot hop,
thereby being localized at the sites. Thus, in its introduc-
tion, FKM described the Coulomb interaction between
mobile d band electrons and localized f band electrons.
There have been a multitude of subsequent physical in-
terpretations based on this interaction, including that of
localized ions attractively interacting with mobile elec-
trons, which yields crystalline formation [6, 7]. Another
physical interpretation of the model is as a binary alloy,
in which the localized degree of freedom reflects A or B
atom occupation [8, 9]. In this paper we employ the orig-
inal language, with d and f electrons as conduction and
localized electrons with a repulsive interaction between
them.
Since there is no interacting spin degree of freedom

in the Hamiltonian, the model is traditionally studied
in the spinless case, commonly referred as the spinless
FKM (SFKM) and which is in fact a special case of the
Hubbard model in which one type of spin (e.g., spin-up)
cannot hop [10]. In spite of its simplicity, this model is
able to describe many physical phenomena in rare-earth
and transition metal compounds, such as metal transi-
tions, charge ordering, etc.
Beyond the introduction of the spin degree of free-

dom for both electrons [11–27], there also exist many
extensions of the original model. The most widely stud-
ied extensions include multiband hybridization [28–35],
f − f hopping [36–40], correlated hopping [41–45], non-
bipartite lattices [46, 47], hard-core bosonic particles [47],
magnetic fields [19, 24–27, 47, 48], and next-nearest-
neighbor hopping [49]. Exhaustive reviews are avail-
able in Refs. [50–53]. The wider physical applica-
tion of both the basic FKM and its extended versions
have aimed at explaining valence transitions [12, 18–20],
metal-insulator transitions [12, 21–23, 54], mixed valence
phenomena [55], Raman scattering [56], colossal mag-
netoresistance [24–27], electronic ferroelectricity [34, 37–
39], and phase separation [12, 40, 41, 57–59].

After the initial works on the FKM [1–5], the litera-
ture had to wait 14 years for the celebrated first rigorous
results. Two independent studies, by Kennedy and Lieb
[6, 7] and by Brandt and Schmidt [60, 61], proved for
dimensions d ≥ 2 that, at low temperatures, FKM has
long-range charge order with the formation of two sublat-
tices. Various methods have been used in the study of the
FKM. In most of these studies, either the d→ ∞ infinite-
dimensional limit or d = 1, 2 low-dimensional cases have
been investigated. Studies include limiting cases such
as ground-state analysis or the large interaction limit.
Renormalization-group theory [62] offers fully physical
and fairly easy techniques to yield global phase diagrams
and other physical phenomena.

This non-trivial nature of SFKM motivated us to de-
termine the global phase diagram of the model, which re-
sulted in a richly complex phase diagram involving charge
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FIG. 1: Evolution of the cross-sections of the global phase diagram under t increase for |U | = 1, in terms of the chemical
potentials (upper panels) and densities (lower panels) of the localized and conduction electrons. In phase subscripts throughout
this paper, the first and second subscripts respectively describe localized and conduction electron densities, as dilute (d) or
dense (D). The dotted and thick full lines are respectively first- and second-order phase transitions. Phase separation, i.e.,
phase coexistence occurs inside the dotted boundaries, as identified appropriately but not repeatedly in the figure. The dashed
lines are not phase transitions, but smooth changes between the different density regions of the disordered (δ) phase. The
charge-ordered phases are denoted by CO. The charge-ordered phases occur as strips near the half filling of the conduction
electrons. Phase separation occurs near the simultaneous half filling of both the localized and conduction electrons. The four
rounded coexistence regions, two of which disappear as t is increased, are two-phase coexistence regions between the disordered
δ phases that are distinguished by electron densities. The narrow triangular regions are three-phase coexistence regions between
the δ phases. The second-order transition lines bounding the charge-ordered CO phases terminate at critical endpoints on the
coexistence regions. These endpoints, as t is increased, move past each other, as detailed in Sec.IV below, leading to coexistence
regions between the different charge-ordered phases and between the charge-ordered and disordered phases.

ordering and phase coexistence, as exemplified in Fig. 1.
We use the general method for arbitrary dimensional

quantum systems developed by A. Falicov and Berker [63]
to obtain the global phase diagram of the SFKM in d = 3,
in terms of both the chemical potentials and the densities
of the two types of electrons, for all temperatures. The
outline of this paper is as follows: In Sec.II, we introduce
the SFKM and, in Sec.III, we present the method [63].
Calculated phase diagrams are presented in Sec.IV, for
the non-hopping (t = 0) classical submodel and for the
hopping (t 6= 0) quantum regimes of small, intermediate,
and large |U |. We conclude the paper in Sec.V.

II. SPINLESS FALICOV-KIMBALL MODEL

The SFKM is defined by the Hamiltonian

−βH = t
∑

〈ij〉

(

c†i cj + c†jci

)

+ U0

∑

i

niwi

+ µ0

∑

i

ni + ν0
∑

i

wi ,
(1)

where β = 1/kBT and 〈ij〉 denotes that the sum runs
over all nearest-neighbor pairs of sites. Note that, as
in all renormalization-group studies, the Hamiltonian

has absorbed the inverse temperature. The dimension-
less hopping strength t can therefore be used as the in-

verse temperature. Here c†i and ci are respectively cre-
ation and annihilation operators for the conduction elec-
trons at lattice site i, obeying the anticommutation rules

{ci, cj} = {c†i , c
†
j} = 0 and {c†i , cj} = δij , while ni = c†i ci

and wi are electron number operators for conduction and
localized electrons respectively. The operator wi takes
the values 1 or 0, for site i being respectively occupied
or unoccupied by a localized electron. The particles are
fermions, so that the Pauli exclusion principle forbids
the occupation of a given site by more than one localized
electron or by more than one conduction electron.

