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Recent studies of visual statistical learning (VSL) have demonstrated that statistical regularities in
sequences of visual stimuli can be automatically extracted, even without intent or awareness. Despite
much work on this topic, however, several fundamental questions remain about the nature of VSL. In
particular, previous experiments have not explored the underlying units over which VSL operates. In a
sequence of colored shapes, for example, does VSL operate over each feature dimension independently,
or over multidimensional objects in which color and shape are bound together? The studies reported here
demonstrate that VSL can be both object-based and feature-based, in systematic ways based on how
different feature dimensions covary. For example, when each shape covaried perfectly with a particular
color, VSL was object-based: Observers expressed robust VSL for colored-shape sub-sequences at test
but failed when the test items consisted of monochromatic shapes or color patches. When shape and color
pairs were partially decoupled during learning, however, VSL operated over features: Observers ex-
pressed robust VSL when the feature dimensions were tested separately. These results suggest that VSL
is object-based, but that sensitivity to feature correlations in multidimensional sequences (possibly
another form of VSL) may in turn help define what counts as an object.
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Visual perception is remarkable in at least two ways. First, it
serves to make us aware of a highly coherent and structured world,
despite noisy fragmented input. Second, it provides such experi-
ences without any hint of the underlying computational complexity
involved in their construction. In fact, recent work has demon-
strated that perception is supported by surprisingly subtle types of
visual associative learning. One type of learning—visual statistical
learning—may be particularly important in this context, since it
can occur automatically and without any intent or even awareness.

Visual Statistical Learning

The study of implicit learning has a long history in psychology
(see Stadler & Frensch, 1998), going back to early studies of
learning in natural languages (e.g., Harris, 1955), artificial gram-
mars (e.g., Reber, 1967), and manual sequences of responses (e.g.,
Nissen & Bullemer, 1987). In its modern incarnation, the study of
statistical learning began with the demonstration that young infants
are able to find “word” boundaries in acoustically unsegmented
syllable sequences by using only the differential transitional prob-

abilities between syllables (Saffran, Aslin, & Newport, 1996). The
precise relationship between such forms of statistical learning and
the implicit learning literature more generally is under active
consideration (Perruchet & Pacton, 2006).

The auditory statistical learning design was later adapted for use
with visual stimuli in studies with adult observers by Fiser and
Aslin (2002a; see also Olson & Chun, 2001). Observers viewed an
animation in which a single object moved horizontally across the
screen, continuously cycling back and forth behind a central oc-
cluder and changing its shape each time it passed behind the
occluder (see Figure 1a). Observers watched this animation for
only a few minutes, with no specific task. The sequence of shapes,
though apparently random, actually consisted of temporal “trip-
lets” in which the same three shapes always appeared in the same
order (e.g., A-B-C-G-H-I-D-E-F-A-B-C . . .). Critically, only this
statistical regularity demarcated the triplets, since the intershape
delay was always the same.

After this passive exposure, observers completed a surprise
two-interval-forced-choice familiarity task that pitted triplets (e.g.,
ABC) against foil sequences of three shapes with a joint proba-
bility of zero (e.g., AEI). Observers correctly identified the triplets
as more familiar than the foil sequences 95% of the time, indicat-
ing robust statistical learning of visual temporal sequences. While
the use of deterministic triplets and familiarity judgments may
support explicit recognition of the regularities in some cases,
visual statistical learning (VSL) can also occur during an orthog-
onal task (such as repetition detection), without any reported
awareness of the statistical structure (Turk-Browne, Jungé, &
Scholl, 2005), and can facilitate online performance (Hunt &
Aslin, 2001; Olson & Chun, 2001; Turk-Browne et al., 2005;
Turk-Browne & Scholl, 2006).

Other recent work with VSL has demonstrated that such learn-
ing operates over spatial as well as temporal regularities (e.g.,
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Baker, Olson, & Behrmann, 2004; Chun & Jiang, 1998; Fiser &
Aslin, 2001); at multiple spatial scales (Fiser & Aslin, 2005);
across multiple modalities (Conway & Christiansen, 2005) and
despite interleaved noise (Jungé, Turk-Browne, & Scholl, 2005;
Turk-Browne et al., 2005); and in young infants in addition to
adults (Fiser & Aslin, 2002b; Kirkham, Slemmer, & Johnson,
2002). Moreover, other recent studies of temporal VSL have begun
to elucidate some of the underlying processes that help make VSL
possible, involving selective attention (Turk-Browne et al., 2005),
association (Turk-Browne & Scholl, 2006), computations of per-
sisting object representations (Fiser, Scholl, & Aslin, 2007), and
anticipation (Turk-Browne, Johnson, Chun, & Scholl, 2007).

