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The anisotropic d = 3 tJ model is studied by renormalization-group theory, yielding the evolution
of the system as interplane coupling is varied from the isotropic three-dimensional to quasi-two-
dimensional regimes. Finite-temperature phase diagrams, chemical potential shifts, and in-plane
and interplane kinetic energies and antiferromagnetic correlations are calculated for the entire range
of electron densities. We find that the novel τ phase, seen in earlier studies of the isotropic d =
3 tJ model, and potentially corresponding to the superconducting phase in high-Tc materials,
persists even for strong anisotropy. While the τ phase appears at low temperatures at 30 − 35%
hole doping away from 〈ni〉 = 1, at smaller hole dopings we see a complex lamellar structure of
antiferromagnetic and disordered regions, with a suppressed chemical potential shift, a possible
marker of incommensurate ordering in the form of microscopic stripes. An investigation of the
renormalization-group flows for the isotropic two-dimensional tJ model also shows a pre-signature
of the τ phase, which appears with finite transition temperatures upon addition of the smallest
interplane coupling.

PACS numbers: 74.72.-h, 71.10.Fd, 05.30.Fk, 74.25.Dw

I. INTRODUCTION

The anisotropic nature of high-Tc materials, where
groups of one or more CuO2 planes are weakly coupled
through block layers that act as charge reservoirs, has led
to intense theoretical focus on two-dimensional models
of electron conduction.[1] However, a full understanding
of the cuprates will require taking into account physics
along the third dimension. Crucial aspects of the phase
diagram, like the finite value of the Néel temperature, de-
pend on interplanar coupling [2], and going beyond two
dimensions is also necessary to explain the behavior of Tc
as the number of CuO2 layers per unit cell is increased [3].

As a simplified description of strongly correlated elec-
trons in an anisotropic system, we look at the tJ model on
a cubic lattice with uniform interaction strengths in the
xy planes, and a weaker interaction in the z direction. To
obtain a finite-temperature phase diagram for the entire
range of electron densities, we extend to anisotropic sys-
tems the renormalization-group approach that has been
applied successfully in earlier studies of both tJ and Hub-
bard models as isotropic d = 3 systems.[4, 5, 6, 7] For the
d = 3 isotropic tJ model, this approach has yielded an
interesting phase diagram with antiferromagnetism near
〈ni〉 = 1 and a new low-temperature “τ” phase for 30-
35% hole doping. Within this τ phase, the magnitude of
the electron hopping strength in the Hamiltonian tends
to infinity as the system is repeatedly rescaled, making it
a possible analog of the superconducting phase in high-Tc
materials.[4, 5] In fact, the calculated superfluid weight
shows a marked peak in the τ phase, and both the tem-
perature profile of the superfluid weight and the den-
sity of free carriers with hole doping is reminiscent of
experimental results in cuprates.[7] Given these poten-
tial links with cuprate physics, the next logical step is
to ask whether the τ phase is present in the strongly

anisotropic regime, which is the one directly relevant to
high-temperature superconductivity.

The extension of the position-space renormalization-
group method to spatial anisotropy has recently been
demonstrated with d = 3 Ising, XY magnetic and perco-
lation systems.[8] We apply a similar anisotropic gener-
alization to the electronic conduction model and find the
evolution of the phase diagram from the isotropic d = 3
to the quasi d = 2 cases. While transition temperatures
become lower, the τ phase does continue to exist even for
very weak interplanar coupling. The density range of the
τ phase remains stable as anisotropy is increased, while
for 5-30% hole doping an intricate structure of antiferro-
magnetic and disordered phases develops, a possible in-
dicator of underlying incommensurate order, manifested
through the formation of microscopic stripes. Consistent
with this interpretation, our system in this density range
shows a characteristic “pinning” of the chemical potential
with hole doping.

Lastly, we turn from the d = 3 anisotropic case to the
d = 2 tJ model, where earlier studies [4, 5] have found
no τ phase (but have elucidated the occurrence/non-
occurrence of phase separation). Nevertheless, by looking
at the low-temperature behavior of the renormalization-
group flows, we find a compelling pre-signature of the τ
phase even in d = 2, at exactly the density range where
the τ phase appears when the slightest interplanar cou-
pling is added to the system.

II. ANISOTROPIC tJ HAMILTONIAN

We consider the tJ Hamiltonian on a cubic lattice with
different interaction strenghts for nearest neighbors lying
in the xy plane or along the z direction (respectively
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denoted by 〈ij〉xy and 〈ij〉z):

H = P



t̃xy
∑

〈ij〉xy,σ

(

c†iσcjσ + c†jσciσ

)

+ t̃z
∑

〈ij〉z ,σ

(

c†iσcjσ + c†jσciσ

)

+ J̃xy
∑

〈ij〉xy

Si · Sj + J̃z
∑

〈ij〉z

Si · Sj

−Ṽxy
∑

〈ij〉xy

ninj − Ṽz
∑

〈ij〉z

ninj − µ̃
∑

i

ni



P .

