
Crisp Boundary Detection Using Pointwise
Mutual Information

Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H. Adelson

Massachusetts Institute of Technology
{phillipi,danielz,dilipkay,eadelson}@mit.edu

Abstract. Detecting boundaries between semantically meaningful ob-
jects in visual scenes is an important component of many vision algo-
rithms. In this paper, we propose a novel method for detecting such
boundaries based on a simple underlying principle: pixels belonging to
the same object exhibit higher statistical dependencies than pixels be-
longing to different objects. We show how to derive an affinity measure
based on this principle using pointwise mutual information, and we show
that this measure is indeed a good predictor of whether or not two pixels
reside on the same object. Using this affinity with spectral clustering, we
can find object boundaries in the image – achieving state-of-the-art re-
sults on the BSDS500 dataset. Our method produces pixel-level accurate
boundaries while requiring minimal feature engineering.

Keywords: Edge/Contour Detection, Segmentation

1 Introduction

Semantically meaningful contour extraction has long been a central goal of com-
puter vision. Such contours mark the boundary between physically separate ob-
jects and provide important cues for low- and high-level understanding of scene
content. Object boundary cues have been used to aid in segmentation [1–3],
object detection and recognition [4, 5], and recovery of intrinsic scene properties
such as shape, reflectance, and illumination [6]. While there is no exact definition
of the “objectness” of entities in a scene, datasets such as the BSDS500 segmen-
tation dataset [1] provide a number of examples of human drawn contours, which
serve as a good objective guide for the development of boundary detection algo-
rithms. In light of the ill-posed nature of this problem, many different approaches
to boundary detection have been developed [1, 7–9].

As a motivation for our approach, first consider the photo on the left in
Figure 1. In this image, the coral in the foreground exhibits a repeating pattern
of white and gray stripes. We would like to group this entire pattern as part of
a single object. One way to do so is to notice that white-next-to-gray co-occurs
suspiciously often. If these colors were part of distinct objects, it would be quite
unlikely to see them appear right next to each other so often. On the other hand,
examine the blue coral in the background. Here, the coral’s color is similar to
the color of the water behind the coral. While the change in color is subtle along

2 Phillip Isola, Daniel Zoran, Dilip Krishnan, Edward H. Adelson

Sobel & Feldman
 1968

Arbeláez et al.
2011 (gPb)

Dollár & Zitnick
2013 (SE) Our method Human labelers

Fig. 1. Our method suppresses edges in highly textured regions such as the coral
in the foreground. Here, white and gray pixels repeatedly occur next to each other.
This pattern shows up as a suspicious coincidence in the image’s statistics, and our
method infers that these colors must therefore be part of the same object. Conversely,
pixel pairs that straddle the coral/background edges are relatively rare and our model
assigns these pairs low affinity. From left to right: Input image; Contours recovered
by the Sobel operator [10]; Contours recovered by Dollár & Zitnick 2013 [8]; Contours
recovered by Arbeláez et al. (gPb) [1]; Our recovered contours; Contours labeled by
humans [1]. Sobel boundaries are crisp but poorly match human drawn contours. More
recent detectors are more accurate but blurry. Our method recovers boundaries that
are both crisp and accurate.

this border, it is in fact a rather unusual sort of change – it only occurs on the
narrow border where coral pixels abut with background water pixels. Pixel pairs
that straddle an object border tend to have a rare combination of colors.

These observations motivate the basic assumption underlying our method,
which is that the statistical association between pixels within objects is high,
whereas for pixels residing on different objects the statistical association is low.
We will use this property to detect boundaries in natural images.

One of the challenges in accurate boundary detection is the seemingly inher-
ent contradiction between the “correctness” of an edge (distinguishing between
boundary and non-boundary edges) and “crispness” of the boundary (precisely
localizing the boundary). The leading boundary detectors tend to use relatively
large neighborhoods when building their features, even the most local ones. This
results in edges which, correct as they may be, are inherently blurry. Because
our method works on surprisingly simple features (namely pixel color values and
very local variance information) we can achieve both accurate and crisp con-
tours. Figure 1 shows this appealing properties of contours extracted using our
method. The contours we get are highly detailed (as along the top of the coral
in the foreground) and at the same time we are able to learn the local statistical
regularities and suppress textural regions (such as the interior of the coral).

It may appear that there is a chicken and egg problem. To gather statistics
within objects, we need to already have the object segmentation. This problem
can be bypassed, however. We find that natural objects produce probability
density functions (PDFs) that are well clustered. We can discover those clusters,
and fit them by kernel density estimation, without explicitly identifying objects.
This lets us distinguish common pixel pairs (arising within objects) from rare
ones (arising at boundaries).

Crisp Boundary Detection Using Pointwise Mutual Information 3

In this paper, we only look at highly localized features – pixel colors and color
variance in 3x3 windows. It is clear, then, that we cannot derive long feature
vectors with sophisticated spatial and chromatic computations. How can we hope
to get good performance? It turns out that there is much more information in
the PDFs than one might at first imagine. By exploiting this information we can
succeed.

Our main contribution is a simple, principled and unsupervised approach to
contour detection. Our algorithm is competitive with other, heavily engineered
methods. Unlike these previous methods, we use extremely local features, mostly
at the pixel level, which allow us to find crisp and highly localized edges, thus
outperforming other methods significantly when more exact edge localization is
required. Finally, our method is unsupervised and is able to adapt to each given
image independently. The resulting algorithm achieves state-of-the-art results
on the BSDS500 segmentation dataset.

The rest of this paper is organized as follows: we start by presenting related
work, followed by a detailed description of our model. We then proceed to model
validation, showing that the assumptions we make truly hold for natural images
and ground truth contours. Then, we compare our method to current state-of-
the-art boundary detection methods. Finally, we will discuss the implications
and future directions for this work.