The Units of VSL: Features or Objects?

Despite this considerable body of work on VSL, several funda-
mental questions remain about its nature. In particular, previous
experiments have not determined the underlying units over which
VSL operates. In a sequence of colored shapes, for example, does
VSL operate over each feature dimension independently, or over
multidimensional objects in which color and shape are intrinsically
bound together? Our study modifies two aspects of previous de-
signs, which rendered them unable to answer this question. First,
most previous studies used either monochromatic shapes (so that
there was no statistical information about color; e.g., Fiser &
Aslin, 2002a) or sequences in which each shape had a single
unique color (so that the statistics of color were also perfectly
correlated with those of shape; e.g., Fiser & Aslin, 2002b;
Kirkham et al., 2002). Second, in all but one previous VSL
experiment, the surface features present during familiarization
were always present during test.1

Exploring the nature of the underlying units of VSL seems
important for several reasons: First, the existence of multiple
feature dimensions is an inescapable facet of real-world visual
experience, and thus these studies may help to reveal how VSL
operates in a more ecologically valid situation. Second, exploring
the necessity of certain features during familiarization and test may

have important implications for how readily learning in one situ-
ation will transfer to another (see also Turk-Browne & Scholl,
2006). Finally, and most generally, one of the most critical steps in
understanding any cognitive or perceptual process is to determine
the underlying currency over which that process operates. In the
following experiments, we explore how VSL operates over indi-
vidual features and bound objects.

General Method

Observers

Seventy-two naı̈ve subjects (16 in Experiments 1, 2, 3, and 4a;
8 in Experiment 4b), all with normal or corrected-to-normal acuity
and color vision, participated for course credit or monetary com-
pensation.

Apparatus and Stimuli

Stimuli were presented with custom software written with the
VisionShell graphics libraries (Comtois, 2004) on Apple desktop
computers. Observers sat approximately 46 cm from the monitor
without head restraint. Displays were constructed from a set of 12
nonsense shapes used previously in studies of VSL (Figure 1b;
e.g., Fiser & Aslin, 2001). Each shape appeared in one or more of
13 colors (including black; see Figure 1c), and subtended roughly
3.3°. Each sequence began with the object located in the center of

1 The one exception is the study of Turk-Browne et al. (2005), who
observed expression of learning at test for monochromatic shapes that had
been colored during familiarization. However, the color information during
familiarization in this study was used only to manipulate attention, and was
not diagnostic; in fact, each shape throughout the study appeared in one of
only two colors, and only one color was attended. In addition, one auditory
statistical learning study has employed stimuli that varied between famil-
iarization and test: Thiessen and Saffran (2003) changed the prosody of
spoken syllables after familiarization and still observed auditory temporal
statistical learning in 9-month-old infants.

Figure 1. Stimuli and trial sequence. (a) Depiction of the display used in the present experiments (and in Fiser
& Aslin, 2002a). A single object oscillates back and forth across the display, changing into a new object each
time it passes behind the stationary central occluder. (b) The 12 nonsense shapes used in our study, from Fiser
and Aslin (2001). (c) The 12 nonblack colors used in our study (depicted here with different patterns and gray
levels).
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the display, where it immediately began moving to either the left
or right at 11.48°/s. When the center of the object was 12.76° from
the display border, the object immediately reversed direction and
moved toward the same point on the opposite side of the screen.
The object then continued back toward the center of the display, at
which time the entire movement could be repeated. A stationary
gray occluder, subtending 9.51° � 5.68°, was always present in the
center of the display. The object was (at least partially) visible for
1 s between each moment of complete occlusion (see Figure 1a).