(1)

Here c†iσ and ciσ are creation and annihilation operators,
obeying anticommutation rules, for an electron with spin

σ = ↑ or ↓ at lattice site i, niσ = c†iσciσ, ni = ni↑ + ni↓
are the number operators, and Si =

∑

σσ′ c
†
iσsσσ′ciσ′ is

the single-site spin operator, with s the vector of Pauli
spin matrices. The entire Hamiltonian is sandwiched be-
tween projection operators P =

∏

i(1 − ni↓ni↑), which
project out states with doubly-occupied sites. The stan-
dard, isotropic tJ Hamiltonian obtains when t̃xy = t̃z,

J̃xy = J̃z , Ṽxy = Ṽz , and Ṽxy/J̃xy = Ṽz/J̃z = 1/4.
For simplicity, we rewrite Eq. (1) using dimensionless

interaction constants, and rearrange the µ̃ chemical po-
tential term to group the Hamiltonian into summations
over the xy and z bonds:

−βH =
∑

〈ij〉xy

P

[

−txy
∑

σ

(

c†iσcjσ + c†jσciσ

)

− JxySi · Sj + Vxyninj + µ(ni + nj)

]

P

+
∑

〈ij〉z

P

[

−tz
∑

σ

(

c†iσcjσ + c†jσciσ

)

− JzSi · Sj + Vzninj + µ(ni + nj)

]

P

≡
∑

〈ij〉xy

{−βHxy(i, j)} +
∑

〈ij〉z

{−βHz(i, j)} .

(2)

Here β = 1/kBT , so that the interaction constants are

related by txy = βt̃xy, tz = βt̃z, Jxy = βJ̃xy, Jz = βJ̃z,

Vxy = βṼxy, Vz = βṼz , and µ = βµ̃/6.

III. RENORMALIZATION-GROUP THEORY

A. Isotropic Transformation and Anisotropic

Expectations

Since the isotropic model is a special case of Eq. (1),
let us briefly outline the main steps in effecting the renor-
malization equations of earlier, isotropic studies [4, 5, 7].

We begin by setting up a decimation transformation for a
one-dimensional tJ chain, finding a thermodynamically
equivalent Hamiltonian by tracing over the degrees of
freedom at every other lattice site. With the vector
K whose elements are the interaction constants in the
Hamiltonian, the decimation can be expressed as a map-
ping of the original d = 1 system onto a new system with
interaction constants

K′ = R(K) . (3)

The Migdal-Kadanoff [9, 10] procedure has been remark-
ably successful, for systems both classical and quan-
tum, in extending this transformation to d > 1 (for an
overview, see [6]). In this procedure, a subset of the
nearest-neighbor interactions in the lattice are ignored,
leaving behind a new d-dimensional hypercubic lattice
where each point is connected to its neighbor by two con-
secutive nearest-neighbor segments of the original lattice.
The decimation described above is applied to the middle
site between the two consecutive segments, giving the
renormalized nearest-neighbor couplings for the points
forming the new lattice. We compensate for the interac-
tions that are ignored in the original lattice by multiply-
ing the interactions after the decimation by bd−1, where
b = 2 is the length rescaling factor. Thus for d > 1 the
renormalization-group transformation of Eq. (3) general-
izes to

K′ = bd−1R(K), (4)

which, through flows in a four-dimensional Hamiltonian
space (for the Hubbard model, 10-dimensional Hamilto-
nian space [6]), yields a rich array of physical phenomena.

With the anisotropic tJ Hamiltonian on a cubic lattice
(Eq. (1)), there are two intercoupled sets of interaction
constants, Kxy and Kz, and further development of the
transformation is needed. However, there are three par-
ticular instances where the transformation in Eq. (4) is
directly applicable. When Kxy = Kz, we have the d = 3
isotropic case, so the appropriate renormalization-group
equations are

K′
xy = 4R(Kxy) , K′

z = 4R(Kz) . (5)

When Kxy 6= 0 and Kz = 0, we have a system of de-
coupled isotropic d = 2 planes, and the transformation is
given by

K′
xy = 2R(Kxy) , K′

z = 0 . (6)

Similarly, when Kxy = 0 and Kz 6= 0, we have decoupled
d = 1 chains, and

K′
xy = 0 , K′

z = R(Kz) . (7)

The renormalization-group transformation for the
anisotropic model described in the following sections re-
covers the correct results, Eqs.(5)-(7), for these three
cases.
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FIG. 1: Construction of the hierarchical model described in
Section II.B. Solid lines correspond to xy bonds, while dashed
lines correspond to z bonds.

B. Hierarchical Lattice Model for Anisotropy

A one-to-one correspondance exists between Migdal-
Kadanoff and other approximate renormalization-
group transformations on the one hand, and exact
renormalization-group transformations of corresponding
hierarchical lattices on the other hand, through the shar-
ing of identical recursion relations.[11, 12] The correspon-
dance guarantees the fulfilment of general physical pre-
conditions on the results of approximate renormalization-
group transformations, since the latter are thus “phys-
ically realizable”. This correspondance has recently
been exploited to develop renormalization-group trans-
formations for spatially anisotropic Ising, XY magnetic

and percolation systems.[8] Similarly, to derive an ap-
proximate renormalization-group transformation for the
anisotropic tJ Hamiltonian, consider the nonuniform hi-
erarchical model depicted in Fig.1. The two types of
bonds in the lattice, corresponding to xy and z bonds,
are drawn with solid and dashed lines respectively. The
hierarchical model is constructed by replacing each sin-
gle bond of a given type with the connected cluster of
bonds shown in Fig.1(b), and repeating this step an ar-
bitrary number of times. Fig.1(c) shows the next stage in
the construction for the two graphs in column (b). The
renormalization-group transformation on this hierarchi-
cal lattice consists of decimating over the four inner sites
in each cluster, to generate a renormalized interaction be-
tween the two outer sites, thus reversing the construction
process, going from the graphs in column (b) of Fig.1 to
those in column (a). This renormalization-group trans-
formation has the desired feature that in all three of the
cases described above, it reproduces the various isotropic
recursion relations of Eqs. (5)-(7).