2 Related Work

Contour/boundary detection and edge detection are classical problems in com-
puter vision, and there is an immense literature on these topics. It is out of scope
for this paper to give a full survey on the topic, so only a small relevant subset
of works will be reviewed here.

The early approaches to contour detection relied on local measurements with
linear filters. Classical examples are the Sobel [11], Roberts [12], Prewitt [13]
and Canny [14] edge detectors, which all use local derivative filters of fixed
scale and only a few orientations. Such detectors tend to overemphasize small,
unimportant edges and lead to noisy contour maps which are hard to use for
subsequent higher-level processing. The key challenge is to reduce gradients due
to repeated or stochastic textures, without losing edges due to object boundaries.

As a result, over the years, larger (non-local) neighborhoods, multiple scales
and orientations, and multiple feature types have been incorporated into con-
tour detectors. In fact, all top-performing methods in recent years fall into this
category. Martin et al. [15] define linear operators for a number of cues such
as intensity, color and texture. The resulting features are fed into a regression
classifier that predicts edge strength; this is the popular Pb metric which gives,
for each pixel in the image the probability of a contour at that point. Dollár et
al. [16] use supervised learning, along with a large number of features and mul-
tiple scales to learn edge prediction. The features are collected in local patches
in the image.

4 Phillip Isola, Daniel Zoran, Dilip Krishnan, Edward H. Adelson

Recently, Lim et al. [7] have used random forest based learning on image
patches to achieve state-of-the-art results. Their key idea is to use a dictionary of
human generated contours, called Sketch Tokens, as features for contours within
a patch. The use of random forests makes inference fast. Dollár and Zitnick [8]
also use random forests, but they further combine it with structured prediction to
provide real-time edge detection. Ren and Bo [17] use sparse coding and oriented
gradients to learn dictionaries of contour patches. They achieve excellent contour
detection results on BSDS500.

The above methods all use patch-level measurements to create contour maps,
with non-overlapping patches making independent decisions. This often leads to
noisy and broken contours which are less likely to be useful for further processing
for object recognition or image segmentation. Global methods utilize local mea-
surements and embed them into a a framework which minimizes a global cost
over all disjoint pairs of patches. Early methods in this line of work include that
of Shashua and Ullman [18] and Elder and Zucker [19]. The paper of Shashua
and Ullman used a simple dynamic programming approach to compute closed,
smooth contours from local, disjoint edge fragments.

These globalization approaches tend to be fragile. More modern methods
include a Conditional Random Field (CRF) presented in [20], which builds a
probabilistic model for the completion problem, and uses loopy belief propaga-
tion to infer the closed contours. The highly successful gPb method of Arbeláez
et al. [1] embeds the local Pb measure into a spectral clustering framework [21,
22]. The resulting algorithm gives long, connected contours higher probability
than short, disjoint contours.

The rarity of boundary patches has been studied in the literature before, e.g.
[23]. We measure rarity based on pointwise mutual information [24] (PMI). PMI
gives us a value per patch that allows us to build a pixel-level affinity matrix.
This local affinity matrix is then embedded in a spectral clustering framework
[1] to provide global contour information. PMI underlies many experiments in
computational linguistics [25, 26] to learn word associations (pairs of words that
are likely to occur together), and recently has been used for improving image
categorization [27]. Other information-theoretic takes on segmentation have been
previously explored, e.g., [28]. However, to the best of our knowledge, PMI has
never been used for contour extraction or image segmentation.

3 Information theoretic affinity

Consider the zebra in Figure 2. In this image, black stripes repeatedly occur
next to white stripes. To a human eye, the stripes are grouped as a coherent
object – the zebra. As discussed above, this intuitive grouping shows up in the
image statistics: black and white pixels commonly co-occur next to one another,
while white-green combinations are rarer, suggesting a possible object boundary
where a white stripe meets the green background.

In this section, we describe a formal measure of the affinity between neigh-
boring image features, based on statistical association. We denote a generic pair

Crisp Boundary Detection Using Pointwise Mutual Information 5Crisp Boundary Detection Using Pointwise Mutual Information 5

Luminance A

L
u
m
in
a
n
ce

B

log P(A,B)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

4.65

4.7

4.75

4.8

Luminance A

PMI(A,B)

0 0.5 1

0

0.05

0.1

Fig. 2: Our algorithm works by reasoning about the pointwise mutual information
(PMI) between neighboring image features. Middle column: Joint distribution of the
luminance values of pairs of nearby pixels. Right column: PMI between the luminance
values of neighboring pixels in this zebra image. In the left image, the blue circle
indicates a smooth region of the image where all points are on the same object. The
green circle a region that contains an object boundary. The red circle shows a region
with a strong luminance edge that nonetheless does not indicate an object boundary.
Luminance pairs chosen from within each circle are plotted where they fall in the joint
distribution and PMI functions.

over multiple distances:

P (A, B) =
1

Z

1X

d=d0

w(d)p(A, B; d), (1)

where w is a weighting function which decays monotonically with distance d,
and Z is a normalization constant. We take the marginals of this distribution to
get P (A) and P (B):

P (A) =

Z

B

P (A, B), (2)

and correspondingly for P(B).
In order to pick out object boundaries, a first guess might be that a�nity

should be measured with joint probability P (A, B). After all, features that al-
ways occur together probably should be grouped together. For the zebra image
in Figure 2, the joint distribution over luminance values of nearby pixels is shown
in the middle column. Overlaid on the zebra image are three sets of pixel pairs
in the colored circles. These pairs correspond to pairs {A, B} in our model. The
pair of pixels in the blue circle are both on the same object and the joint proba-
bility of their colors – green next to green – is high. The pair in the bright green
circle straddles an object boundary and the joint probability of the colors of this
pair – black next to green – is correspondingly low.