The first term of the Hamiltonian is the kinetic energy
term, responsible for the quantum nature of the model.
The system being invariant under sign change of t (via a
phase change of the local basis states in one sublattice),
only positive t values are considered. The second term
is the screened on-site Coulomb interaction between lo-
calized and conduction electrons, with positive and neg-
ative U0 values corresponding to attractive and repulsive
interactions. We consider only the repulsive case, since
the attractive case can be connected to the repulsive one
by the particle-hole symmetry possessed by either type of
electrons. Particle-hole symmetries are achieved by the
transformations of wi → 1−wi for the localized electrons
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and c†i → κici, ci → κic
†
i for the conduction electrons,

where, for a bipartite lattice, κi = 1 for one sublattice
and κi = −1 for the other [8, 53]. The last two terms of
the Hamiltonian are the chemical potential terms with ν0
and µ0 being the chemical potential for a localized and
conduction electron.
In order to carry out a renormalization-group trans-

formation easily, we trivially rearrange the Hamiltonian
given in Eq.(1) into the equivalent form of

−βH =
∑

〈ij〉

[

t
(

c†i cj + c†jci

)

+ U (niwi + njwj)

+ µ (ni + nj) + ν (wi + wj)

]

≡
∑

〈ij〉

[−βHi,j ] ,

(2)

where, for a d-dimensional hypercubic lattice, U =
U0/2d, µ = µ0/2d, ν = ν0/2d, and −βHi,j is the two-site
Hamiltonian involving only nearest-neighbor sites i and
j.

III. RENORMALIZATION-GROUP THEORY

A. Suzuki-Takano Method in d = 1

In d = 1 the Hamiltonian in Eq.(2) is

− βH =
∑

i

[−βHi,i+1] . (3)

The renormalization-group procedure traces out half of
the degrees of freedom in the partition function [64, 65],

Trodde
−βH =Trodde

∑
i[−βHi,i+1]

=Trodde
∑

odd
i [−βHi−1,i−βHi,i+1]

≃

odd
∏

i

Trie
[−βHi−1,i−βHi,i+1]

=

odd
∏

i

e−β′H′

i−1,i+1

≃e
∑

odd
i [−β′H′

i−1,i+1] = e−β′H′

.

(4)

Here and throughout this paper primes are used for the
renormalized system. Thus, as an approximation, the
non-commutativity of the operators beyond three con-
secutive sites is ignored at each successive length scale,
in the two steps indicated by ≃ in the above equation.
Earlier studies [63–74] have established the quantitative
validity of this procedure.
The above transformation is algebraically summarized

in

e−β′H′

i,k = Trj e
{−βHi,j−βHj,k} , (5)

where i, j, k are three successive sites. The opera-
tor −β′H′

i,k acts on two-site states, while the operator
−βHi,j − βHj,k acts on three-site states. Thus we can
rewrite Eq.(5) in matrix form as

〈uivk|e
−β′H′

i,k |ūiv̄k〉 =
∑

sj

〈ui sj vk|e
−βHi,j−βHj,k |ūi sj v̄k〉, (6)

where state variables uℓ, vℓ, sℓ, ūℓ, and v̄ℓ can be one of
the four possible single-site |wℓ, nℓ〉 states at each site ℓ,
namely one of |00〉, |01〉, |10〉, and |11〉. Eq.(6) indicates
that the unrenormalized 64×64 matrix on the right-hand
side is contracted into the renormalized 16×16 matrix on
the left-hand side. We use two-site basis states, {|φp〉},
and three-site basis states, {|ψq〉}, in order to block-
diagonalize the matrices in Eq.(6). These basis states are
the eigenstates of total localized and conduction electron
numbers. The set of {|φp〉} and {|ψq〉} are given in Tables
I and II respectively. The corresponding block-diagonal
Hamiltonian matrices are given in Appendices A and B.

w n u Two-site basis states
0 0 + |φ1〉 = |00, 00〉
0 1 + |φ2〉 =

1√
2
{|00, 01〉 + |01, 00〉}

0 1 − |φ3〉 =
1√
2
{|00, 01〉 − |01, 00〉}

0 2 − |φ4〉 = |01, 01〉
1 0 + |φ5〉 = |00, 10〉
1 1 + |φ6〉 =

1√
2
{|00, 11〉 + |01, 10〉}

1 1 − |φ7〉 =
1√
2
{|00, 11〉 − |01, 10〉}

1 2 − |φ8〉 = |01, 11〉
2 0 + |φ13〉 = |10, 10〉
2 1 + |φ14〉 =

1√
2
{|10, 11〉+ |11, 10〉}

2 1 − |φ15〉 =
1√
2
{|10, 11〉 − |11, 10〉}

2 2 − |φ16〉 = |11, 11〉

TABLE I: The two-site basis states that appear in Eq.(7),
in the form |wini, wjnj〉. The total localized and conduction
electron numbers w and n, the eigenvalue u of the operator
Tij defined after Eq.(8) are indicated. |φ9−12〉 are respectively
obtained from |φ5−8〉 by the action of Tij , while the corre-
sponding Hamiltonian matrix elements are multiplied by the
u values of the states.