C. Renormalization-Group Equations for

Anisotropic System

The hierarchical lattice can be subdivided into indi-
vidual clusters of bonds shown in Fig.1(b). We label
these two types of clusters the “xy cluster” (Fig.1(b)
top) and the “z cluster” (Fig.1(b) bottom). The sum
over 〈ij〉xy clus denotes a sum over the outer sites of all
the xy clusters, and analogously 〈ij〉z clus denotes a sum
over the outer sites of all z clusters. For a given clus-
ter with outer sites ij, the associated inner sites are la-

beled k
(ij)
1 , . . . , k

(ij)
4 . Then the tJ Hamiltonian on the

anisotropic lattice has the form

−βH =
∑

〈ij〉xy clus

[

−βHxy(i, k
(ij)
1 ) − βHxy(k

(ij)
1 , j) − βHxy(i, k

(ij)
2 ) − βHxy(k

(ij)
2 , j)

− βHxy(i, k
(ij)
3 ) − βHz(k

(ij)
3 , j) − βHz(i, k

(ij)
4 ) − βHxy(k

(ij)
4 , j)

]

+
∑

〈ij〉z clus

[

−βHz(i, k
(ij)
1 ) − βHz(k

(ij)
1 , j) − βHz(i, k

(ij)
2 ) − βHxy(k

(ij)
2 , j)

− βHxy(i, k
(ij)
3 ) − βHz(k

(ij)
3 , j) − βHz(i, k

(ij)
4 ) − βHxy(k

(ij)
4 , j)

]

.

(8)

The renormalization-group transformation consists of
finding a thermodynamically equivalent Hamiltonian
−β′H ′ that involves only the outer sites of each clus-
ter. Since we are dealing with a quantum system, the

non-commutation of the operators in the Hamiltonian
means that this decimation, tracing over the degrees of
freedom at the k sites, can only be carried out approxi-
mately [13, 14]:
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Trk sites e
−βH ≃

∏

〈ij〉xy clus

[

Tr
k
(ij)
1

e−βHxy(i,k
(ij)
1 )−βHxy(k

(ij)
1 ,j) Tr

k
(ij)
2

e−βHxy(i,k
(ij)
2 )−βHxy(k

(ij)
2 ,j)

Tr
k
(ij)
3

e−βHxy(i,k
(ij)
3 )−βHz(k

(ij)
3 ,j) Tr

k
(ij)
4

e−βHz(i,k
(ij)
4 )−βHxy(k

(ij)
4 ,j)

]

·
∏

〈ij〉z clus

[

Tr
k
(ij)
1

e−βHz(i,k
(ij)
1 )−βHz(k

(ij)
1 ,j) Tr

k
(ij)
2

e−βHz(i,k
(ij)
2 )−βHxy(k

(ij)
2 ,j)

Tr
k
(ij)
3

e−βHxy(i,k
(ij)
3 )−βHz(k

(ij)
3 ,j) Tr

k
(ij)
4

e−βHz(i,k
(ij)
4 )−βHxy(k

(ij)
4 ,j)

]

=
∏

〈ij〉xy clus

[

e−β
′H′

xy,xy(i,j)e−β
′H′

xy,xy(i,j)e−β
′H′

xy,z(i,j)e−β
′H′

z,xy(i,j)
]

·
∏

〈ij〉z clus

[

e−β
′H′

z,z(i,j)e−β
′H′

xy,z(i,j)e−β
′H′

z,xy(i,j)e−β
′H′

z,xy(i,j)
]

≃ e
∑

〈ij〉xy clus
[−2β′H′

xy,xy(i,j)−β′H′
xy,z(i,j)−β′H′

z,xy(i,j)]+
∑

〈ij〉z clus
[−β′H′

z,z(i,j)−β′H′
xy,z(i,j)−2β′H′

z,xy(i,j)]

= e
∑

〈ij〉xy clus
[−β′H′

xy(i,j)]+
∑

〈ij〉z clus
[−β′H′

z(i,j)]
= e−β

′H′
.

(9)

Here −β′H ′
A,B(i, j), where A, B can each be either xy or

z, is

e−β
′H′

A,B(i,j) = Trk e
−βHA(i,k)−βHB(k,j) . (10)

In the two approximate steps, marked by ≃ in Eq. (9),
we ignore the non-commutation of operators outside
three-site segments of the unrenormalized system. (On
the other hand, anticommutation rules are correctly ac-
counted for within the three-site segments, at all succes-
sive length scales in the iterations of the renormalization-
group transformation.) These two steps involve the same
approximation but in opposite directions, which gives
some mutual compensation. This approach has been
shown to successfully predict finite-temperature behav-
ior in earlier studies [13, 14].

Derivation of the renormalization-group equations in-
volves extracting the algebraic form of the operators

−β′H ′
A,B(i, j) from Eq. (10). Since e−β

′H′
A,B(i,j) and

e−βHA(i,k)−βHB(k,j) act on the space of two-site and
three-site states respectively, Eq. (10) can be rewritten
in terms of matrix elements as

〈uivj |e
−β′H′

A,B(i,j)|ūiv̄j〉

=
∑

wk

〈uiwkvj |e
−βHA(i,k)−βHB(k,j)|ūiwk v̄j〉 ,

(11)

where ui, wk, vj , ūi, v̄j are single-site state variables.
Eq.(11) is the contraction of a 27×27 matrix on the right
into a 9× 9 matrix on the left. We block-diagonalize the
left and right sides of Eq.(11) by choosing basis states
which are the eigenstates of total particle number, total
spin magnitude, total spin z-component, and parity. We
denote the set of 9 two-site eigenstates by {|φp〉} and the
set of 27 three-site eigenstates by {|ψq〉}, and list them

in Tables I and II. Eq.(11) is rewritten as

〈φp|e
−β′H′

A,B(i,j)|φp̄〉 =
∑

u,v,ū,
v̄,w

∑

q,q̄

〈φp|uivj〉〈uiwkvj |ψq〉〈ψq|e
−βHA(i,k)−βHB(k,j)|ψq̄〉·

〈ψq̄|ūiwk v̄j〉〈ūiv̄j |φp̄〉 . (12)