Procedure

Familiarization phase. Observers watched a 5-minute se-
quence of 288 colored shapes, presented as described above.
Although the sequence of colors varied across experiments, the
sequence of shapes was always identically structured. Each shape
was assigned to a unique position in one of four triplets—
sequences of three shapes that always appeared in the same order
(e.g., ABC, GHI, etc.). Each third of the full shape sequence was
generated by randomly interleaving 8 repetitions of each triplet
with two constraints (for a total of 24 repetitions/triplet): (a) no
triplet could be repeated sequentially (e.g., ABCABC), and (b) no
pair of triplets could be immediately repeated (e.g., ABCGHIAB-
CGHI). As a result, the joint probability of a triplet (e.g., ABC)
was 0.083, while the joint probability of a sequence of three shapes
spanning triplets (e.g., CGH) was 0.027.2

Test phase. After the familiarization phase, observers com-
pleted 32 two-interval forced-choice test trials, judging the relative
familiarity of (a) triplets versus (b) foil sequences of three familiar
shapes that had never appeared sequentially during familiariza-
tion.3 The triplet and foil sequences were presented on each trial in
the same disoccluding–occluding manner as during familiariza-
tion, separated by a 1-second pause, and were randomly chosen
with equal likelihood; the presentation order of the alternatives
was randomized. Observers pressed a key if the first sequence
seemed more familiar and a different key if the second sequence
seemed more familiar.4

Experiment 1: Testing Bound Objects

While most previous studies have employed monochromatic
shapes, this preliminary experiment verified that our method could
give rise to VSL even when each shape had its own unique color
during both familiarization and test, as a critical baseline for our
later experiments.

Method

Each shape was assigned a single unique nonblack color, in
which it always appeared throughout the experiment (Figure 2a).

Results and Discussion

In this and all future experiments, our measure of VSL was the
percentage of test trials in which the triplet was chosen over the
foil (where chance � 50%). Observers showed robust statistical
learning (80%; Figure 3a) that differed significantly from chance,
t(15) � 5.730, p � .001, d � 1.432. This effect serves as a baseline
for later experiments.

Experiment 2: Testing Separated Features

Did VSL in Experiment 1 operate over bound object represen-
tations? If so, then the presence of both features should be neces-
sary for learning to be expressed at test, such that testing either
monochromatic shapes or colored circles would break the binding
(i.e., the associations between dimensions) and should attenuate
the expression of VSL.

Method

The familiarization phase of this experiment was identical to
that of Experiment 1. The test phase consisted of two separate
blocks: a shape test and a color test (with order counterbalanced
across observers). The shape test was identical to the test in
Experiment 1, except that all shapes were presented in black (such
that only shape information was preserved; see Figure 2b). Con-
versely, the color test was identical to the test in Experiment 1,
except that all colors were presented as circles (such that only
color information was preserved; see Figure 2b).

Results and Discussion

As depicted in Figure 3b, observers expressed weak VSL in the
shape test (57%), t(15) � 2.159, p � .047, d � 0.540, and these
results were significantly weaker than those in Experiment 1, t(30) �
3.699, p � .001, d � 1.308. Observers expressed no significant VSL
in the color test (55%), t(15) � 1.412, p � .178, d � 0.353, and these
results were again significantly weaker than those in Experiment 1,
t(30) � 4.033, p � .001, d � 1.426. There was no difference between
the performance for shape and color (t � 1). Critically, the familiar-
ization phase in this experiment was identical to that in Experiment 1,
suggesting that the weaker results here reflect only the expression of
learning rather than the learning itself. These results suggest that
performance in Experiment 1 was not driven by learning of sequences
of features in either the shape or color dimension alone. Given that
both features were necessary for VSL to be expressed, learning must
have operated over bound shape–color pairs.

An alternative explanation could be that individual observers
only ever attended to either shape or color during learning. Thus,

2 For derivations of these probabilities, see Turk-Browne et al., 2005.
3 The foils (e.g., AEI) contained three shapes that were equally familiar

as the shapes in the triplets, but they had never been presented in succes-
sion during familiarization. Thus, the two test sequences in each trial could
be discriminated only based on statistical learning of the joint probabilities
between shapes during familiarization: Observers could respond accurately
only by noting relationships between individual shapes, in particular by
encoding their nonzero joint probabilities. Note that while this is perhaps
the most direct test of statistical learning, other studies have also tested for
the learning of even subtler statistics, such as relative joint probability and
conditional probability.