With these basis states, Eq.(6) can be rewritten as

〈φp|e
−β′H′

i,k |φp̄〉 =
∑

u,v,
ū,v̄,s

∑

q,q̄

〈φp|uivk〉〈uisjvk|ψq〉·

〈ψq|e
−βHi,j−βHj,k |ψq̄〉〈ψq̄ |ūisj v̄k〉〈ūiv̄k|φp̄〉. (7)

Once written in the basis states {|φp〉}, the block-
diagonal renormalized matrix has 13 independent ele-
ments, which means that renormalization-group trans-
formation of the Hamiltonian generates 9 more interac-
tion constants apart from t, U , µ, and ν. In this 13-
dimensional interaction space, the form of the Hamilto-
nian stays closed under renormalization-group transfor-
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w n u Three-site basis states
0 0 + |ψ1〉 = |00, 00, 00〉
0 1 + |ψ2〉 =

1√
2
{|00, 00, 01〉 + |01, 00, 00〉}

0 1 + |ψ3〉 = |00, 01, 00〉
0 1 − |ψ4〉 =

1√
2
{|00, 00, 01〉 − |01, 00, 00〉}

0 2 + |ψ5〉 =
1√
2
{|00, 01, 01〉 − |01, 01, 00〉}

0 2 − |ψ6〉 = |01, 00, 01〉
0 2 − |ψ7〉 =

1√
2
{|00, 01, 01〉 + |01, 01, 00〉}

0 3 − |ψ8〉 = |01, 01, 01〉
1 0 + |ψ9〉 = |00, 00, 10〉
1 0 + |ψ10〉 = |00, 10, 00〉
1 1 + |ψ12〉 =

1√
2
{|00, 00, 11〉+ |01, 00, 10〉}

1 1 + |ψ13〉 =
1√
2
{|00, 10, 01〉+ |01, 10, 00〉}

1 1 + |ψ15〉 = |00, 01, 10〉
1 1 + |ψ16〉 = |00, 11, 00〉
1 1 − |ψ18〉 =

1√
2
{|00, 00, 11〉 − |01, 00, 10〉}

1 1 − |ψ19〉 =
1√
2
{|00, 10, 01〉 − |01, 10, 00〉}

1 2 + |ψ21〉 =
1√
2
{|00, 01, 11〉 − |01, 01, 10〉}

1 2 + |ψ22〉 =
1√
2
{|00, 11, 01〉 − |01, 11, 00〉}

1 2 − |ψ24〉 = |01, 00, 11〉
1 2 − |ψ25〉 = |01, 10, 01〉
1 2 − |ψ27〉 =

1√
2
{|00, 01, 11〉+ |01, 01, 10〉}

1 2 − |ψ28〉 =
1√
2
{|00, 11, 01〉+ |01, 11, 00〉}

1 3 − |ψ30〉 = |01, 01, 11〉
1 3 − |ψ31〉 = |01, 11, 01〉
2 0 + |ψ33〉 = |00, 10, 10〉
2 0 + |ψ34〉 = |10, 00, 10〉
2 1 + |ψ36〉 =

1√
2
{|00, 10, 11〉+ |01, 10, 10〉}

2 1 + |ψ37〉 =
1√
2
{|10, 00, 11〉+ |11, 00, 10〉}

2 1 + |ψ39〉 = |00, 11, 10〉
2 1 + |ψ40〉 = |10, 01, 10〉
2 1 − |ψ42〉 =

1√
2
{|00, 10, 11〉 − |01, 10, 10〉}

2 1 − |ψ43〉 =
1√
2
{|10, 00, 11〉 − |11, 00, 10〉}

2 2 + |ψ45〉 =
1√
2
{|00, 11, 11〉 − |01, 11, 10〉}

2 2 + |ψ46〉 =
1√
2
{|10, 01, 11〉 − |11, 01, 10〉}

2 2 − |ψ48〉 = |01, 10, 11〉
2 2 − |ψ49〉 = |11, 00, 11〉
2 2 − |ψ51〉 =

1√
2
{|00, 11, 11〉+ |01, 11, 10〉}

2 2 − |ψ52〉 =
1√
2
{|10, 01, 11〉+ |11, 01, 10〉}

2 3 − |ψ54〉 = |01, 11, 11〉
2 3 − |ψ55〉 = |11, 01, 11〉
3 0 + |ψ57〉 = |10, 10, 10〉
3 1 + |ψ58〉 =

1√
2
{|10, 10, 11〉+ |11, 10, 10〉}

3 1 + |ψ59〉 = |10, 11, 10〉
3 1 − |ψ60〉 =

1√
2
{|10, 10, 11〉 − |11, 10, 10〉}

3 2 + |ψ61〉 =
1√
2
{|10, 11, 11〉 − |11, 11, 10〉}

3 2 − |ψ62〉 = |11, 10, 11〉
3 2 − |ψ63〉 =

1√
2
{|10, 11, 11〉+ |11, 11, 10〉}

3 3 − |ψ64〉 = |11, 11, 11〉

TABLE II: The three-site basis states that appear in Eq.(7),
in the form |wini, wjnj , wknk〉. The total localized and con-
duction electron numbers w and n, the eigenvalue u of the
operator Tik defined after Eq.(8) are indicated. {|ψ11+3x〉},
x = 0, 1, . . . , 15, are respectively obtained from {|ψ9+3x〉} by
the action of Tik, while the corresponding Hamiltonian matrix
elements are multiplied by the u values of the states.

mations. This Hamiltonian is

−βHi,j = t
(

c†icj + c†jci

)

+ U (niwi + njwj)

+ µ (ni + nj) + ν (wi + wj) + Jninj

+Kwiwj + Lninjwiwj + P (niwj + njwi)

+ Vnninj(wi + wj) + Vw(ni + nj)wiwj

+QTijwiwj + RTij(wi + wj) +G,

(8)

where Tij is a local operator that switches the conduc-
tion electron states of sites i and j: Tij |wini, wjnj〉 =
u|winj , wjni〉 with u = 1 for ni + nj < 2 and u =
−1 otherwise. When Tik is applied, further below, to
three consecutive sites i, j, k, Tik|wini, wjnj , wknk〉 =
u|wink, wjnj , wkni〉 with u = 1 for ni + nj + nk < 2 and
u = −1 otherwise.