Eq. (12) yields six independent elements for the matrix

〈φp|e
−β′H′

A,B(i,j)|φp̄〉, labeled γp as follows:

γp ≡ 〈φp|e
−β′H′

A,B(i,j)|φp〉 for p = 1, 2, 4, 6, 7,

γ0 ≡ 〈φ2|e
−β′H′

A,B(i,j)|φ4〉 .
(13)

The number of γp is also the number of interaction
strengths that are independently fixed in the Hamil-
tonian −β′H ′

A,B(i, j), which consequently must have a
more general form than the two-site Hamiltonians in
Eq. (2). The generalized form of the pair Hamiltonian
is

−βH(i, j) = P

[

−t
∑

σ

(

c†iσcjσ + c†jσciσ

)

− JSi · Sj + V ninj

+ µ(ni + nj) + ν(ni − nj) +G

]

P

(14)

The new terms here are: G, the additive constant that
appears in all renormalization-group calculations, does
not affect the flows, but enters the determination of ex-
pectation values; and ν(ni−nj), a staggered term arising
from decimation across two consecutive bonds of differ-
ent strengths. Provisions for handling the ν term will be
described later in this section.
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n p s ms Two-site basis states
0 + 0 0 |φ1〉 = | ◦ ◦〉
1 + 1/2 1/2 |φ2〉 = 1√

2
{| ↑ ◦〉 + |◦ ↑〉}

1 − 1/2 1/2 |φ4〉 = 1√
2
{| ↑ ◦〉 − |◦ ↑〉}

2 − 0 0 |φ6〉 = 1√
2
{| ↑↓〉 − | ↓↑〉}

2 + 1 1 |φ7〉 = | ↑↑〉
2 + 1 0 |φ9〉 = 1√

2
{| ↑↓〉 + | ↓↑〉}

TABLE I: The two-site basis states, with the corresponding
particle number (n), parity (p), total spin (s), and total spin
z-component (ms) quantum numbers. The states |φ3〉, |φ5〉,
and |φ8〉 are obtained by spin reversal from |φ2〉, |φ4〉, and
|φ7〉, respectively.

n p s ms Three-site basis states
0 + 0 0 |ψ1〉 = | ◦ ◦ ◦〉
1 + 1/2 1/2 |ψ2〉 = |◦ ↑ ◦〉, |ψ3〉 = 1√

2
{| ↑ ◦ ◦〉 + | ◦ ◦ ↑〉}

1 − 1/2 1/2 |ψ6〉 = 1√
2
{| ↑ ◦ ◦〉 − | ◦ ◦ ↑〉}

2 + 0 0 |ψ8〉 = 1

2
{| ↑↓ ◦〉 − | ↓↑ ◦〉 − |◦ ↑↓〉 + |◦ ↓↑〉}

2 − 0 0 |ψ9〉 = 1

2
{| ↑↓ ◦〉 − | ↓↑ ◦〉 + |◦ ↑↓〉 − |◦ ↓↑〉},

|ψ10〉 = 1√
2
{| ↑ ◦ ↓〉 − | ↓ ◦ ↑〉}

2 + 1 1 |ψ11〉 = | ↑ ◦ ↑〉, |ψ12〉 = 1√
2
{| ↑↑ ◦〉 + |◦ ↑↑〉}

2 + 1 0 |ψ13〉 = 1

2
{| ↑↓ ◦〉 + | ↓↑ ◦〉 + |◦ ↑↓〉 + |◦ ↓↑〉},

|ψ14〉 = 1√
2
{| ↑ ◦ ↓〉 + | ↓ ◦ ↑〉}

2 − 1 1 |ψ17〉 = 1√
2
{| ↑↑ ◦〉 − |◦ ↑↑〉}

2 − 1 0 |ψ18〉 = 1

2
{| ↑↓ ◦〉 + | ↓↑ ◦〉 − |◦ ↑↓〉 − |◦ ↓↑〉}

3 + 1/2 1/2 |ψ20〉 = 1√
6
{2| ↑↓↑〉 − | ↑↑↓〉 − | ↓↑↑〉}

3 − 1/2 1/2 |ψ22〉 = 1√
2
{| ↑↑↓〉 − | ↓↑↑〉}

3 + 3/2 3/2 |ψ24〉 = | ↑↑↑〉
3 + 3/2 1/2 |ψ25〉 = 1√

3
{| ↑↓↑〉 + | ↑↑↓〉 + | ↓↑↑〉}

TABLE II: The three-site basis states, with the corresponding
particle number (n), parity (p), total spin (s), and total spin
z-component (ms) quantum numbers. The states |φ4−5〉, |φ7〉,
|φ15−16〉, |φ19〉, |φ21〉, |φ23〉, |φ26−27〉 are obtained by spin re-
versal from |φ2−3〉, |φ6〉, |φ11−12〉, |φ17〉, |φ20〉, |φ22〉, |φ24−25〉,
respectively.

To calculate the γp, we determine the matrix ele-
ments of −βHA(i, k) − βHB(k, j) in the three-site ba-
sis {ψq}. −βHA and −βHB have the form of Eq. (14),
with interaction constants {tA, JA, VA, µA, νA, GA} and
{tB, JB, VB, µB, νB, GB} respectively. The resulting
matrix elements are listed in Table III. We ex-
ponentiate the matrix blocks to find the elements
〈ψq|e

−βHA(i,k)−βHB(k,j)|ψq̄〉 which enter on the right-
hand side of Eq. (12). In this way the γp are
obtained as functions of the interaction constants
in the unrenormalized two-site Hamiltonians, γp =
γp({tA, JA, . . .}, {tB, JB, . . .}).