Now consider the pair in the red circle. There is no physical object boundary
on the edge of this zebra stripe. However, the joint probability is actually lower
for this pair than for the pair in the green circle, where an object boundary
did in fact exist. This demonstrates a shortcoming of using joint probability as

Luminance A

Lu
m

in
an

ce
 B

Luminance A

Crisp Boundary Detection Using Pointwise Mutual Information 5

Fig. 2: Our algorithm works by reasoning about the pointwise mutual information
(PMI) between neighboring image features. Middle column: Joint distribution of the
luminance values of pairs of nearby pixels. Right column: PMI between the luminance
values of neighboring pixels in this zebra image. In the left image, the blue circle
indicates a smooth region of the image where all points are on the same object. The
green circle a region that contains an object boundary. The red circle shows a region
with a strong luminance edge that nonetheless does not indicate an object boundary.
Luminance pairs chosen from within each circle are plotted where they fall in the joint
distribution and PMI functions.

over multiple distances:

P (A, B) =
1

Z

1X

d=d0

w(d)p(A, B; d), (1)

where w is a weighting function which decays monotonically with distance d,
and Z is a normalization constant. We take the marginals of this distribution to
get P (A) and P (B):

P (A) =

Z

B

P (A, B), (2)

and correspondingly for P(B).
In order to pick out object boundaries, a first guess might be that a�nity

should be measured with joint probability P (A, B). After all, features that al-
ways occur together probably should be grouped together. For the zebra image
in Figure 2, the joint distribution over luminance values of nearby pixels is shown
in the middle column. Overlaid on the zebra image are three sets of pixel pairs
in the colored circles. These pairs correspond to pairs {A, B} in our model. The
pair of pixels in the blue circle are both on the same object and the joint proba-
bility of their colors – green next to green – is high. The pair in the bright green
circle straddles an object boundary and the joint probability of the colors of this
pair – black next to green – is correspondingly low.

Now consider the pair in the red circle. There is no physical object boundary
on the edge of this zebra stripe. However, the joint probability is actually lower
for this pair than for the pair in the green circle, where an object boundary
did in fact exist. This demonstrates a shortcoming of using joint probability as

PMI(A,B)log P(A,B)

Fig. 2. Our algorithm works by reasoning about the pointwise mutual information
(PMI) between neighboring image features. Middle column: Joint distribution of the
luminance values of pairs of nearby pixels. Right column: PMI between the luminance
values of neighboring pixels in this zebra image. In the left image, the blue circle
indicates a smooth region of the image where all points are on the same object. The
green circle a region that contains an object boundary. The red circle shows a region
with a strong luminance edge that nonetheless does not indicate an object boundary.
Luminance pairs chosen from within each circle are plotted where they fall in the joint
distribution and PMI functions.

of neighboring features by random variables A and B, and investigate the joint
distribution over pairings {A,B}.

Let p(A,B; d) be the joint probability of features A and B occurring at a Eu-
clidean distance of d pixels apart. We define P (A,B) by computing probabilities
over multiple distances:

P (A,B) =
1

Z

∞∑

d=d0

w(d)p(A,B; d), (1)

where w is a weighting function which decays monotonically with distance d
(Gaussian in our implementation), and Z is a normalization constant. We take
the marginals of this distribution to get P (A) and P (B).

In order to pick out object boundaries, a first guess might be that affinity
should be measured with joint probability P (A,B). After all, features that al-
ways occur together probably should be grouped together. For the zebra image
in Figure 2, the joint distribution over luminance values of nearby pixels is shown
in the middle column. Overlaid on the zebra image are three sets of pixel pairs
in the colored circles. These pairs correspond to pairs {A,B} in our model. The
pair of pixels in the blue circle are both on the same object and the joint proba-
bility of their colors – green next to green – is high. The pair in the bright green
circle straddles an object boundary and the joint probability of the colors of this
pair – black next to green – is correspondingly low.

Now consider the pair in the red circle. There is no physical object boundary
on the edge of this zebra stripe. However, the joint probability is actually lower
for this pair than for the pair in the green circle, where an object boundary
did in fact exist. This demonstrates a shortcoming of using joint probability as
a measure of affinity. Because there are simply more green pixels in the image

6 Phillip Isola, Daniel Zoran, Dilip Krishnan, Edward H. Adelson

than white pixels, there are more chances for green accidentally show up next to
any arbitrary other color – that is, the joint probability of green with any other
color is inflated by the fact that most pixels in the image are green.

In order to correct for the baseline rarity of features A and B, we instead
model affinity with a statistic related to pointwise mutual information:

PMIρ(A,B) = log
P (A,B)ρ

P (A)P (B)
. (2)

When ρ = 1, PMIρ is precisely the pointwise mutual information between A and
B [24]. This quantity is the log of the ratio between the observed joint probability
of {A,B} in the image and the probability of this tuple were the two features

independent. Equivalently, the ratio can be written as P (A|B)
P (A) , that is, how much

more likely is observing A given that we saw B in the same local region, compared
to the base rate of observing A in the image. When ρ = 2, we have a stronger
condition: in that case the ratio in the log becomes P (A|B)P (B|A). That is,
observing A should imply that B will be nearby and vice versa. As it is unclear
a priori which setting of ρ would lead to the best segmentation results, we instead
treat ρ as a free parameter and select its value to optimize performance on a
training set of images (see Section 4).

In the right column of Figure 2, we see the pointwise mutual information over
features A and B. This metric appropriately corrects for the baseline rarities of
white and black pixels versus gray and green pixels. As a result, the pixel pair
between the stripes (red circle), is rated as more strongly mutually informative
than the pixel pair that straddles the boundary (green circle). In Section 6.1 we
empirically validate that PMIρ is indeed predictive of whether or not two points
are on the same object.