To extract the renormalization-group recursion re-
lations, we consider the matrix elements γp,p̄ ≡

〈φp|e
−β′H′

i,k |φp̄〉. With γ9,9 = γ5,5, γ10,10 = γ6,6, γ11,11 =
γ7,7, and γ12,12 = γ8,8, 12 out of 16 diagonal elements are
independent and, with γ10,11 = γ11,10 = −γ7,6 = −γ6,7,
only one of the 4 off-diagonal elements is independent,
summing up to 13 independent matrix elements. Thus
we obtain the renormalized interaction constants in terms
of {γ}, defining γp ≡ γp,p for the diagonal elements and
γ0 ≡ γ6,7 for the only independent off-diagonal element:

t′ =
1

2
ln
γ2
γ3
, U ′ = ln

γ1γ6γ0
γ2γ5

, µ′ =
1

2
ln
γ2γ3
γ21

,

ν′ =
1

2
ln
γ2γ

2
5γ7

γ21γ3γ6
, J ′ = ln

γ1γ4
γ2γ3

,

K ′ =
1

2
ln
γ21γ3γ

2
6γ

2
13γ15

γ2γ45γ
2
7γ14

, L′ = ln
γ1γ4γ

2
6γ

2
7γ13γ16

γ2γ3γ25γ
2
8γ14γ15

,

P ′ = ln
γ1γ6
γ2γ5γ0

, V ′
n = ln

γ2γ3γ5γ8
γ1γ4γ6γ7

, V ′
w = ln

γ2γ
2
5γ14

γ1γ26γ13
,

Q′ =
1

2
ln
γ2γ

2
7γ14

γ3γ26γ15
, R′ =

1

2
ln
γ3γ6
γ2γ7

, G′ = ln γ1. (9)

The matrix elements {γ} of the exponentiated renormal-
ized Hamiltonian are connected, by Eq.(7), to the matrix
elements, ηq,q̄ ≡ 〈ψq|e

−βHi,j−βHj,k |ψq̄〉 of the exponenti-
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Phase The interaction constants Kα at the phase sinks

sink t U µ ν J K L P Vn Vw Q R

δdd 0 0 −∞ −∞ 0 0 0 0 0 0 0 0
δdD 0 ∞ ∞ −∞ 0 0 0 0 0 0 0 0
δDd 0 ∞ −∞ ∞ 0 0 0 0 0 0 0 0
δDD 0 0 ∞ ∞ 0 0 0 0 0 0 0 0
COdd ∞ ∞ −∞ −∞ ∞ −∞ ∞ −∞ −∞ ∞ ∞ −∞
COdD ∞ ∞ ∞ −∞ ∞ −∞ ∞ ∞ −∞ ∞ ∞ ∞
CODd ∞ ∞ −∞ ∞ ∼ 50 −∞ ∞ −∞ ∼ −20 ∞ ∞ −∞
CODD ∞ ∞ ∞ ∞ ∼ 140 −∞ ∞ ∞ ∼ −40 ∞ ∞ ∞

Phase The runaway coefficients K′
α/Kα at the phase sinks

sink t′/t U ′/U µ′/µ ν′/ν J ′/J K′/K L′/L P ′/P V ′
n/Vn V ′

w/Vw Q′/Q R′/R

δdd, δDD − − 4 4 − − − − − − − −
δdD, δDd − 4 4 4 − − − − − − − −

COdd, COdD 2 2 2 4 4/3 2 4/3 2 4/3 2 2 2
CODd, CODD 2 2 2 4 1 2 4/3 2 1 2 2 2

Phase The expectation values Mα at the phase sinks Character

sink 〈t̂〉 〈Û〉 〈µ̂〉 〈ν̂〉 〈Ĵ〉 〈K̂〉 〈L̂〉 〈P̂ 〉 〈V̂n〉 〈V̂w〉 〈Q̂〉 〈R̂〉

δdd 0 0 0 0 0 0 0 0 0 0 0 0 dilute - dilute
δdD 0 0 2 0 1 0 0 0 0 0 0 0 dilute - dense
δDd 0 0 0 2 0 1 0 0 0 0 1 2 dense - dilute
δDD 0 2 2 2 1 1 1 2 2 2 −1 −2 dense - dense
COdd −a 0 a 0 0 0 0 0 0 0 0 0 dilute - charge ord. dilute
COdD −a 0 2− a 0 1− a 0 0 0 0 0 0 0 dilute - charge ord. dense
CODd −a a a 2 0 1 0 a 0 a 1 2 dense - charge ord. dilute
CODD −a 2− a 2− a 2 1− a 1 1− a 2− a 2− 2a 2− a −1 + 2a −2 + 4a dense - charge ord. dense

TABLE III: Interaction constants Kα, runaway coefficients K′
α/Kα, and expectation values Mα = 〈K̂α〉, at the phase sinks.