4 Following the test phase, observers were carefully debriefed to assess
their explicit awareness of the triplet structure from familiarization. Note
that such awareness would not necessarily indicate explicit or strategic
learning per se; observers may instead become aware of the structure after
implicit processes have run their course. Regardless, only 2 of 72 observers
reported becoming fully aware of the triplet structure during familiariza-
tion. The majority of subjects fell into one of two groups, either reporting
no awareness of any regular sequences or reporting that they noticed one
or more pairs of objects that consistently appeared together.
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performance in Experiment 1 would be high (given that both
dimensions were present at test), while average performance
across individuals would be low in the feature tests in Experiment
2 (since half of the time observers would have attended to a feature
dimension during learning that was not present at test). To explore
this possibility, we correlated each observer’s shape performance
in Experiment 2 with their color performance in Experiment 2,
expecting a negative correlation if observers had attended to only
one dimension. In contrast, we obtained a positive correlation (r �
.616, df � 14; p � .011), which is consistent only with learning of
multidimensional objects.

Experiment 3:
Binding Versus Quantity of Statistical Information

The attenuated performance in Experiment 2 relative to Exper-
iment 1 suggests that VSL is object-based, but it remains possible
that observers performed better in Experiment 1 because the trip-
lets presented during the test phase itself contained twice as much
statistical information (i.e., accumulating over both shape and
color dimensions potentially independently), and not because of
feature binding between particular shapes and colors. To rule out
this explanation, we equated the amount of statistical feature

Figure 2. The familiarization and test structure for both shape and color across experiments. See text for
details. Color is depicted here in terms of different patterns and gray levels.

Figure 3. The degree of VSL measured as the percentage of triplets chosen over foil sequences for the bound
objects of Experiment 1, the individual feature triplets of Experiment 2, the re-paired feature triplets of
Experiment 3, the monochromatic shape triplets of Experiment 4a (as a function of color covariance during
familiarization), and the color triplets of Experiment 4b. Error bars depict standard errors. Chance performance
is 50%.
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information at test in this experiment (such that each test triplet
contained both a shape and color triplet) but disrupted the feature
binding (such that shape triplets were assigned different color
triplets than during familiarization). If performance is still attenu-
ated relative to Experiment 1, we can conclude that VSL operated
over bound shape–color pairs and that such differences cannot be
explained in terms of the brute amount of statistical information
present in the input.

Method

The familiarization phase of this experiment was identical to
that of Experiment 1. The test phase, however, pitted “re-paired
triplets” against “re-paired foils.” Each re-paired triplet consisted
of the shape sequence from one familiarization triplet appearing in
the color sequence from a different familiarization triplet. In this
way, each shape was assigned to a different color at test than
during familiarization (see Figure 2c). These reassignments were
kept constant throughout the test and were also used to construct
the re-paired foils (which contained unstructured sequences of
shape and color). In other words, neither feature of the triplets
violated the training sequence, whereas both features of the foils
did so.

Results and Discussion

As depicted in Figure 3c, observers reliably preferred the re-
paired triplets over the re-paired foils (64%), t(15) � 3.168, p �
.006, d � 0.792. Critically, expression of learning was signifi-
cantly weaker when feature triplets were recombined at test in this
experiment versus when presented in the same manner as during
familiarization in Experiment 1, t(30) � 2.327, p � .027, d �
0.823. Thus, performance in Experiment 1 cannot solely be attrib-
uted to the fact that test triplets contained both shape and color
triplets, further supporting the notion that VSL operates over
bound shape–color pairs.

Performance was not significantly better in Experiment 3 than in
Experiment 2: shape test, t(30) � 1.253, p � .220, d � 0.443;
color test, t(30) � 1.652, p � .109, d � 0.584. While our
conclusions from this experiment are being driven by statistics
rather than by numerical differences, note that our primary con-
clusion would not be altered even if these differences had reached
significance. In other words, the purpose of this experiment was to
rule out alternative explanations of Experiment 1 based on the
presence of more feature information during test, or on increased
surface similarity between familiarization and test phases. Our
claim in this respect relies on a comparison only between Exper-
iments 1 and 3. Indeed, the comparison of Experiments 2 and 3
would speak to a different question about whether the amount of
feature information at test matters at all. This question seems
independent; for example, the number of feature dimensions
present at test may modulate performance, while presenting fea-
tures with the same binding as during familiarization may provide
an additional benefit.