4 Learning the affinity function

In this section we describe how we model P (A,B), from which we can derive
PMIρ(A,B). The pipeline for this learning is depicted in Figure 3(a) and (b).
For each image on which we wish to measure affinities, we learn P (A,B) specific
to that image itself. Extensions of our approach could learn P (A,B) from any
type of dataset: videos, photo collections, images of a specific object class, etc.
However, we find that modeling P (A,B) with respect to the internal statistics
of each test image is an effective approach for unsupervised boundary detection.
The utility of internal image statistics has been previously demonstrated in the
context of super-resolution and denoising [29] as well as saliency prediction [30].

Because natural images are piecewise smooth, the empirical distribution
P (A,B) for most images will be dominated by the diagonal A ≈ B (as in Fig-
ure 2). However, we are interested in the low probability, off-diagonal regions of
the PDF. These off diagonal regions are where we find changes, including both
repetitive, textural changes and object boundaries. In order to suppress texture
while still detecting subtle object boundaries, we need a model that is able to
capture the low probability regions of P (A,B).

Crisp Boundary Detection Using Pointwise Mutual Information 7

Measure how often each color A occurs
next to each color B within the image

PMI gives affinity between
each pair of pixels

Group pixels based on affinity
(spectral clustering)

Sample color pairs Estimate density ClusterMeasure affinity

Luminance A

L
u
m
in
a
n
ce

B

l o g P(A ,B)

0 0.5 1

0

0.2

0.4

0.6

0.8

1

4.65

4.7

4.75

4.8

4.85

4.9

4.95

Luminance A

L
u
m
in
a
n
ce

B

PM I(A ,B)

0 0.5 1

0

0.2

0.4

0.6

0.8

1

−0.05

0

0.05

0.1

0.15

0.2

0.25

PMI(A,B)

Luminance A

Lu
m

in
an

ce
 B

Samples

(a) (b) (c) (d)

Fig. 3. Boundary detection pipeline: (a) Sample color pairs within the image. Red-
blue dots represent pixel pair samples. (b) Estimate joint density P(A,B) and from
this get PMI(A,B). (c) Measure affinity between each pair of pixels using PMI. Here
we show the affinity between the center pixel in each patch and all neighboring pixels
(hotter colors indicate greater affinity). Notice that there is low affinity across object
boundaries but high affinity within textural regions. (d) Group pixels based on affinity
(spectral clustering) to get segments and boundaries.

We use a nonparametric kernel density estimator [31] since it has high ca-
pacity without requiring an increase in feature dimensionality. We also exper-
imented with a Gaussian Mixture Model but were unable to achieve the same
performance as kernel density estimators.

Kernel density estimation places a kernel of probability density around every
sample point. We need to specify on the form of the kernel and the number
of samples. We used Epanechnikov kernels (i.e. truncated quadratics) owing
to their computational efficiency and their optimality properties [32], and we
place kernels at 10000 sample points per image. Samples are drawn uniformly at
random from all locations in the image. First a random position x in the image
is sampled. Then features A and B are sampled from image locations around
x, such that A and B are d pixels apart. The sampling is done with weighting
function w(d), which is monotonically decreasing and gives maximum weight to
d = 2. The vast majority of samples pairs {A,B} are within distance d = 4
pixels of each other.

Epanechnikov kernels have one free parameter per feature dimension: the
bandwidth of the kernel in that dimension. We select the bandwidth for each di-
mension through leave-one-out cross-validation to maximize the data likelihood.
Specifically, we compute the likelihood of each sample given a kernel density
model built from all the remaining samples. As a further detail, we bound the
bandwidth to fall in the range [0.01, 0.1] (with features scaled between [0, 1]) –
this helps prevent overfitting to imperceptible details in the image, such as jpeg
artifacts in a blank sky. To speed up evaluation of the kernel density model, we
use the kd-tree implementation of Ihler and Mandel [33]. In addition, we smooth
our calculation of PMIρ slightly by adding a small regularization constant to the
numerator and denominator of Eq. 2.

Our model has one other free parameter, ρ. We choose ρ by selecting the
value that gives the best performance on a training set of images completely
independent of the test set, finding ρ = 1.25 to perform best.

8 Phillip Isola, Daniel Zoran, Dilip Krishnan, Edward H. Adelson

5 Boundary detection

Armed with an affinity function to tell us how pixels should be grouped in
an image, the next step is to use this affinity function for boundary detection
(Figure 3 (c) and (d)). Spectral clustering methods are ideally suited in our
present case since they operate on affinity functions.

Spectral clustering was introduced in the context of image segmentation as
a way to approximately solve the Normalized Cuts objective [34]. Normalized
Cuts segments an image so as to maximize within segment affinity and minimize
between segment affinity. To detect boundaries, we apply a spectral clustering
using our affinity function, following the current state-of-the-art solution to this
problem, gPb [1].

As input to spectral clustering, we require an affinity matrix, W. We get this
from our affinity function PMIρ as follows. Let i and j be indices into image
pixels. At each pixel, we define a feature vector f . Then, we define:

Wi,j = ePMIρ(fi,fj) (3)

The exponentiated values give us better performance than the raw PMIρ values.
Since our model for feature pairings was learned on nearby pixels, we only eval-
uate the affinity matrix for pixels within a radius of 5 pixels from one another.
Remaining affinities are set to 0.

In order to reduce model complexity, we make the simplifying assumption
that different types of features are independent of one another. If we have M
subsets of features, this implies that,

Wi,j = e
∑M
k=1 PMIρ(f

k
i ,f

k
j) (4)

In our experiments, we use two feature sets: pixel color (in L*a*b* space) and
the diagonal of the RGB color covariance matrix in a 3x3 window around each
pixel. Thus for each pixel we have two feature vectors of dimension 3 each. Each
feature vector is decorrelated using a basis computed over the entire image (one
basis for color and one basis for variance).