The matrix elements of −β′H ′
A,B(i, j) in the {φp}

basis are shown in Table IV. Exponentiating this ma-
trix, we solve for the renormalized interaction constants

ψ1

ψ1 0

ψ2 ψ3 ψ6

ψ2
µA +µB −
νA + νB

− 1√
2
(tA + tB) 1√

2
(tB − tA)

ψ3 − 1√
2
(tA + tB)

1
2 (µA + µB +
νA − νB)

1
2 (µA − µB +
νA + νB)

ψ6
1√
2
(tB − tA)

1
2 (µA − µB +
νA + νB)

1
2 (µA + µB +
νA − νB)

ψ8 ψ9 ψ10

ψ8

1
2 ( 3

4JA + 3
4JB +

VA + VB + 3µA +
3µB − νA + νB)

1
2 ( 3

4JA − 3
4JB +

VA − VB + µA −
µB + νA + νB)

1√
2
(tA − tB)

ψ9

1
2 ( 3

4JA − 3
4JB +

VA − VB + µA −
µB + νA + νB)

1
2 ( 3

4JA + 3
4JB +

VA + VB + 3µA +
3µB − νA + νB)

− 1√
2
(tA + tB)

ψ10
1√
2
(tA − tB) − 1√

2
(tA + tB) µA +µB +

νA − νB

ψ11 ψ12 ψ17

ψ11
µA +µB +
νA − νB

− 1√
2
(tA + tB) 1√

2
(tA − tB)

ψ12 − 1√
2
(tA + tB)

1
2 (− 1

4JA − 1
4JB +

VA + VB + 3µA +
3µB − νA + νB)

1
2 (− 1

4JA + 1
4JB +

VA − VB + µA −
µB + νA + νB)

ψ17
1√
2
(tA − tB)

1
2 (− 1

4JA + 1
4JB +

VA − VB + µA −
µB + νA + νB)

1
2 (− 1

4JA − 1
4JB +

VA + VB + 3µA +
3µB − νA + νB)

ψ13 ψ14 ψ18

ψ13

1
2 (− 1

4JA − 1
4JB +

VA + VB + 3µA +
3µB − νA + νB)

− 1√
2
(tA + tB)

1
2 (− 1

4JA + 1
4JB +

VA − VB + µA −
µB + νA + νB)

ψ14 − 1√
2
(tA + tB) µA +µB +

νA − νB

1√
2
(tA − tB)

ψ18

1
2 (− 1

4JA + 1
4JB +

VA − VB + µA −
µB + νA + νB)

1√
2
(tA − tB)

1
2 (− 1

4JA − 1
4JB +

VA + VB + 3µA +
3µB − νA + νB)

ψ20 ψ22

ψ20

1
2JA + 1

2JB + VA +
VB + 2µA + 2µB

√
3

4 (JB − JA)

ψ22

√
3

4 (JB − JA) VA + VB + 2µA +
2µB

ψ24

ψ24
− 1

4JA − 1
4JB +VA +

VB + 2µA + 2µB

ψ25

ψ25
− 1

4JA − 1
4JB +VA +

VB + 2µA + 2µB

TABLE III: Diagonal matrix blocks of the unrenormalized
three-site Hamiltonian −βHA(i, k) − βHB(k, j). The Hamil-
tonian being invariant under spin-reversal, the spin-flipped
matrix elements are not shown. The additive constant con-
tribution GA + GB , occurring at the diagonal terms, is also
not shown.

φ1 φ2 φ4 φ6 φ7 φ9

φ1 G′

φ2
−t′ +
µ′ +G′ ν′ 0

φ4 ν′ t′ +
µ′ +G′

φ6

3
4J

′ + V ′ +

2µ′ + G′

φ7 0
− 1

4J
′ +

V ′ +
2µ′ +G′

φ9

− 1
4J

′ +

V ′ +
2µ′ +G′

TABLE IV: Block-diagonal matrix of the renormalized two-
site Hamiltonian −β′H ′(i, j). The Hamiltonian being invari-
ant under spin-reversal, the spin-flipped matrix elements are
not shown.
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(t′, J ′, V ′, µ′, ν′, G′) in terms of the γp:

t′ = u, J ′ = ln
γ6

γ7
,

V ′ =
1

4

{

ln(γ4
1γ6γ

3
7) − 8v

}

, µ′ = v − ln γ1,

ν′ =
2uγ0

γ4 − γ2
, G′ = ln γ1, (15)

where

v =
1

2
ln

(

γ2γ4 − γ2
0

)

,

u =
γ4 − γ2

√

(γ4 − γ2)
2

+ 4γ2
0

cosh−1

(

γ4 + γ2

2ev

)

.

The renormalization-group transformation described
by Eqs. (12)-(15) can be expressed as a mapping of
a three-site Hamiltonian with bonds having interaction
constants KA = {tA, JA, VA, µA, νA, GA} and KB =
{tB, JB, VB, µB, νB, GB} onto a two-site Hamiltonian
with interaction constants

K′ = R(KA,KB) . (16)

This mapping has the property that if R(KA,KB) =
{t′, J ′, V ′, µ′, ν′, G′}, then R(KB,KA) gives the same
result, except that the sign of ν′ is switched. So
R(KA,KA) has a zero ν′ component.

From Eq. (9), the renormalized xy- and z-bond inter-
action constants are

K′
xy = 2R(Kxy,Kxy) + R(Kxy,Kz) + R(Kz,Kxy) ,

K′
z = R(Kz,Kz) + R(Kxy,Kz) + 2R(Kz,Kxy) .

