

Modular Pebble Bed Reactor High Temperature Gas Reactor

Andrew C Kadak Massachusetts Institute of Technology

American Nuclear Society Winter Meeting - Washington, D.C November 2002

New Life for Nuclear **Inside the Reactor**

WURLD'S LARGEST SUIENCE & LECHNOLOGY MADATIN

That Won't Melt Down

Plus New Tech for Deep Sea Oil Drilling **5PY SATELLITE** SEES THROUGH CAMOUFLAGE

HUNT FOR THE TOP **DIGITAL CAMERA**

> Mystery Skin Cells BEST HOPE FOR **BURN VICTIMS**

> > ------

CIme

AVR: Jülich 15 MWe Research Reactor

THTR: Hamm-Uentrop 300 Mwe Demonstration Reactor

HTR- 10 China First Criticality Dec.1, 2000

What is a Pebble Bed Reactor ?

- 360,000 pebbles in core
- about 3,000 pebbles handled by FHS each day
- about 350 discarded daily
- one pebble discharged every 30 seconds
- average pebble cycles through core 10 times
- Fuel handling most maintenance-intensive part of plant

Modular High Temperature Pebble Bed Reactor

- 110 MWe
- Helium Cooled
- 8 % Enriched Fuel
- Built in 2 Years
- Factory Built
- Site Assembled
- On--line Refueling

- Modules added to meet demand.
- No Reprocessing
- High Burnup
 >90,000 Mwd/MT
- Direct Disposal of HLW
- Process Heat Applications -Hydrogen, water

For 1150 MW Combined Heat and Power Station

VHTR Characteristics
Temperatures > 900 C
Indirect Cycle
Core Options Available
Waste Minimization

Oil Refinery

Hydrogen Production

FUEL ELEMENT DESIGN FOR PBMR

Reactor Unit

Fuel Handling & Storage System

Equipment Layout

Modular Pebble Bed Reactor

Thermal Power	250 MW
Core Height	10.0 m
Core Diameter	3.5 m
Fuel	UO ₂
Number of Fuel Pebbles	360,000
Microspheres/Fuel Pebble	11,000
Fuel Pebble Diameter	60 mm
Microsphere Diameter	~ 1mm
Coolant	Helium

Fuel Handling System

Tanks

Power Cycle - Brayton

Pebble Bed Reactor Designs

- PBMR (ESKOM) South African
 - Direct Cycle
 - Two Large Vessels plus two smaller ones
- MIT/INEEL Design
 - Indirect Cycle Intermediate He/He HX
 - Modular Components site assembly

PBMR Layout

MIT's Pebble Bed Project

- Similar in Concept to ESKOM
- Developed
 Independently
- Indirect Gas Cycle
- Costs 3.3 c/kwhr
- High Automation
- License by Test

MIT Design for Pebble Bed

Conceptual Design Layout

Project Overview

- Fuel Performance
- Fission Product Barrier (silver migration)
- Core Physics
- Safety
 - Loss of Coolant Air Ingress
- Balance of Plant Design
- Modularity Design
- Intermediate Heat Exchanger Design

- Core Power Distribution Monitoring
- Pebble Flow Experiments
- Non-Proliferation
- Safeguards
- Waste Disposal
- Reactor Research/ Demonstration Facility
- License by Test
- Expert I&C System -Hands free operation

MIT MPBR Specifications

Thermal Power	250 MW - 115 Mwe
Target Thermal Efficiency	45 %
Core Height	10.0 m
Core Diameter	3.5 m
Pressure Vessel Height	16 m
Pressure Vessel Radius	5.6 m
Number of Fuel Pebbles	360,000
Microspheres/Fuel Pebble	11,000
Fuel	UO ₂
Fuel Pebble Diameter	60 mm
Fuel Pebble enrichment	8%
Uranium Mass/Fuel Pebble	7 g
Coolant	Helium
Helium mass flow rate	120 kg/s (100% power)
Helium entry/exit temperatures	450°C/850°C
Helium pressure	80 bar
Mean Power Density	3.54 MW/m ³
Number of Control Rods	6

MIT Indirect Cycle

Conceptual Design Layout

PBMR - MIT/INEEL Projects

PBMR

- Commercial
- Direct Cycle
- German Technology
- Not Modular
- German Fuel
- NRC site specific application (exemptions)
- Repair Components

MIT/INEEL

- Private/Government
- Indirect Cycle
- US advanced Technology
- Truly modular
- US fuel design (U/Th/Pu)
- NRC Certification using License by Test
- Replace Components

Features of Current Design

Thermal Power	250 MW
Gross Electrical Power	132.5 MW
Net Electrical Power	120.3 MW
Plant Net Efficiency	48.1% (Not take into account cooling IHX and HPT. if considering, it is believed > 45%)
Helium Mass flowrate	126.7 kg/s
Core Outlet/Inlet T	900°C/520°C
Cycle pressure ratio	2.96
Power conversion unit	Three-shaft Arrangement