Here, K̂α are used as abbreviations for the conjugate operators for interaction constants Kα, e.g., 〈t̂〉 = 〈c†i cj + c†jci〉, 〈Û〉 =
〈niwi +njwj〉, etc. The non-zero hopping expectation value is −a = −0.629050. In the subscripts in the first columns, the left
and right entries refer to the localized and conduction electrons, respectively, as dilute (d) or dense (D).

Phase Boundary Interaction constants Kα at the boundary fixed points Relevant eigenvalue

boundary type t U µ ν J K L P Vn Vw Q R exponent y1

COdD/CODd 1st ∞ −∞ ∞ −∞ ∞ ∞ ∞ −∞ −∞ ∞ ∞ −∞ 2µ− 2ν + J −K 3
order −Q− 2R = 0

COdd/δdd 2nd ∞ ∞ −∞ −∞ ∞ −∞ ∞ −∞ −∞ ∞ ∞ −∞ t+ µ = 1.744253 0.273873
order

COdD/δdD 2nd ∞ ∞ ∞ −∞ ∞ −∞ ∞ −∞ ∞ ∞ ∞ −∞ t− µ− J = 1.744253 0.273873
order

CODd/δDd 2nd ∞ ∞ −∞ ∞ ∞ −∞ ∞ −∞ −∞ ∞ ∞ −∞ t+ U + µ+ P + Vw 0.273873
order = 1.744253

CODD/δDD 2nd ∞ ∞ ∞ ∞ ∞ −∞ ∞ ∞ −∞ ∞ ∞ ∞ t− U − µ− J − L− P 0.273873
order −2Vn − Vw + 2Q+ 4R = 0

COdd/COdD 2nd ∞ ∞ −∞ −∞ ∞ −∞ ∞ −∞ −∞ ∞ ∞ −∞ 2µ+ J = 0 1.420396
order

CODd/CODD 2nd ∞ ∞ −∞ ∞ ∞ −∞ ∞ −∞ ∞ ∞ ∞ −∞ 2U + 2µ+ J + L+ 2P 1.420396
order +2Vn + 2Vw − 2Q− 4R = 0

TABLE IV: Interaction constants Kα and relevant eigenvalue exponents y1 at the phase boundary fixed points. For first-order
phase transitions, y1 = d = 3.

ated unrenormalized Hamiltonian,

γ0 =η12,18 + η21,27 + η36,42 + η45,51,

γ1 =η1 + η3 + η10 + η16,

γ2 =η3 + η7 + η13 + η28,

γ3 =η4 + η5 + η19 + η22,

The matrix elements ηq,q̄ can be obtained in terms of
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FIG. 2: Renormalization-group flow basins of the t = 0 clas-
sical submodel, in the chemical potentials (upper panel) and
densities (lower panel) of the localized and conduction elec-
trons. In phase subscripts throughout this paper, the first and
second subscripts respectively describe localized and conduc-
tion electron densities, as dilute (d) or dense (D). The dashed
lines are not phase transitions, but smooth changes between
the four different density regions of the disordered (δ) phase.

the unrenormalized interactions via exponentiating the
unrenormalized Hamiltonian matrix whose elements are
given in Appendix B.

B. Renormalization-Group Transformation in d > 1

Equations (9) and (10), together with Appendix B,
constitute the renormalization-group recursion relations

for d = 1, in the form ~K ′ = R( ~K), where ~K =

(t, U, µ, ν, J,K, L, P, Vn, Vw, Q,R,G). To generalize to
higher dimension d > 1, we use the Migdal-Kadanoff
procedure [75, 76],

~K ′ = bd−1R( ~K), (11)

where b = 2 is the rescaling factor and R is the
renormalization-group transformation in d = 1 for the

interaction constants vector ~K. This procedure is exact
for d-dimensional hierarchical lattices [77–79] and a very
good approximation for hypercubic lattices for obtaining
complex phase diagrams.
Each phase in the phase diagram has its own (stable)

fixed point(s), which is called a phase sink (Table III).
All points within a phase flow to the sink(s) of that phase
under successive renormalization-group transformations.
Phase boundaries also have their own (unstable) fixed
points (Table IV), where the relevant exponent analy-
sis gives the order of the phase transition. Thus, the
repartition of the renormalization-group flows determine
the phase diagram in thermodynamic-field space. Matrix
multiplications, along the renormalization-group trajec-
tory, with the derivative matrix of the recursion relations
relate the expectation values at the starting point of the
trajectory to the expectations values at the phase sink.
The latter are determined (Table III) by the left eigen-
vector, with eigenvalue bd, of the recursion matrix at the
sink, where b = 2 is the length-rescaling factor of the
renormalization-group transformation. When the expec-
tation values are thus calculated for the points of the
phase boundary, the phase diagram in density space is
determined.[80, 81]

IV. GLOBAL PHASE DIAGRAM OF SFKM

The global phase diagram of SFKM is calculated, as
described above, for the whole range of the interac-
tions (t, U , ν, µ). The global phase diagram is thus
4-dimensional. 1/t can be taken as the temperature vari-
able. We present the calculated global phase diagram
in four subsections: The first subsection gives the t = 0
classical submodel. The other subsections are devoted to
small, intermediate, and large values of the interaction
|U |. We present constant t/|U | cross sections in terms
of the localized and conduction electron chemical poten-
tials ν/|U | and µ/|U |and in terms of the localized and
conduction electron densities 〈wi〉 and 〈ni〉.