(17)

The staggered ν′ term cancels out in K′
xy. In construct-

ing the anisotropic hierarchical lattice, we could have
used a graph in which the lowest two bonds in Fig.1(b)
are interchanged. Averaging over these two realizations,

K′
z = R(Kz,Kz) +

3

2
R(Kxy,Kz) +

3

2
R(Kz,Kxy) ,

(18)

the ν′ term cancels out in K′
z as well.

IV. PHASE DIAGRAMS AND EXPECTATION

VALUES AS A FUNCTION OF ANISOTROPY

Thermodynamic properties of the system, including
the global phase diagram and expectation values of op-
erators occurring in the Hamiltonian, are obtained from
the analysis of the renormalization-group flows [15]. The
initial conditions for the flows are the interaction con-
stants in the original anisotropic tJ Hamiltonian. For
the numerical results presented below, we use the follow-
ing initial form: txy = t, tz = αtt, Jxy = J , Jz = αJJ ,

Phase sink Expectation values

−
∑

σ
〈c†iσcjσ + c†jσciσ〉 〈ni〉 〈Si · Sj〉 〈ninj〉

d 0 0 0 0

D 0 1 0 1

A 0 1 1

4
1

τ 2

3

2

3
− 1

4

1

3

TABLE V: Expectation values at the phase-sink fixed points.

Vxy = Jxy/4, Vz = Jz/4, where 0 ≤ αt, αJ ≤ 1. For the
anisotropy parameters αt and αJ , we use αJ = α2

t , as
dictated from the derivation of the tJ Hamiltonian from
the large-U limit of the Hubbard model [16].

Phase diagrams for the coupling J/t = 0.444 and vari-
ous values of αt = tz/txy are shown in Figs. 2 and 3. The
temperature variable is 1/t, and the diagrams are plot-
ted both in terms of chemical potential µ/J and electron
density 〈ni〉. The phases in the diagrams are those found
in earlier studies of the isotropic d = 3 tJ model [4, 5],
which can be consulted for a more detailed description.
Here we summarize the salient features of the phases.

Each phase is associated with a completely stable fixed
point (sink) of the renormalization-group flows, and ther-
modynamic densities calculated at the fixed point epito-
mize (and determine [7], e.g. as seen in the results dis-
played in Fig.4) characteristics of the entire phase. The
results are shown in Table V. The dilute disordered
(d) and dense disordered (D) phases have 〈ni〉 = 0
and 1 at their respective phase sinks, so the electron den-
sities in these phases are accordingly small in the one
case and close to 1 in the other. Both phases lack long-
range spin order, since 〈Si · Sj〉 = 0 at the sinks. On
the other hand, the antiferromagnetic (A) phase has
〈ni〉 = 1 and a nonzero nearest-neighbor spin-spin corre-
lation 〈Si · Sj〉 = 1/4 at the phase sink. Since nearest-
neighbor spins at the sink are distant members of the
same sublattice in the unrenormalized system, this posi-
tive value for 〈Si·Sj〉 is expected, and leads to 〈Si·Sj〉 < 0
for nearest neighbors of the original system, as seen in the
last row of Fig.4.

In the antiferromagnetic and the two disordered
phases, the electron hopping strengths txy and tz tend
to zero after repeated rescalings. The system is either
completely empty or filled in this limit, and the ex-
pectation value of the kinetic energy operator 〈K〉 ≡

−
∑

σ〈c
†
iσcjσ+c†jσciσ〉 is zero at the sink. The τττ phase is

interesting in contrast because the magnitudes of txy and
tz both tend to ∞, and we find partial filling, 〈ni〉 = 2/3,
and a nonzero kinetic energy 〈K〉 = 2/3 at the phase
sink. This makes the τ phase a candidate for supercon-
ductivity. In fact, we have shown in a previous work [7]
that the superfluid weight has a pronounced peak in the
τ phase, there is evidence of a gap in the quasiparticle
spectrum, and the free carrier density in the vicinity of
the τ phase has properties seen experimentally in high-Tc
materials [17, 18].
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FIG. 2: Phase diagrams of the anisotropic tJ model with J/t = 0.444 in temperature vs. chemical potential (first column)
and temperature vs. electron density (second column). The degree of anisotropy varies from tz/txy = 0.05 in Fig.2(a)-(b) to
tz/txy = 0.30 in Fig.2(g)-(h). Note the expanded temperature scales on the left panels of Fig.2(a)-(d). The dense disordered
(D), dilute disordered (d), antiferromagnetic (A), and τ phases are shown. The A and τ regions are colored light and dark
gray respectively. Second-order phase transitions are drawn with full curves, first-order transitions with dotted curves. The
unmarked areas within the dotted curves in the temperature vs. electron density figures are narrow coexistence regions between
the two phases at either side. Dashed curves are not phase transitions, but disorder lines between the dense disordered and
dilute disordered phases.
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FIG. 3: The continuation of the phase diagrams in Fig.2 for tz/txy between 0.5 and 1.
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FIG. 4: Thermodynamic properties along slices of the phase diagrams at the constant temperature 1/t = 0.02. The degree
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temperature vs. electron density phase diagrams and a thin horizontal line marking the slice. The antiferromagnetic and
τ phases are colored light and dark gray respectively. The rows below this show the chemical potential µ/J , kinetic energy

〈K〉 = −
∑

σ〈c
†
iσcjσ + c†jσciσ〉, and nearest-neighbor spin-spin correlation 〈Si ·Sj〉. For the 〈K〉 and 〈Si ·Sj〉 graphs, full curves

denote results for nearest neighbors along the xy plane, while dashed curves denote those for nearest neighbors along the z
direction. (In the tz/txy = 1 column, these two curves overlap.) Thin vertical lines mark the location of phase transitions.