Experiment 4a: Feature-Based Learning of Shapes

The first three experiments collectively demonstrate that VSL
operates over bound objects, but how general is this conclusion? In

the real world, color and shape do covary for some objects (e.g.,
bananas) but not others (e.g., t-shirts). Is VSL sensitive to this type
of distinction? The previous experiments employed multidimen-
sional objects during familiarization, implemented in a particular
way: Both color and shape varied during familiarization and did so
in a correlated fashion. However, would VSL still be object-based
even if the two feature dimensions did not perfectly covary?

Here, we explored this possibility by testing with monochro-
matic shapes (as in Experiment 2), but we manipulated the covari-
ance of shape and color during familiarization (Figure 2d): Shapes
in two of the triplets (matched-color triplets) were assigned unique
colors as in the previous experiments, but the shapes in the
remaining two triplets (random-color triplets) were assigned dif-
ferent randomly chosen colors on each presentation.

If VSL is always object-based, then the results of this experi-
ment should parallel those of Experiment 2: The shift to mono-
chromatic shapes should frustrate the expression of learning. How-
ever, if VSL is sensitive to the covariance between feature values
for individual objects (at the same time that the triplets themselves
are being learned), then we might observe object-based learning
for the matched-color triplets (i.e., attenuated performance due to
the removal of color at test) but feature-based learning for the
random-color triplets (i.e., strong performance despite the removal
of color at test). A third possibility is that this type of diagnosticity
is assessed for entire feature dimensions rather than individual
feature values: The presence of at least some shape–color covari-
ance (i.e., in the matched-color triplets) could yield object-based
learning for all triplets, or the presence of deviation from such
covariance (i.e., in the random-color triplets) could yield feature-
based learning for all triplets.

Method

The familiarization phase of this experiment was identical to
that of Experiment 2 except as noted here. The two matched-color
triplets were sub-sequences of three shapes that were each paired
with a unique color throughout the familiarization phase. The two
random-color triplets were sub-sequences of three shapes that were
paired with three colors drawn randomly on each presentation
(from the remaining six colors), with the constraint that no color
could appear twice in a row. In other words, shapes in the random
triplets could appear in one of six colors at different points during
familiarization. In this way, colors in random triplets were nondi-
agnostic of shape identity, while colors in the matched condition
were perfectly diagnostic of shape identity. At test, all shapes were
presented monochromatically.

Results and Discussion

As depicted in Figure 3d, observers expressed robust VSL
despite the removal of color at test for both the matched-color
triplets (74%), t(15) � 3.973, p � .001, d � 0.993; and the
random-color triplets (71%), t(15) � 3.091, p � .007, d � 0.773,
which did not differ (t � 1).

Three key implications follow from these results. First, the lack
of any difference between the matched-color and random-color
triplets indicates that the diagnosticities of individual color values
do not affect the likelihood that shape triplets can be recognized
without color. Second, performance for both the matched-color
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and random-color triplets was significantly greater than chance—
and not reliably different than in the colored-shape test of Exper-
iment 1: matched-color, t � 1; random-color, t(30) � 1.143, p �
.262, d � 0.404. This suggests that when the covariance between
shape and color feature dimensions is disrupted even partially,
VSL operates over shapes alone, in a feature-based manner. Third,
performance for the (always-color-matched) triplets in Experiment
2 was worse than for the matched-color triplets, t(30) � 2.403, p �
.023, d � 0.849; and marginally worse than for the random-color
triplets, t(30) � 1.800, p � .082, d � 0.636. This provides further
evidence that observers were sensitive to the diagnosticity between
shape and color dimensions as a whole, such that color information
was discarded—even for the matched triplets—when some colors
were nondiagnostic.

Experiment 4b: Feature-Based Learning of Colors

Would this switch to feature-based rather than object-based
processing in the face of reduced covariance between feature
dimensions also extend to other dimensions, or might it be peculiar
to shape processing? Here, we addressed this question by repeating
the familiarization phase of Experiment 4a, but now testing the two
color triplets without their matched shapes (Figure 2d).