A. The Classical Submodel t = 0

Setting the quantum effect to zero, t = 0, yields
the classical submodel, closed under the renormalization-
group flows. The global flow basins in ν/|U | and µ/|U |
are the same for all U , given in Fig. 2. There exist four
regions of a disordered phase within this submodel, which
are localized-dilute-conduction-dilute, localized-dilute-
conduction-dense, localized-dense-conduction-dilute, and
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FIG. 3: Constant t/|U | cross-sections of the phase diagram for interaction |U | = 0.1, in terms of the chemical potentials (upper
panels) and densities (lower panels) of the localized and conduction electrons. In phase subscripts throughout this paper, the
first and second subscripts respectively describe localized and conduction electron densities, as dilute (d) or dense (D). The full
lines are second-order phase transitions. The dashed lines are not phase transitions, but smooth changes between the different
density regions of the disordered (δ) phase. The charge-ordered phases are denoted by CO. Details are shown in Fig. 4. Thus,
for low values of the interaction, all phase boundaries are second order and there is no phase coexistence.

localized-dense-conduction-dense regions, denoted by
δdd, δdD, δDd, and δDD. [In phase subscripts through-
out this paper, the first and second subscripts respec-
tively describe localized and conduction electron densi-
ties, as dilute (d) or dense (D).] In the renormalization-
group flows, each δ region is the basin of attraction of
its own sink. The dashed lines between the different re-
gions are not phase boundaries, but smooth transitions
(such as the supercritical liquid - gas or up-magnetized
- down-magnetized transitions), which are controlled by
zero-coupling null fixed points.[82]

It should be noted that the Suzuki-Takano and Migdal-

Kadanoff methods are actually exact for this classical
submodel, and yield exactly the same picture as obtained
in [83].

B. The Small |U | Regime

In this subsection, we present our results for |U | = 0.1,
representative of the weak-interaction regime. The t = 0
phase diagram of Fig. 2 evolves under the introduction
of quantum effects via a non-zero hopping strength t. It
should be noted that increasing the dimensionless Hamil-
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FIG. 4: Zoomed portion of Fig. 3, for the |U | = 0.1, t/|U | =
10 phase diagram.

tonian parameter t is equivalent to reducing temperature,
as in all renormalization-group studies. The first effect
is the decrease and elimination (left panels of Fig. 3)
of the (smooth) passage between the δDd and δdD re-
gions. With this elimination, all four regions meet at
ν/|U | = µ/|U | = 0.5 and 〈wi〉 = 〈ni〉 = 0.5, the half
filling of both localized and conduction electrons. With
increasing t (equivalent to decreasing temperature), four
new, charge-ordered (CO) phases emerge at t ≃ 0.6. The
CO phases occur at and near half filling of conduction
electrons for the entire range of localized electron densi-
ties. The CO phases grow with increasing t (decreasing
temperature) until saturation at high t (right panels of
Fig. 3).
All of the new CO phases have non-zero hopping den-

sity 〈c†i cj + c†jci〉 = −a = −0.629050 at their phase sinks.
The expectation values at the sinks are evaluated as the
left eigenvector of the recursion matrix with eigenvalue bd

[80]. In the CO phases, the hopping strength t diverges
to infinity under repeated renormalization-group trans-
formations (whereas in the δ phases, t vanishes under
repeated renormalization-group transformations). The
localized electron density is 〈wi + wj〉 = 0 at the sinks
of COdd and COdD, while 〈wi + wj〉 = 2 at the sinks of
CODd and CODD, which throughout the corresponding
phases calculationally translates [80] as low (d) and high
(D) localized electron densities, respectively. Recall that
on phase labels (CO and δ) throughout this paper, the
first and second subscripts respectively describe localized
and conduction electron densities.
The conduction electron density is 〈ni + nj〉 = a =

0.629050 at the sinks of COdd and CODd, while 〈ni +
nj〉 = 2− a = 1.370950 at the sinks of COdD and CODD.
The nearest-neighbor conduction electron number cor-
relation is 〈ninj〉 = 0 at the sinks of COdd and CODd,
while 〈ninj〉 = 1−a = 0.370950 at the sinks of COdD and
CODD. Consequently, for conduction electrons, if a given
site is occupied, its nearest-neighbor site is empty at the
sinks of COdd and CODd. The COdD and CODD phases
are connected to the COdd and CODd phases by particle-
hole interchange on the conduction electrons. Thus, in

the CO phases, the lattice can be divided into two sub-
lattices with different electron densities. The behavior at
the CO sinks therefore indicates charge ordered phases
at finite temperatures, as also previously seen in ground-
state studies [61, 84, 85]. Note that this charge ordering
is a purely quantum mechanical effect caused by hopping,
since the SFKM Hamiltonian [Eq.(1)] studied here does
not contain an interaction between electrons at different
sites.

In the small |U | regime, all phase boundaries around
the CO phases are second order. As seen in the expanded
Fig. 4, all four CO phases and all four regions of the δ
phase (as narrow slivers) meet at ν/|U | = µ/|U | = 0.5
and 〈wi〉 = 〈ni〉 = 0.5, half-filling point of both localized
and conduction electrons. All characteristics of the sinks
and boundary fixed points are given in Tables III and IV.

C. The Intermediate |U | Regime

In this subsection, the phase diagram for |U | = 1, rep-
resentative of the intermediate-interaction regime, is pre-
sented. Fig. 5 gives constant t/|U | cross-sections. First-
order phase boundaries appear in the central region of
the phase diagram, at and near the half filling of both
localized and conduction electrons.