Figs. 2 and 3 clearly demonstrate that the τ phase is
not unique to the isotropic d = 3 case, but exists at all
values of tz/txy, even persisting in the weak interplane
coupling limit. Fig.2 shows the evolution of the phase
diagram in the strongly anisotropic regime, for tz/txy
between 0.05 and 0.30, while Fig.3 completes the evolu-
tion from tz/txy = 0.5 to the fully isotropic case where
tz/txy = 1. The τ phase is present even for tz/txy = 0.05
and 0.10, but only at very low temperatures close to the
d/D first-order phase transition that itself is distinct by
its very narrow coexistence region. As the interplane cou-
pling is increased, the τ phase transition temperatures
also get larger, but the density range in which the phase
occurs, namely 〈ni〉 around 0.65, remains unchanged.

As expected, the antiferromagnetic transition temper-
atures also increase with the interplane coupling. The
phase diagrams all share an antiferromagnetic region near
〈ni〉 = 1, which is confined to 〈ni〉 very close to 1 in the
strongly anisotropic limit, but becomes more stable to
hole doping as tz/txy gets larger. Away from 〈ni〉 = 1,
in the range of 5-35% hole doping, there are thin slivers
and islands of antiferromagnetism separated by regions
of the dense disordered phase. For tz/txy = 1, we see
these mostly around the τ phase, but as anisotropy is in-
troduced into the system, the structure of the antiferro-

magnetic regions becomes more complex, and spread out
over a wider range of densities. The lamellar structure of
A and D phases here potentially indicates an underlying
incommensurate order [5]. The physical significance of
this possibility will be discussed below.

Further insight into the nature of the τ phase can
be gained by looking at thermodynamic densities on a
constant-temperature slice of the phase diagram. Fig.4
plots the chemical potential µ/J , kinetic energy 〈K〉, and
nearest-neighbor spin-spin correlation 〈Si·Sj〉 at the tem-
perature 1/t = 0.02 for several values of tz/txy. Averages
over the xy bonds, 〈 〉xy are drawn with full curves in the
figure, and averages taken over the z bonds, 〈〉z are drawn
with dashed curves.

Consider first the kinetic energy expectation value

〈K〉 = −
∑

σ〈c
†
iσcjσ + c†jσciσ〉. The xy bond kinetic

energy 〈K〉xy grows with hole doping until the density
range where the τ phase occurs, and then levels off. This
behavior is seen for the whole range of tz/txy. In our
earlier study [7] we related 〈K〉 to the density of free car-
riers, and showed that the saturation of this quantity in
the overdoped regime resembles experimental results in
high-Tc materials. As for 〈K〉z, it is significantly reduced
with increasing anisotropy, since interplane hopping is
suppressed. 〈K〉z peaks in the τ phase, and decreases for
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larger dopings.
This small peak in 〈K〉z, which is most pronounced in

the strongly anisotropic regime, is accompanied by an en-
hancement in the τ phase of the z-bond antiferromagnetic
nearest-neighbor spin-spin correlation, 〈Si ·Sj〉z. For the
xy planes, 〈Si · Sj〉xy generally increases (i.e., becomes
less negative) with hole doping from a large negative
value near 〈ni〉 = 1, as additional holes weaken the an-
tiferromagnetic order. This increase becomes much less
pronounced when the τ phase is reached, and 〈Si · Sj〉xy
becomes nearly constant for large hole dopings in the
strongly anisotropic limit. Rather than increasing with
hole doping, 〈Si ·Sj〉z shows the opposite behavior in the
10-35% doping range, decreasing and reaching a mini-
mum within the τ phase.

The final aspect of the τ phase worth noting is the
large change in chemical potential µ/J over the narrow
density range where this phase occurs. This is in con-
trast to broad regions at smaller hole dopings where the
chemical potential change is much shallower, and which
correspond to those parts of the phase diagram where A
and D alternate. We can see this directly in the phase
diagram topology in Figs. 2 and 3, particularly for larger
tz/txy. The τ phase has a very wide extent in terms of
chemical potential, but becomes very narrow in the corre-
sponding electron density diagram. The converse is true
for the complex lamellar structure of A and D phases
sandwiched between the τ phase and the main antiferro-
magnetic region near 〈ni〉 = 1. We shall return to this
point in our discussion of the purely two-dimensional re-
sults.

V. THE TWO-DIMENSIONAL ISOTROPIC tJ
MODEL AND CHEMICAL POTENTIAL SHIFT

A natural question which arises from the above anal-
ysis is how do results for a strongly anisotropic d = 3
tJ model compare to results obtained directly for the
isotropic d = 2 system. The latter was studied in
Refs. [4, 5], which yielded a phase diagram with only
dense and dilute disordered phases, separated by a first-
order transition at low temperatures, ending in a critical
point, but only for low values of t/J . The absence of any
antiferromagnetic order is consistent with the Mermin-
Wagner theorem [19]. As seen above, at least a weak
coupling in the z direction is required for a finite Néel
temperature. What about the absence in d = 2 of the
τ phase? It turns out that there is a pre-signature of
the τ phase in d = 2, and it appears exactly where we
find the actual phase upon adding the slightest interplane
coupling.