Method

The familiarization phase of this experiment was identical to
that of Experiment 4a, with six of the colors (e.g., A, B, C, D,
E, F) uniquely paired with one of the shapes from two of the
shape triplets, and six of the colors (e.g., G, H, I, J, K, L)
randomly presented on each presentation of shapes from the
other two shape triplets. The test phase was similar to the color
test of Experiment 2, except that there were only two color
triplets from familiarization (e.g., ABC, DEF). However, a test
of only these two triplets would be underpowered since the two
triplets could only be tested against two foils (resulting in eight
trials: 2 triplets � 2 foils � 2 repetitions). We could not simply
use four foils as before because the triplets would then appear
twice as often as the foils during test (confounding the famil-
iarity measure): The likelihood of a particular triplet appearing
in a test trial would be 50%, while the likelihood of a particular
foil appearing would be 25%. To avoid this issue while increas-
ing the number of test trials, we also defined two pseudo-triplets
from the six random colors (e.g., HLG, IKJ). The items within
the pseudo-triplets were always presented in the same order,
similar to the real triplets. The triplets and pseudo-triplets were
then used to construct four foil sequences as in the other
experiments (e.g., AEL, DLJ, HKA, IBF). Each of the “triplets”
was tested against each of the foils twice, resulting in 16 trials
containing a real triplet and 16 trials containing a pseudo-
triplet. While data from the pseudo-triplet trials were meaning-
less (since observers had no basis for selecting which pattern
was more familiar, as confirmed by chance performance on
these trials, t � 1), their presence allowed us to equate the
frequency of the real triplets with the frequency of all foils
during the test phase. Data analysis was then restricted to the
test trials containing real triplets.

Results and Discussion

As depicted in Figure 3d, observers expressed robust VSL for
the two color triplets despite the removal of shape at test (72%),
t(7) � 2.892, p � .023, d � 1.023, thus providing further evidence
that VSL can operate in a feature-based manner if the covariance
between feature dimensions is disrupted. This conclusion is further
supported by the fact that performance was significantly greater
than in the color test of Experiment 2, t(22) � 2.362, p � .027, d �
0.943. Moreover, this experiment also provides what we believe is
the first demonstration of VSL for colors (or indeed for any feature
dimension beyond shape). This rules out the possibility that ob-
servers simply discarded color information completely in Experi-
ment 4a in order to learn shape sequences. Instead, low covariance
between feature dimensions allowed VSL to operate in parallel in
each of these dimensions.

General Discussion

The five experiments reported here constitute the first explora-
tion, to our knowledge, of whether VSL operates over bound
objects or lower level visual features. Our results suggest one
straightforward implication (that VSL can be object-based), and
one surprising possibility (that VSL can perhaps help to determine
what counts as an object in the first place). We elaborate on each
of these conclusions below.

The Units of VSL

It is perhaps worth noting that we began these studies with no
strong prediction about the results. On one hand, many researchers
have stressed that VSL can be an automatic low-level process,
which operates early in perceptual analysis to provide the initial
segmentation on which other later processes depend. As such, we
might predict that VSL would operate on those representations
which are most common very early in perceptual processing,
namely independent visual features. On the other hand, a wealth of
data has indicated that discrete bound objects are the currency of
many other types of visual processing, including attention (Scholl,
2001), tracking (Alvarez & Scholl, 2005), masking (Moore &
Lleras, 2005), and short-term memory (Alvarez & Cavanagh,
2004; Luck & Vogel, 1997; Xu & Chun, 2006)—among many
others. As such, we might predict that VSL would also be funda-
mentally object-based, operating over representations in which
features are already bound together. This possibility would also be
consistent with another recent study in which VSL was more
robust for sequences that were bound into the same persisting
object representation as a result of spatiotemporal continuity (Fiser
et al., 2007).