Given W, we compute boundaries by following the method of [1]: first we
compute the generalized eigenvectors of the system (D −W)v = λDv, where
Di,i =

∑
j 6=iWi,j . Then we take an oriented spatial derivative over the first N

eigenvectors with smallest eigenvalue (N = 100 in our experiments). This pro-
cedure gives a continuous-valued edge map for each of 8 derivative orientations.
We then suppress boundaries that align with image borders and are within a few
pixels of the image border. As a final post-processing step we apply the Oriented
Watershed Transform (OWT) and create an Ultrametric Contour Map (UCM)
[1], which we use as our final contour maps for evaluation.

In addition to the above approach, we also consider a multiscale variant. To
incorporate multiscale information, we build an affinity matrix at three different
image scales (subsampling the image by half in each dimension for each sub-
sequent scale). To combine the information across scales, we use the multigrid,

Crisp Boundary Detection Using Pointwise Mutual Information 9

−0.9 −0.6 −0.3 0
0

0.2

0.4

0.6

0.8

1
AP = 0.17, F=0.25

−||A−B||

Q
(A

,B
)

8.9 13.2 17.4
0

0.2

0.4

0.6

0.8

1
AP = 0.15, F=0.24

log P(A,B)
1.1 2.7

0

0.2

0.4

0.6

0.8

1
AP = 0.14, F=0.25

External PMI(A,B)
−4.7 −0.5 3.6
0

0.2

0.4

0.6

0.8

1
AP = 0.22, F=0.30

Internal PMI(A,B)

0 0.3 0.7 1
0

0.5

1
AP = 0.49, F=0.53

Other subjects

20

40

60

−0.9 −0.6 −0.3 0
0

0.2

0.4

0.6

0.8

1
AP = 0.17, F=0.25

−||A−B||

Q
(A

,B
)

8.9 13.2 17.4
0

0.2

0.4

0.6

0.8

1
AP = 0.15, F=0.24

log P(A,B)
1.1 2.7

0

0.2

0.4

0.6

0.8

1
AP = 0.14, F=0.25

External PMI(A,B)
−4.7 −0.5 3.6
0

0.2

0.4

0.6

0.8

1
AP = 0.22, F=0.30

Internal PMI(A,B)
0 0.3 0.7 1

0

0.2

0.4

0.6

0.8

1
AP = 0.49, F=0.53

Other subjects

15

0

lo
g

sa

m
pl

es

PMI_{\rho}(A,B)

−0.9 −0.6 −0.3 0
0

0.2

0.4

0.6

0.8

1
AP = 0.17, F=0.25

−||A−B||

Q
(A

,B
)

8.9 13.2 17.4
0

0.2

0.4

0.6

0.8

1
AP = 0.15, F=0.24

log P(A,B)
1.1 2.7

0

0.2

0.4

0.6

0.8

1
AP = 0.14, F=0.25

External PMI(A,B)
−4.7 −0.5 3.6
0

0.2

0.4

0.6

0.8

1
AP = 0.22, F=0.30

Internal PMI(A,B)
0 0.3 0.7 1

0

0.2

0.4

0.6

0.8

1
AP = 0.49, F=0.53

Other subjects

-||A-B||2 log P(A,B) External PMIρ(A,B) Internal PMIρ(A,B) Other labelers

Pr
ob

ab
ilit

y
A

an
d

B
on

 s
am

e
se

gm
en

t
AP=0.17, F=0.25 AP=0.15, F=0.24 AP=0.14, F=0.25 AP=0.22, F=0.30 AP=0.49, F=0.53

(a) (b) (c) (d) (e)

Fig. 4. Here we show the probability that two nearby pixels are on the same object
segment as a function of various cues based on the pixel colors A and B. From left
to right the cues are: (a) color difference, (b) color co-occurrence probability based on
internal image statistics, (c) PMI based on external image statistics, (d) PMI based on
internal image statistics, and (e) theoretical upper bound using the average labeling of
N−1 human labelers to predict the Nth. Color represents number of samples that make
up each datapoint. Shaded error bars show three times standard error of the mean.
Performance is quantified by treating each cue as a binary classifier (with variable
threshold) and measuring AP and maximum F-measure for this classifier (sweeping
over threshold).

multiscale angular embedding algorithm of [35]. This algorithm solves the spec-
tral clustering problem while enforcing that the edges at one scale are blurred
versions of the edges at the next scale up.

6 Experiments

In this section, we present the results of a number of experiments. We first show
that PMI is effective in detecting object boundaries. Then we show benchmarking
results on the BSDS500 dataset. Finally, we show some segmentation results that
are derived using our boundary detections.

6.1 Is PMIρ informative about object boundaries?

Given just two pixels in an image, how well can we determine if they span an
object boundary? In this section, we analyze several possible cues based on a
pair of pixels, and show that PMIρ is more effective than alternatives.

Consider two nearby pixels with colors A and B. In Figure 4 we plot the
probability that a random human labeler will consider the two pixels as lying
on the same object segment as a function of various cues based on A and B.

To measure this probability, we sampled 20000 nearby pairs of pixels per
image in the BSDS500 training set, using the same sampling scheme as in Section
4. For each pair of pixels, we also sample a random labeler from the set of human
labelers for that image. The pixel pair is considered to lie on the same object
segment if that labeler has placed them on the same segment.