The τ phase fixed point is not an a true fixed point
of the d = 2 recursion relations, but it is a “quasifixed”
point in the sense that renormalization-group flows come
close, stay in its vicinity for many iterations, before cross-
ing over along the disorder line to one of the disordered
sinks. This is particularly true for low temperatures,
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FIG. 5: Contour diagrams showing the number of iterations
required to reach a disordered phase sink in the d = 2 isotropic
tJ model with J/t = 0.444. Fig. 5(a) is plotted in terms of
temperature vs. chemical potential, while Fig. 5(b) is in terms
of temperature vs. electron density.
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FIG. 6: Number of iterations required to reach a disordered
phase sink in the d = 2 isotropic tJ model, plotted as a func-
tion of temperature for two different values of 〈ni〉.

where the quasifixed point is essentially indistinguish-
able numerically from a real one. This may be an ar-
tifact of the Migdal-Kadanoff approximation, as it is also
seen when the approximation is applied to the d = 2
XY model, giving a quasifixed-line behavior where one
expects an actual fixed line [20, 21]. Nevertheless, since
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regions of the phase diagram which are approximately
basins of attraction of the quasifixed point are character-
ized by a sharp rise in the number of iterations required
to reach the disordered sinks, we can extract useful in-
formation by counting these iterations.

We choose a numerical cutoff for when the interaction
constants in the rescaled Hamiltonian have come suffi-
ciently close to their limiting values at either the dense or
dilute disordered sink. We then count the number of it-
erations required to meet this cutoff condition for a given
initial Hamiltonian. Fig.5 shows the results as contour
diagrams, plotted in terms of temperature vs. chemical
potential and temperature vs. electron density. There
are two clear regions in Fig.5(a) where the number of it-
erations blows up at low temperatures. The region for
µ/J approximately between -0.5 and 1.6 flows to the τ
phase quasifixed point. When expressed in terms of elec-
tron density in Fig.5(b), this region is centered around
a narrow range of densities near 〈ni〉 = 0.65, which is
where the τ phase actually emerges for finite tz/txy. The
low-temperature region for µ/J & 1.6 flows to an anti-
ferromagnetic quasifixed point, but does not appear in
the electron density contour diagram because the entire
region is mapped to 〈ni〉 infinitesimally close to 1. This
is similar to what we see in the anisotropic model for
low tz/txy, where the antiferromagnetic region is stable
to only very small hole doping away from 〈ni〉 = 1, but
gradually spreads to larger doping values as the inter-
plane coupling is increased. Fig.6 shows the quasifixed
point behavior in another way, by plotting the number
of renormalization-group iterations as a function of tem-
perature, for two different 〈ni〉. For 〈ni〉 = 0.65, in the
τ phase range, the number of iterations diverges as tem-
perature is decreased. In contrast, for 〈ni〉 = 0.75, not
in the τ phase range, the number is nearly constant at
all temperatures. In summary, we see that the d = 2
results are compatible with the small tz/txy limit of the
anisotropic model. A weak interplane coupling stabilizes
both the τ and antiferromagnetic phases, yielding finite
transition temperatures.

We mentioned earlier that the lamellar structure of A
and D phases which appears in the anisotropic tJ phase
diagram for hole dopings up to the τ phase might be
an indicator of incommensurate ordering. It could be
a reflection of stripe formation, the segregation of the
holes on a microscopic scale into D-like stripes where the
hole kinetic energy is minimized, alternating with A-like
stripes of antiferromagnetic order. The appearance of
stripes is associated with the suppression of the chemi-
cal potential shift when the parent insulating system is
doped with holes. For example, in the cuprate super-
conductor La2−xSrxCuO4 (LSCO), photoemission mea-
surements of core levels have shown that the chemical
potential shifts by a small amount (< 0.2 eV/hole) in
the underdoped region, δ ≡ 1 − 〈ni〉 . 0.15, compared
to a large shift (∼ 1.5 eV/hole) in the overdoped region,
δ & 0.15, an observation which has been interpreted as a
possible signature of stripes [22]. In non-superconducting
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FIG. 7: The calculated chemical potential shift ∆µ is plotted
as a function of hole concentration 1 − 〈ni〉 for the isotropic
d = 2 tJ model, at four different temperatures. For compari-
son with experimental results, the energy scale t̃ = 0.1 eV is
chosen. With this scale, the temperatures 1/t = 0.02, 0.06,
0.10 and 0.13 correspond to 23, 70, 116, and 151 K respec-
tively. Experimental values for ∆µ determined from x-ray
photoemission spectra at ∼ 80 K are shown for the cuprate
La2−xSrxCuO4 (LSCO, filled circles) [22] and the nickelate
La2−xSrxNiO4 (LSNO, filled squares) [23]. For LSNO we also
show another experimental estimate based on ultraviolet pho-
toemission spectra (open squares), taken at 150 K, except for
the datapoint at zero hole concentration, which was taken at
230 K [23].

systems where the existence of stripes is clearly estab-
lished, like the nickelate La2−xSrxNiO4 (LSNO), we see
a qualitatively similar behavior, with the chemical poten-
tial shifting significantly only for high-doping (δ & 0.33
for LSNO) [23]. For the tJ model, we take the chemical
potential shift as ∆µ = µ̃− µ̃0, where µ̃0 is the chemical
potential below which 〈ni〉 begins to the decrease notice-
ably from 1 in the low temperature limit. Fig.7 shows
our calculated ∆µ vs. hole concentration for the d = 2
tJ model at four different temperatures. In order to com-
pare with the experimental data for LSCO and LSNO,
we choose an energy scale t̃ = 0.1 eV. For the low-doping
region, where interplane coupling generates a lamellar
structure of A and D phases, the slope of the ∆µ curve
remains small. On the other hand, for high-doping, in
the range of densities corresponding to the τ phase, ∆µ
turns steeply downward. The similarities between this
behavior and the experimental data supports the idea of
stripe formation in the low-doping region.
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