Here we operationalized the question of whether VSL is feature-
based by asking whether the expression of VSL would survive the
elision of some features at test, while the remaining features still
possessed the same statistical structure that they had during famil-
iarization. Our initial results demonstrated that VSL can be object-
based: When colors and shapes perfectly covaried (i.e., when each
shape had its own unique color) during familiarization, the expres-
sion of learning required the presence of both shapes and colors at
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test (as in Experiment 1). Of course, there were still robust statis-
tical correlations between the shapes themselves during familiar-
ization, but the expression of learning of these shape sequences
was considerably weaker when they were presented in isolation at
test (with no reliable expression of learning for colors presented in
isolation at test) in Experiment 2. Experiment 3 further demon-
strated that the difference in performance between these two
experiments was a function of feature binding per se, rather than
the mere presence of more feature correlations (due to the added
dimensions) present during the test phase of Experiment 1.

The fact that the observers in Experiment 2 largely failed to
recognize feature triplets at test is reminiscent of a result from the
category learning literature (e.g., Roberts & MacLeod, 1995)
showing that categorization cannot be expressed for constituent
elements of a rule—analogous to our individual features—when
learning is nonstrategic (like VSL, which has been considered a
form of incidental learning; see Turk-Browne et al., 2005). Our
results also parallel a feature of associative models of Pavlovian
conditioning and causal learning (see Williams & Braker, 1999), in
which experience with compound cues—analogous to our multi-
dimensional objects—results in associations involving those com-
pounds, but not their constituent elements (e.g., Pearce, 1987; see
also Shanks, Charles, Darby, & Azmi, 1998; Williams, Sagness, &
McPhee, 1994).

Could VSL Define Objects in the First Place?

The two final experiments (Experiments 4a and 4b) complicated
our initial “object-based” conclusion in a particularly interesting
way, suggesting that VSL may be object-based only when feature
binding is useful—that is, when the values across different dimen-
sions reliably covary. When only half of the shape triplets during
familiarization had randomly assigned colors, this effectively dis-
rupted the feature binding seen in the previous experiments (de-
spite the fact that other triplets had perfectly covarying shapes and
colors), yielding feature-based VSL—that is, a robust expression
of learning when each feature dimension was presented in isolation
at test. We could, however, instead characterize VSL as always
object-based but interpret our results as indicating that multiple
feature values are only combined into single object representations
when their covariance is high.

Intuitively, we recognize that some properties are intrinsic to an
object, while others are not. We typically think of color as intrin-
sic: For example, bananas are usually yellow. We do not typically
think of luminance as intrinsic to an object, however: A banana
may be brighter in the sun and darker in the shade. Why do we
treat these two properties differently? On reflection, it seems that
the critical difference between these cases is not some special
essence of the properties themselves but rather the fact that they
are differentially variable with respect to their occurrence in the
presence of an object: For example, bananas typically appear in
many different lighting situations, but they are usually yellow. We
suggest that covariance between surface features in the visual
environment serves as an important cue about which object prop-
erties are diagnostic (and nondiagnostic). (This point has been
made before in the memory literature; see Chalfonte & Johnson,
1996.)

This view can readily accommodate our results. When color and
shape are highly correlated (i.e., when all bananas are yellow),
then the colors become inextricably bound into the representations
that result from VSL, such that removing the colors later on
disrupts the expression of VSL (as in Experiment 2a). This dis-
ruption may be analogous to ways in which we are slower to
recognize purple “bananas” or achromatic fire engines (Naor-Raz,
Tarr, & Kersten, 2003; Tanaka & Presnell, 1999). This object-
based model could also be applied to the results of Experiments 4a
and 4b, where the lack of correlations between features during
familiarization may have resulted in separate “object” representa-
tions for shapes and colors. In this framework, VSL is always
object-based and operates over the largest available set of highly
correlated features. This interpretation can be contrasted with the
notion discussed in the previous section that VSL becomes feature-
based under conditions of reduced feature correlations. Irrespec-
tive of the interpretation, however, the sensitivity to correlations
between features within objects demonstrated in our experiments
may constitute another type of VSL.