Current Design Schematic

Mechanical Design Constraints

- Size/Modularity
 - Manufacturing off site
 - Transportation to construction site
 - Maintenance during operation
- ASME Boiler & Pressure Vessel Codes
 - Section III for Nuclear Components
 - Section VIII for Balance of Plant

IHX Outer Configuration

IHX Outer Pictorial

IHX Internal Pictorial

MPBR Modularity

Marc V Berte Prof. Andrew Kadak

MIT Nuclear Engineering Department

Modularity Progression

Conventional Nuclear Power Systems

- Assembled on site
- Component-level transportation
- Extensive Site Preparation
- Advanced Systems
 - Mass Produced / "Off the Shelf" Designs
 - Construction / Assembly Still Primarily on Site
- MPBR
 - Mass Produced Components
 - Remote Assembly / Simple Transportation & Construction

MPBR Modularity Plan

- Road- Truck / Standard-Rail Transportable
 - 8 x 10 x 60 ft. 100,000 kg Limits
- Bolt-together Assembly
 - Minimum labor / time on site required
 - Minimum assembly tools
 - Goal: Zero Welding
- Minimum Site Preparation
 - BOP Facilities designed as "Plug-and-Play" Modules
 - Single Level Foundation
 - System Enclosure integrated into modules
- ASME Code compliant
 - Thermal expansion limitations
 - Code material limitations

Design Elements

- Assembly
 - Self-locating Space-frame Contained Modules and Piping.
 - Bolt-together Flanges Join Module to Module
 - Space-frame Bears Facility Loads, No Additional Structure
- Transportation / Delivery
 - Road-mobile Transportation Option
 - Reduces Site Requirements (Rail Spur Not Required)
 - Module Placement on Site Requires Simple Equipment
- Footprint
 - Two Layer Module Layout Minimizes Plant Footprint
 - High Maintenance Modules Placed on Upper Layer

PLANT MODULE SHIPPING BREAKDOWN

Total Modules Needed For Plant Assembly (21): Nine 8x30 Modules, Five 8x40 Modules, Seven 8x20 Modules

Space Frame Technology for Shipment and Assembly

Current MIT/INEEL Design Layout

For 1150 MW Electric Power Station

AP1000 Footprint Vs. MPBR-1GW

~200 ft.

Fuel

The Key Safety System

- Develop Fuel Performance Model
- Identify Barriers to Diffusion of Silver
- Understand impact of Palladium on SiC
- Develop an optimized design for reliability
- Work with manufacturer to optimize
- Make fuel and test

Coated TRISO Fuel Particles

IPyC/SiC/OPyC: structural layers as pressure vessel and fission product barrier **Buffer PyC:** accommodate fission gases and fuel swelling

From Kazuhiro Sawa, et al., J. of Nucl. Sci. & Tech., <u>36</u>, No. 9, pp. 782. September 1999

Fuel Performance Model

- Detailed modeling of fuel kernel
- Microsphere
- Monte Carlo Sampling of Properties
- Use of Real Reactor Power Histories
- Fracture Mechanics Based
- Considers Creep, stress, strains, fission product gases, irradiation and temperature dependent properties.

Mechanical Analysis

- System: IPyC/SiC/OPyC
- Methods: Analytical or Finite Element
- Viscoelastic Model
- Mechanical behavior
- irradiation-induced
 dimensional changes (PyC)
- irradiation-induced creep (PyC)
- pressurization from fission gases
- thermal expansion

Stress contributors to IPyC/SiC/OPyC

Integrated Fuel Performance Model

Stress Contributors

Barrier Integrity

- Silver Diffusion observed in tests @ temps
- Experiments Proceeding with Clear Objective - Understand phenomenon
- Palladium Attack Experiments Underway
- Zirconium Carbide being tested as a reference against SiC.
- Focus on Grain SiC Structure Effect
- Will update model with this information

Silver Diffusion Couples <u>Spherical Shells</u>

- Graphite substrate 760 µm chemical conditioning ~15% porosity
- Fission product inside powder
- SiC or ZrC coating
 ~50 µm thick
 silver can ONLY diffuse
 through graphite and barrier

3/4 inch OD 30 mil thick wall

Silver Migration -- Ag20 Backscatter Electron Image

SiC (light gray)

Silver (bright white)

Graphite (dark gray)

SiC Microstructure -- Ag29 Optical Microscopy (1000x)

Calculated Diffusion Coefficients

Pd-SiC Interaction

Sample PdS01, Backscatter Electron Image

Core Physics

- Basic tool Very Special Old Programs (VSOP)
- Developing MNCP Modeling Process
- Tested Against HTR-10 Benchmark
- Tested Against ASTRA Tests with South African Fuel and Annular Core
- VSOP Verification and Validation Effort Beginning
- Working on International Benchmark