A first idea is to use color difference ‖A − B‖2 to decide if the two pixels
span a boundary (Figure 4(a); note that we use decorrelated L*a*b* color space

10 Phillip Isola, Daniel Zoran, Dilip Krishnan, Edward H. Adelson

Algorithm ODS OIS AP

Canny [14] 0.60 0.63 0.58

Mean Shift [36] 0.64 0.68 0.56

NCuts [37] 0.64 0.68 0.45

Felz-Hutt [38] 0.61 0.64 0.56

gPb [1] 0.71 0.74 0.65

gPb-owt-ucm [1] 0.73 0.76 0.73

SCG [9] 0.74 0.76 0.77

Sketch Tokens [7] 0.73 0.75 0.78

SE [8] 0.74 0.76 0.78

Our method – SS, color only 0.72 0.75 0.77

Our method – SS 0.73 0.76 0.79

Our method – MS 0.74 0.77 0.78

Table 1. Evaluation on BSDS500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

iso−F

Pr
ec

is
io

n

[F = 0.80] Human

[F = 0.74] SE − Dollar, Zitnick (2013)
[F = 0.74] SCG − Ren, Bo (2012)
[F = 0.73] Sketch Tokens − Lim, Zitnick, Dollar (2013)
[F = 0.73] gPb−owt−ucm − Arbelaez, et al. (2010)
[F = 0.64] Mean Shift − Comaniciu, Meer (2002)
[F = 0.64] Normalized Cuts − Cour, Benezit, Shi (2005)
[F = 0.61] Felzenszwalb, Huttenlocher (2004)
[F = 0.60] Canny − Canny (1986)

[F = 0.74] Our method

Recall

Fig. 5. Precision-recall curve on
BSDS500. Figure copied from [8]
with our results added.

with values normalized between 0 and 1). Color difference has long been used
as a cue for boundary detection and unsurprisingly it is predictive of whether or
not A and B lie on the same segment.

Beyond using pixel color difference, boundary detectors have improved over
time by reasoning over larger and larger image regions. But is there anything
more we can squeeze out of just two pixels?

Since boundaries are rare events, we may next try logP (A,B). As shown in
Figure 4(b), rarer color combinations are indeed more likely to span a boundary.
However, logP (A,B) is still a poor predictor.

Can we do better if we use PMI? In Figure 4(c) and (d) we show that, yes,
PMIρ(A,B) (with ρ = 1.25) is quite predictive of whether or not A and B lie
on the same object. Further, comparing Figure 4(c) and (d), we find that it
is important that the statistics for PMIρ be adapted to the test image itself.
Figure 4(c) shows the result when the distribution P (A,B) is learned over the
entire BSDS500 training set. These external statistics are poorly suited for mod-
eling individual images. On the other hand, when we learn P (A,B) based on
color co-occurrences internal to an image, PMIρ is much more predictive of the
boundaries in that image (Figure 4(d)).

6.2 Benchmarks

We run experiments on three versions of our algorithm: single scale using only
pixel colors as features (labeled as SS, color only), single scale using both color
and color variance features (SS), and multiscale with both color and variance
features (MS). Where possible, we compare against the top performing previ-
ous contour detectors. We choose the Structured Edges (SE) detector [8] and
gPb-owt-ucm detector [1] to compare against more extensively. These two meth-
ods currently achieve state-of-the-art results. SE is representative of the super-
vised learning approach to edge detection, and gPb-owt-ucm is representative of

Crisp Boundary Detection Using Pointwise Mutual Information 11

affinity-based approaches, which is also the category into which our algorithm
falls.

BSDS500: The Berkeley Segmentation Dataset [39, 1] has been frequently
used as a benchmark for contour detection algorithms. This dataset is split
into 200 training images, 100 validation images, and 200 test images. Although
our algorithm requires no extensive training, we did tune our parameters (in
particular ρ) to optimize performance on the validation set. In Table 1 and
Figure 5, we report our performance on the test set. ODS refers to the F-measure
at the optimal threshold across the entire dataset. OIS refers to the per-image
best F-measure. AP stands for area under the precision-recall curve. On each
of these popular metrics, we match or outperform the state-of-the-art. It is also
notable that our SS, color only method gets results close to the state-of-the-art,
as this method only uses pixel pair colors for its features. We believe that this
result is noteworthy as it shows that with carefully designed nonlinear methods,
it is possible to achieve excellent results without using high-dimensional feature
spaces and extensive engineering.

In Figure 8 we show example detections by our algorithm on the BSDS500
test set. These results are with our MS version with ρ = 1.25. We note that our
results have fewer boundaries due to texture, and crisper boundary localization.
Further examples can be seen in the supplementary materials.

High resolution edges: One of the striking features of our algorithm is the
high resolution of its results. Consider the white object in Figure 6. Here our
algorithm is able to precisely match the jagged contours of this object, whereas
gPb-owt-ucm incurs much more smoothing. As discussed in the introduction,
good boundary detections should be both “correct” (detecting real object bound-
aries) and “crisp” (precisely localized along the object’s contour). The standard
BSDS500 metrics do not distinguish between these two criteria.

However, the benchmark metrics do include a parameter, r, related to crisp-
ness. A detected edge can be r pixels away from a ground truth edge and still be
considered a correct detection. The standard benchmark code uses r = 4.3 pixels
for BSDS500 images. Clearly, this default setting of r cannot distinguish whether
or not an algorithm is capturing details above a certain spatial frequency. Vary-
ing r dramatically affects performance (Figure 7). In order to benchmark on the
task of detecting “crisp” contours, we evaluate our algorithm on three settings
of r: r0, r0/2, and r0/4, where r0 = 4.3 pixels, the default setting.

In Figure 7, we plot our results and compare against SE (with non-maximal
suppression) and gPb-owt-ucm. While all three methods perform similarly at
r = r0, our method increasingly outperforms the others when r is small. This
quantitatively demonstrates that our method is matching crisp, high resolution
contours better than other state-of-the-art approaches.

Speed: Recently several edge detectors have been proposed that optimize
speed while also achieving good results [8, 7]. The current implementation of our
method is not competitive with these fast edge detectors in terms of speed. To
achieve our MS results above, our highly unoptimized algorithm takes around
15 minutes per image on a single core of an Intel Core i7 processor.