Interestingly, the monochromatic shape sequences in Experi-
ment 4a were recognized equally well no matter whether they had
been familiarized with perfectly correlated colors or with random
colors. Moreover, the only difference between the perfectly cor-
related shape– color pairs in Experiments 4a and 4b (from
matched-color triplets) versus Experiment 2 is that they occurred
in the context of other shapes paired with random colors. This
demonstrates that observers were sensitive to the correlations
between feature dimensions (or possibly the average correlation
over all shapes), rather than maintaining separate statistical repre-
sentations of correlations for individual objects. This effect may be
atypical in the broader context of real-world objects, though,
where color diagnosticity differs from object to object (e.g., con-
sider a fire engine vs. a lamp; Tanaka & Presnell, 1999) and may
be moderated by the degree to which feature dimensions are
processed in a separable or integral manner (e.g., Nosofsky &
Palmeri, 1996; see also Garner, 1974). Also, children seem to be
reluctant at some ages to categorize objects by color (despite intact
color perception), but they will do so robustly for some items that
have reliable colors, such as foods (Macario, 1991).

Sensitivity to feature correlations may in fact hold more gener-
ally, explaining why other types of statistical regularities are or are
not learned. A study of spatial VSL, for example, demonstrated
that small spatial groups of larger spatial arrays were learned only
when the smaller groups could vary in their spatial relationships to
each other (Fiser & Aslin, 2005). When the small “parts” were
always arranged into the same global patterns, in contrast, observ-
ers were not later sensitive to the intra-part statistical structures
when they were tested by themselves. In other words, testing the
local parts later in isolation (from the other local parts with which
they had been previously associated) was equivalent to testing the
shapes in our experiments in isolation from the colors with which
they had been previously associated. Thus, statistical structure
may serve to define objects in terms of both spatial scale (as
argued by Fiser & Aslin, 2005) and surface features (as sug-
gested here). Fiser and Aslin (2005) argued that their results
reflect a constraint on “embeddedness” in hierarchical struc-
tures, which essentially serve to bind objects into global scenes.
Our results, in a complementary fashion, indicate that statistical
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covariance can also serve to determine which surface features
are bound into objects themselves.5

In fact, the idea that associative variability may serve to define
the underlying units of processing has a long history, going back
to William James: “What is associated now with one thing and
now with another, tends to become dissociated from either, and
grow into an object of abstract contemplation by the mind” (James,
1890, p. 506). This concept has also been important in the long-
term memory literature. According to the encoding variability
hypothesis (Martin, 1968), for example, the more often a stimulus
is encountered within a particular context, the more deeply en-
trenched task-relevant attributes of the stimulus become. Relative
to an item that has been encountered an equal number of times in
multiple contexts, memory for the fixed-context item will be
impaired in a novel context (both because it is associated with
fewer retrieval cues and because the associations to these retrieval
cues are stronger). In Experiment 2, triplets of black (novel color
context) shapes may have been unrecognizable because of the
fixed color context in which they were encountered during famil-
iarization. Conversely, in Experiment 4a where some shapes were
encountered in multiple color contexts, recognition of black shape
triplets was spared. Where this account differs from the sensitivity
to covariance demonstrated here is in terms of automaticity: Con-
ventional demonstrations of encoding variability have defined
context as the task in which subjects were engaged (e.g., catego-
rization vs. recognition; Wagner, Maril, & Schacter, 2000), while
context in the current study was based on surface features them-
selves.

Conclusions

We began this project in an attempt to determine the impact of
features vs. objects on VSL, and in the process we discovered that
in some cases VSL can be object-based. In the end, however, our
results and their connections to other studies suggest that statistical
learning may also serve to construct objects out of some features
but not others. In this sense, statistical learning may reflect not a
unitary process but rather a hierarchy of interacting processes,
some of which help to determine the input to others. Thus, whereas
VSL has often been studied in an isolated way, it may actually be
an integral component of many other more familiar types of visual
processing.

5 In both the present experiments and the studies of Fiser and Aslin
(2005), smaller features (shapes or parts) may be learned despite the
presence of other statistical structure (in colors or more global hierarchies)
when there is high variability. However, we have previously shown that
statistical regularities in shape sequences are learned when there is espe-
cially low color variability (such that many different shapes can appear in
the same color; Turk-Browne et al., 2005). Onnis and Christiansen and
their colleagues demonstrated a similar effect in a very different context:
Nonadjacent dependencies between syllables can be learned when the
intervening syllable(s) have extremely high or low variance, but not mid-
dling variance (Onnis, Christiansen, Chater, & Gómez, 2003; Onnis, Mon-
aghan, Christiansen, & Chater, 2004).
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