For low values of t (left panels of Fig. 5), equivalent
to high temperatures, two first-order phase boundaries,
bounded by four critical points C, pinch at a quadruple
point Q. In the (left-lower) density-density phase dia-
gram, four phase separation (coexistence) regions mark
the first-order phase transitions. Inside these regions, co-
existence (phase separation) occurs between the phases
on each side of these regions, as indicated on the figure.
The tie line of the quadruple point is shown as a thin
straight line. All four δ phases coexist (phase separate)
on this line.

As t increases (temperature decreases), the four
charge-ordered CO phases appear again at t ≃ 0.6, as
seen in the leftmost panels of Fig. 1. The CO phases
again occur at and near half filling of conduction elec-
trons for the entire range of localized electron densities.
In the right panels of Fig. 5, the second-order transition
lines bounding the CO phases terminate at two critical
endpoints E [82] and two double critical endpoints E2 on
the first-order line in the central region (zoomed in Fig.
6). Thus, first-order transitions and phase separation oc-
cur between the pairs of δDd and δdd,δDd and COdd,CODd

and COdD,CODD and δdD, δDD and δdD phases, as in-
dicated on Fig. 6, at and near the half filling of both
localized and conduction electrons.

The evolution of the phase diagrams between right and
left panels of Fig. 5 are shown in Fig. 1.
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FIG. 5: Constant t/|U | cross-sections of the phase diagram for interaction |U | = 1, in terms of the chemical potentials (upper
panels) and densities (lower panels) of the localized and conduction electrons. The dotted and thick full lines are respectively
first- and second-order phase transitions. Phase separation, i.e., phase coexistence occurs inside the dotted boundaries, as
identified in the figure. The details of the coexistence region in the lower-right panel are given in Fig. 6. The quadruple point
Q tie line is shown as the thin straight line. The dashed lines are not phase transitions, but smooth changes between the
different density regions of the disordered (δ) phase.

D. The Large |U | Regime

The evolution of the global phase diagram, as the in-
teraction strength is increased, is seen in the phase di-
agrams in Fig. 7. The CO phases emerge again at
t ≃ 0.6. With increasing t (decreasing temperature), the
CO phases grow, until saturation seen in Fig. 7. The
topology of the phase diagram with five phases stays the
same for all t & 0.6.
The constant t/|U | cross-sections of the phase diagram

are given in Fig. 7. For U = 1.5, the double crit-
ical endpoints E2 have split into pairs of simple criti-

cal endpoints E, resulting in six separate critical end-
points. For U = 1.845628, the inner two critical end-
points have merged into a single double critical end-
point. For U = 10, the double critical endpoint has
split into two critical endpoints and the critical lines in
the low-density and high-density localized electrons re-
gions have disconnected from each other. In this strong
interaction limit, the homogenous (non-phase-separated)
charge-ordered phases occur again at and near half filling
of conduction electrons, but at the low- or high-density
limit of the localized electrons. Away from these limits,
the charge-ordered phases occur in coexistence (phase-
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phase diagram. The coexistence tie lines of the critical end-
points E and of the double critical endpoints E2 are shown.
Inside each region delimited by dotted lines and the endpoint
tie lines, phase separation, i.e., phase coexistence occurs be-
tween phases as identified on this figure.

separated from) the disordered phases. At and near the
half filling of both localized and conduction electrons,
the coexistence of the disordered phases δDd and δdD oc-
curs. Two sets of three critical lines terminate in separate
endpoints, as seen in the zoomed Fig. 9. In this case, a
characteristic shape of the density phase diagrams, which
we dub chimaera coexistence, emerges. In the chimaera

phase diagram, coexistence can be found for essentially
the entire range of conduction electrons densities or for
most of the range of localized electron densities. In the
upper-right chemical-potential panel of Fig. 7, the first-
order phase boundary exhibits, from the left to right, a
sequence of the maximum, minimum, maximum, min-
imum points; the four corresponding tie lines are also
shown in the lower-right density panel. These tie lines
abut, on one end, very near maxima and minima of the
lower and upper branches of the coexistence boundaries,
thereby underpinning the distinctive chimaera topology.

V. CONCLUSION

With this research, we have obtained the global phase
diagram of the d = 3 SFKM, which exhibits a fairly rich
collection of phase diagram topologies:

For the t = 0 classical submodel, we have obtained
disordered (δ) regions, dilute and dense separately for
localized and conduction electrons, but no phase tran-
sition between them. The repartition of these regions,
delimited by renormalization-group flows, quantitatively
stays the same for the whole |U | range and is exactly
as obtained in Ref. [83]. For the whole |U | range and
0 < t . 0.6, the classical submodel phase diagram is per-
turbed in such a way that regions δdd and δDD intercede
between regions δdD and δDd, resulting in the shrinking
and disappearing of the δdD to δDd passage.
All δ regions have vanishing hopping density at their

corresponding sinks. For the whole |U | range, upon in-
creasing t (lowering temperature), at t ≃ 0.6 four new
phases (CO) emerge with non-zero hopping density of
−a = −0.629050 at their sinks. These CO phases are
also either dilute or dense, separately, in the localized and
conduction electrons (COdd, COdD, CODd, and CODD)
and are all charge ordered in the conduction electrons, a
wholly quantum mechanical effect. In these CO phases
the bipartite lattice is divided into two sublattices of al-
ternating electron density. The CO phases occur at or
near the half filling of conduction electrons. The phase
diagrams with all five phases for t & 0.6 exhibit differ-
ent topologies, for the small, intermediate, and large |U |
regimes:
For the small |U | (weak-interaction) regime, all phase