12 Phillip Isola, Daniel Zoran, Dilip Krishnan, Edward H. Adelson

Input image gPb-owt-ucm
(edges)

Our method
(edges)

gPb-owt-ucm
(segments)

Our method
(segments)

Fig. 6. Here we show a zoomed in region of an image. Notice that our method preserves
the high frequency contour variation while gPb-owt-ucm does not.

1 2 3 4
0.4

0.5

0.6

0.7

0.8

1 2 3 4
0.4

0.5

0.6

0.7

0.8

1 2 3 4
0.4

0.5

0.6

0.7

0.8

SE

Our method — MS

APOISODS

O
DS O
IS AP

Maximum pixel distance
allowed during matching (r)

Maximum pixel distance
allowed during matching (r)

Maximum pixel distance
allowed during matching (r)

1 2 3 4
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Maximum pixel distance
allowed during matching

O
D

S

1 2 3 4
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Maximum pixel distance
allowed during matching

O
IS

1 2 3 4
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Maximum pixel distance
allowed during matching

A
P

AP

gPb−owt−ucm
SE
Our method, SS
Our method, MS

1 2 3 4
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Maximum pixel distance
allowed during matching

O
D

S

1 2 3 4
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Maximum pixel distance
allowed during matching

O
IS

1 2 3 4
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Maximum pixel distance
allowed during matching

A
P

AP

gPb−owt−ucm
SE
Our method, SS
Our method, MS

1 2 3 4
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Maximum pixel distance
allowed during matching

O
D

S

1 2 3 4
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Maximum pixel distance
allowed during matching

O
IS

1 2 3 4
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Maximum pixel distance
allowed during matching

A
P

AP

gPb−owt−ucm
SE
Our method, SS
Our method, MS

1 2 3 4
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Maximum pixel distance
allowed during matching

O
D

S

1 2 3 4
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Maximum pixel distance
allowed during matching

O
IS

1 2 3 4
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Maximum pixel distance
allowed during matching

A
P

AP

gPb−owt−ucm
SE
Our method, SS
Our method, MS

Our method — SS

gPb-owt-ucm

Fig. 7. Performance as a function of the maximum pixel distance allowed during match-
ing between detected boundaries and ground truth edges (referred to as r in the text).
When r is large, boundaries can be loosely matched and all methods do well. When
r is small, boundaries must be precisely localized, and this is where our method most
outperforms the others.

However, we can tune the parameters of our algorithm for speed at some cost
to resolution. Doing so, we can match our state-of-the-art results (ODS=0.74,
OIS=0.77 AP=0.80 on BSDS500 using the standard r = 4.3) in about 30 seconds
per image (again on a single core of an i7 processor). The tradeoff is that the
resulting boundary maps are not as well localized (at r = 1.075, this method
falls to ODS=0.52, OIS=0.53, AP=0.43, which is well below our full resolution
results in Figure 7). The speed up comes from 1) downsampling each image
by half and running our SS algorithm, 2) approximating PMIρ(A,B) using a
random forest prior to evaluation of W, and 3) using a fixed kernel bandwidth
rather than adapting it to each test image. Code for both fast and high resolution
variants of our algorithm will be available at http://web.mit.edu/phillipi/

crisp_boundaries.

6.3 Segmentation

Segmentation is a complementary problem to edge detection. In fact, our edge
detector automatically also gives us a segmentation map, since this is a byprod-
uct of producing an Ultrametric Contour Map [1]. This ability sets our approach,
along with gPb-owt-ucm, apart from many supervised edge detectors such as SE,

Crisp Boundary Detection Using Pointwise Mutual Information 13

Input image gPb SE Our method Human labelersInput image gPb SE Our method Human labelers

Fig. 8. Contour detection results for a few images in the BSDS500 test set, comparing
our method to gPb [1] and SE [8]. In general, we suppress texture edges better (such as
on the fish in the first row), and recover crisper contours (such as the leaves in upper-
right of the fifth row). Note that here we show each method without edge-thinning
(that is, we leave out non-maximal suppression in the case of SE, and we leave out
OWT-UCM in the case of gPb and our method).

14 Phillip Isola, Daniel Zoran, Dilip Krishnan, Edward H. Adelson

Input image
gPb−owt−ucm

edges
gPb−owt−ucm

segments
Our method

edges
Our method

segments
Input image gPb-owt-ucm

(edges)
Our method

(edges)
gPb-owt-ucm
(segments)

Our method
(segments)

Fig. 9. Example segmentations for a few images in the BSDS500 test set, comparing
the results of running OWT-UCM segmentation on our contours and those of gPb [1].

for which a segmentation map is not a direct byproduct. In Figure 9, we com-
pare results of segmentations with our contours to those of gPb contours. Notice
that in the coral image, our method recovers the precise shape of the bottom,
reddish coral, while gPb-owt-ucm misses some major features of the contour.
Similarly, in the bird image, our method captures the beak of the top bird,
whereas gPb-owt-ucm smooths it away.

7 Discussion

In this paper, we have presented an intuitive and principled method for contour
detection which achieves state-of-the-art results. We have shown that, contrary
to recent trends, it is possible to achieve excellent boundary detection results
using very local information and low-dimensional feature spaces. This is achieved
through the use of a novel statistical framework based on pointwise mutual
information.

In future work, we plan to extend the learning to videos or multiple images.
This could be used to build statistical model of specific objects. Such a model
would have direct applications in object detection and recognition.

Acknowledgements

We thank Joseph Lim, Zoya Bylinskii, and Bill Freeman for helpful discussions. This
work is supported by NSF award 1212849 Reconstructive Recognition, and by Shell
Research. P. Isola is supported by an NSF graduate research fellowship.