MCNP4B Modeling of Pebble Bed Reactors Steps in Method Development

PROTEUS critical experiments @ PSI	simple coresstochastic packing
HTR-10 physics benchmark	 predict criticality <i>cf.</i> measurement
ASTRA critical experiments @ KI	mockup of PBMRannular core

Modeling Considerations Packing of Spheres

- Spheres dropped into a cylinder pack randomly
- Packing fraction ~ 0.61
- Repeated-geometry feature in MCNP4B requires use of a regular lattice
- SC, BCC, FCC or HCP?
- BCC/BCT works well for loose sphere packing

Random Close Packed

Body Centered Cubic

HTR-PROTEUS (PSI)

Zero-power critical facility:

- Graphite reflector
- Core: $R_c \approx 60$ cm, H ≈ 150 cm
- Fuel/mod sphere: $R_s = 3 \text{ cm}$
- TRISO fuel with 5.966 g U/FS
- 16.76% U235; F/M = 1

Table 1		
HTR-PROTEUS	Criticality Analysis	

Core	Critical	Packing Effective Multiplication Constant		Constant	
	Height (cm)	Fraction	Experiment	MCNP4B [†]	MCNP-BALL [6]
4.1	158	0.600	1.0134 ± 0.0011	1.0208±0.0011	1.0206 ± 0.0011
4.2	152	0.615	1.0129 ± 0.0008	1.0172±0.0010	1.0168±0.0011
4.3	150	0.618	1.0132 ± 0.0007	1.0176 ± 0.0011	1.0172±0.0011

[†] Using ENDF/B-VI cross-section data evaluated at 300 K; 0.5 million neutron histories.

^[6] JAERI calculation using version of MCNP with a stochastic geometry feature.

HTR-10 (Beijing)

10 MW Pebble Bed Reactor:

- Graphite reflector
- Core: $R_c = 90 \text{ cm}, \text{ H} \le 197 \text{ cm}$
- TRISO fuel with 5 g U/Fuel Sphere
- 17% U235
- F/M sphere ratio = 57:43, modeled by reducing moderator sphere size
- Initial criticality December 2000

MCNP4B Results

K-eff	1.00081±0.00086
Critical Height	128.5 cm
Calculated Loading	16,830
Actual Loading	16,890

Reactor

TRISO fuel particle

Fuel sphere

Core

Core lattice

MCNP/VSOP Model of PBMR

Detailed MCNP4B model of ESKOM Pebble Bed Modular Reactor:

- reflector and pressure vessel
- 18 control rods (HTR-10)
- 17 shutdown sites (KLAK)
- 36 helium coolant channels

Core idealization based on VSOP model for equilibrium fuel cycle:

- 57 fuel burnup zones
- homogenized compositions

IAEA Physics Benchmark Problem MCNP4B Results

B1	h = 128.5 cm	critical height (300 K)
B20	$k = 1.12780 \pm 0.00079$	300 K UTX [†]
B21 B22 B23	k = 1.12801 k = 1.12441 k = 1.12000	293 KUTX, no expansion393 K(curve fit of k-eff @523 K300 K, 450 K, 558 K)
B3	k = 0.95787 ± 0.00089 Δρ ≈ 157.3 mk (Δρ ≈ 152.4 mk	300 K UTX total control rod worth INET VSOP prediction)

[†] Temperature dependent cross-section evaluation based on ENDF-B/VI nuclear data by U of Texas at Austin.

ASTRA Conclusions

- Criticality Predictions fairly close (keff = .99977)
- Rod Worth Predictions off 10%
- Analysis Raises Issues of Coupling of Core

Safety Issues

- Fuel Performance Key to safety case
- Air Ingress
- Water Ingress
- Loss of Coolant Accident
- Seismic reactivity insertion
- Reactor Cavity Heat Removal
- Redundant Shutdown System
- Silver and Cesium diffusion

Safety Advantages

- Low Power Density
- Naturally Safe
- No melt down
- No significant radiation release in accident
- Demonstrate with actual test of reactor

Safety

- LOCA Analysis Complete No Meltdown
- Air Ingress now Beginning focusing on fundamentals of phenomenon
- Objectives
 - Conservative analysis show no "flame"
 - Address Chimney effect
 - Address Safety of Fuel < 1600 C
 - Use Fluent for detailed modeling of RV

Massachusetts Institute of Technology Department of Nuclear Engineering

Advanced Reactor Technology Pebble Bed Project

MPBR-5

Temperature Profile

The Prediction of the Air Velocity (By Dr. H. C. No)

Air Ingress

- Most severe accidents

 among PBMR's
 conceivable accidents
 with a low
 occurrence
 frequency.
- Challenges: Complex geometry, Natural Convection, Diffusion, Chemical Reactions