boundaries are second order. All five phases meet at
ν/|U | = µ/|U | = 0.5 and 〈wi〉 = 〈ni〉 = 0.5, the half-
filling point of both localized and conduction electrons.
For the intermediate |U | (intermediate-interaction)

regime, a first-order phase boundary emerges in the cen-
tral region of the phase diagram. This first-order bound-
ary is centered at ν/|U | = µ/|U | = 0.5 and is bounded
by two critical points C. The second-order lines bound-
ing the CO phases terminate at critical endpoints E and
double critical endpoints E2 on the first-order boundary.
Due to this first-order phase transition at and near the
half filling of both localized and conduction electrons, a
rich variety of phase separation (phase coexistence) oc-
curs, as indicated on Figs. 1,5,6,7.
For the large |U | (strong-interaction) regime, as |U | is

increased, the critical endpoints pass through each other
by merging and unmerging as double critical endpoints.
For large |U |, the CODd and CODD phases are detached
from the COdd and COdD phases, forming two separate
bundles, at high- and low-densities of localized electrons
respectively. First-order transitions occur between the
variously dense and dilute δ. The global phase diagram
underpinning all of these cross-sections is decidedly quite
complex.
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APPENDIX A: BLOCK-DIAGONAL

RENORMALIZED HAMILTONIAN

The matrix elements of the block-diagonal renormal-
ized 2-site Hamiltonian in the {|φp〉} basis are given in
Eq.(12), where 〈φp| − β′H′

i,k|φp〉 = ǫp +G′ for the 12 in-

dependent diagonal elements and 〈φ6| − β′H′
i,k|φ7〉 = ǫ0

for the only independent off-diagonal element:

ǫ1 = 0, ǫ2 = t′ + µ′, ǫ3 = −t′ + µ′, ǫ4 = 2µ′ + J ′,

ǫ5 = ν′ +R′, ǫ6 = t′ + U ′/2 + µ′ + ν′ + P ′/2 +R′,

ǫ7 = −t′ + U ′/2 + µ′ + ν′ + P ′/2−R′,

ǫ8 = U ′ + 2µ′ + ν′ + J ′ + P ′ + V ′
n −R′,

ǫ13 = 2ν′ +K ′ +Q′ + 2R′,

ǫ14 = t′ + U ′ + µ′ + 2ν′ +K ′ + P ′ + V ′
w +Q′ + 2R′,

ǫ15 = −t′ + U ′ + µ′ + 2ν′ +K ′ + P ′ + V ′
w −Q′ − 2R′,

ǫ16 = 2(U ′+µ′+ν′)+J ′+K ′+L′+2(P ′+V ′
n+V

′
w)−Q

′−2R′,

ǫ0 = (U ′ − P ′)/2.

(12)

APPENDIX B: BLOCK-DIAGONAL

UNRENORMALIZED HAMILTONIAN

The matrix elements of the block-diagonal unrenormal-
ized 3-site Hamiltonian in the {|ψq〉} basis are given in
Eq.(13), where 〈ψq|−βHi,j−βHj,k|ψq〉 = εq+2G for the
diagonal elements and 〈ψq|−βHi,j−βHj,k|ψq̄〉 = εq,q̄ for
the off-diagonal elements:

ε1 = 0, ε2 = ε3 = ε4 = ε6/2 = µ, ε5 = ε7 = 2µ+J,

ε8 = 3µ+ 2J, ε9 = ε34/2 = ν +R, ε10 = ν + 2R,

ε12 = ε18 = U/2 + µ+ ν +R/2,

ε13 = ε19 = µ+ ν + P +R, ε15 = µ+ ν + P,

ε16 = ε49/2 = U + µ+ ν,

ε21 = U/2 + 2µ+ ν/2 + J + P + (Vn −R)/2,

ε22 = ε28 = U + 2µ+ ν + J + P + Vn −R,

ε24 = U + 2µ+ ν, ε25 = 2µ+ ν + 2P,

ε27 = U/2 + 2µ+ ν + J + P + (Vn −R)/2,

ε30 = U + 3µ+ ν + 2J + P + Vn −R,

ε31 = U + 3µ+ ν + 2(J + P + Vn −R),

ε33 = 2ν +K +Q+ 3R,

ε36 = ε42 = U/2 + µ+ 2ν +K + P + (Vw +Q+ 3R)/2,

ε37 = ε43 = U + µ+ 2ν +R,

ε39 = U + µ+ 2ν +K + P + Vw, ε40 = µ+ 2(ν + P ),

ε45 = ε51 = 3U/2 + 2(µ+ ν) + J +K +L/2 + 2P

+ 3(Vn + Vw)/2− (Q+ 3R)/2,

ε46 = ε52 = U + 2(µ+ ν) + J + 2P + Vn −R,

ε48 = U + 2(µ+ ν) +K + 2P + Vw,

ε54 = 2U+3µ+2(ν+J)+K+L+3(P+Vn)+2Vw−Q−3R,

ε55 = 2U + 3µ+ 2(ν + J + P + Vn −R),

ε57 = 3ν + 2(K +Q) + 4R,

ε58 = ε60 = U + µ+ 3ν + 2K + P + Vw +Q+ 2R,

ε59 = U + µ+ 3ν + 2(K + P + Vw),

The matrix elements for the states connected by the ex-
change of the outer conduction electrons are obtained
by multiplication with the eigenvalues u of Tik. The
matrix elements ηq,q̄ that enter the recursion relations
via Eq.(10) are obtained by exponentiating the block-
diagonal Hamiltonian given here.
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