Crisp Boundary Detection Using Pointwise Mutual Information 15

References

1. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5) (May 2011)
898–916

2. Arbeláez, P., Hariharan, B., Gu, C., Gupta, S., Bourdev, L., Malik, J.: Semantic
segmentation using regions and parts. In: Computer Vision and Pattern Recogni-
tion (CVPR), 2012 IEEE Conference on, IEEE (2012) 3378–3385

3. Levin, A., Weiss, Y.: Learning to combine bottom-up and top-down segmentation.
In: Computer Vision–ECCV 2006. Springer (2006) 581–594

4. Shotton, J., Blake, A., Cipolla, R.: Contour-based learning for object detection.
In: Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on.
Volume 1., IEEE (2005) 503–510

5. Opelt, A., Pinz, A., Zisserman, A.: A boundary-fragment-model for object detec-
tion. In: Computer Vision–ECCV 2006. Springer (2006) 575–588

6. Barron, J., Malik, J.: Shape, illumination, and reflectance from shading. Technical
report, Berkeley Tech Report (2013)

7. Lim, J.J., Zitnick, C.L., Dollár, P.: Sketch tokens: A learned mid-level representa-
tion for contour and object detection. CVPR (2013) 3158–3165

8. Dollár, P., Zitnick, C.: Structured Forests for Fast Edge Detection. ICCV (2013)

9. Xiaofeng, R., Bo, L.: Discriminatively trained sparse code gradients for contour
detection. NIPS (2012) 593–601

10. Sobel, I., Feldman, G.: A 3x3 isotropic gradient operator for image processing
(1968)

11. Duda, R.O., Hart, P.E., et al.: Pattern classification and scene analysis. Volume 3.
Wiley New York (1973)

12. Roberts, L.G.: Machine Perception of Three-Dimensional Solids. PhD thesis,
Massachusetts Institute of Technology (1963)

13. Prewitt, J.M.: Object enhancement and extraction. Picture processing and Psy-
chopictorics 10(1) (1970) 15–19

14. Canny, J.: A computational approach to edge detection. Pattern Analysis and
Machine Intelligence, IEEE Transactions on (6) (1986) 679–698

15. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image bound-
aries using local brightness, color, and texture cues. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 26(5) (2004) 530–549

16. Dollár, P., Tu, Z., Belongie, S.: Supervised learning of edges and object bound-
aries. In: Computer Vision and Pattern Recognition, 2006 IEEE Computer Society
Conference on. Volume 2., IEEE (2006) 1964–1971

17. Ren, X., Bo, L.: Discriminatively trained sparse code gradients for contour detec-
tion. In: NIPS. (2012)

18. Sha’ashua, A., Ullman, S.: Structural saliency: The detection of globally salient
structures using a locally connected network. ICCV (1988)

19. Elder, J.H., Zucker, S.W.: Computing contour closure. In: ECCV’96. Springer
(1996) 399–412

20. Ren, X., Fowlkes, C.C., Malik, J.: Scale-invariant contour completion using condi-
tional random fields. In: Computer Vision, 2005. ICCV 2005. Tenth IEEE Inter-
national Conference on. Volume 2., IEEE (2005) 1214–1221

21. Shi, J., Malik, J.: Normalized cuts and image segmentation. Pattern Analysis and
Machine Intelligence, IEEE Transactions on 22(8) (2000) 888–905

16 Phillip Isola, Daniel Zoran, Dilip Krishnan, Edward H. Adelson

22. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image
segmentation. International journal of computer vision 43(1) (2001) 7–27

23. Zoran, D., Weiss, Y.: Natural images, gaussian mixtures and dead leaves. NIPS
(2012)

24. Fano, R.M.: Transmission of information: A statistical theory of communications.
American Journal of Physics 29 (1961) 793–794

25. Church, K.W., Hanks, P.: Word association norms, mutual information, and lexi-
cography. Computational linguistics 16(1) (1990) 22–29

26. Chambers, N., Jurafsky, D.: Unsupervised learning of narrative event chains. In:
ACL. (2008) 789–797

27. Bengio, S., Dean, J., Erhan, D., Ie, E., Le, Q., Rabinovich, A., Shlens, J., Singer,
Y.: Using web co-occurrence statistics for improving image categorization. arXiv
preprint arXiv:1312.5697 (2013)

28. Mobahi, H., Rao, S., Yang, A., Sastry, S., Ma, Y.: Segmentation of natural images
by texture and boundary compression. International Journal of Computer Vision
95 (2011) 86–98

29. Zontak, M., Irani, M.: Internal Statistics of a Single Natural Image. CVPR (2011)
30. Margolin, R., Tal, A., Zelnik-Manor, L.: What makes a patch distinct? In: Com-

puter Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, IEEE
(2013) 1139–1146

31. Parzen, E., et al.: On estimation of a probability density function and mode.
Annals of mathematical statistics 33(3) (1962) 1065–1076

32. Epanechnikov, V.A.: Non-parametric estimation of a multivariate probability den-
sity. Theory of Probability & Its Applications 14(1) (1969) 153–158

33. Ihler, A., Mandel, M.: http://www.ics.uci.edu/ ihler/code/kde.html
34. Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI 22(8) (2000)

888–905
35. Maire, M., Yu, S.X.: Progressive Multigrid Eigensolvers for Multiscale Spectral

Segmentation. ICCV (2013)
36. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space

analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on 24(5)
(2002) 603–619

37. Cour, T., Benezit, F., Shi, J.: Spectral segmentation with multiscale graph decom-
position. In: CVPR. (2005)

38. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
International Journal of Computer Vision 59(2) (2004) 167–181

39. Martin, D., Fowlkes, C., Tal, D.: A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological
statistics. ICCV (2001)