The Characteristics the Accident

Important parameters governing these reactions

- **Graphite temperature**
- **Partial pressures of the oxygen**
- **Uvelocity of the gases**
- Three Stages:
 - **Depressurization (10 to 200 hours)**
 - **Molecular diffusion.**
 - **Natural circulation**

Overall Strategy

- Theoretical Study (Aided by HEATING-7 and MathCad)
- Verification of Japan's Experiments (CFD)
- Verification of Germany's NACOK experiments(CFD)
- Model the real MPBR(CFD)
 Level 1: In-Vessel model
 Level 2: In-Cavity model
 - Level 3: In-Containment model

Graphite Combustion

- Robust, self-sustaining oxidation in the gas phase involving vaporized material mixing with oxygen
- Usually produces a visible flame.
- True burning of graphite should not be expected below 3500 °C. (From ORNL experiments)

Critical Parameters for Air Ingress

- Temperature of reacting components
- The concentration of oxygen
- Gas flow rates
- Pressure (partial pressure and total pressure in the system)

The Assumptions for theoretical Study

- The gas temperature is assumed to follow the temperature of the solid structures.
- The reaction rate is proportional to the partial pressure of the oxygen
- There is enough fresh air supply.
- The inlet air temperature is 20 °C.

The Procedures for Theoretical Study

Key Functions

• $P_{buoyancy} = (\rho_{atm} - \rho_{outlet})^* g^* H$ • $P_{resistance} = \psi(H/d)^* [(1-\varepsilon)/\varepsilon^3] \rho u^2/2$

 $\Box \psi = 320 / [Re/(1-\epsilon)] + 6 / [(Re/(1-\epsilon))^{0.1}]$

 $\Box Re=du\rho/\eta$

• $Q_{transfer} = hc*360000*(d/2)^{2*}(T_{graphite}-T_{gas})$ $\Box hc = 0.664(k/d)(Re/\epsilon)^{1/2}Pr^{1/3}$

Initial Temperature Distribution

Air Ingress Velocity f(temperature)

Preliminary Conclusions Air Ingress

For an open cylinder of pebbles:

- Due to the very high resistance through the pebble bed, the inlet air velocity will not exceed 0.08 m/s.
- The negative feedback: the Air inlet velocity is not always increase when the core is heated up. It reaches its peak value at 300 °C.
- Preliminary combined chemical and chimney effect analysis completed peak temperatures about 1670 C.

The Chemical Reaction

 The Chemical Reaction Rate:(From Dave Petti's Paper)

> Rate= K_1 *exp(- E_1/T)(PO₂/20900) When T<1273K: K_1 =0.2475, E_1 =5710; When 1273K<T<2073K, K_1 =0.0156, E_1 =2260

- The production ratio of CO to CO2(R): R=7943exp(-9417.8/T)
- For C + zO2 = xCO + y CO2 z=0.5(R+2)/(R+1), x=R/(R+1), y=1/(R+1)

Simplified HEATING7 Open Cylinder Analysis Peak Temperature

PBR_SIM Results with Chemical Reaction

- Considering only exothermic C + O₂ reactions
- Without chemical reaction peak temperature 1560 C @ 80 hrs
- With chemical reaction peak temperature 1617 C @ 92 hrs
- Most of the chemical reaction occurs in the lower reflector
- As temperatures increase chemical reactions change:
 - $-C+O_2 > CO_2$ to
 - $-2C + O_2 > 2C0$ to
 - $-2CO + 0_2 > 2CO_2$
- As a function of height, chemical reactions change
- Surface diffusion of O is important in chemical reactions

Verify the Chemical Model (FLUENT 6.0)

Verify the Chemical Model

Model for Database Generation

Testing Model Using Simplified Geometry

May 07, 2002 FLUENT 6.0 (3d, segregated, spe4, lam)

Grid

Testing Model Using Simplified Geometry (cont.)

Contours of Mole fraction of o2

May 07, 2002 FLUENT 6.0 (3d, segregated, spe4, lam)

Testing Model Using Simplified Geometry (cont.)

Contours of Mass fraction of co2

May 07, 2002 FLUENT 6.0 (3d, segregated, spe4, lam)

The Detailed Model in Progress

Detailed Bottom Reflector

Typical Treatment

- Assume that after blowdown (Large break) that the reactor cavity is closed limiting the amount of air available for ingress.
- Assume that all the air is reacted mostly in the lower reflector then chemical reaction stops consuming only several hundred kilograms of graphite.
- Need to cool down plant fix break stop air ingress path.

Summary

- Air Ingress is a potentially serious event for high temperature graphite reflected and moderated reactors (prismatic and pebble).
- Realistic analyses are necessary to understand actual behavior
- Based on realistic analyses, mitigation strategies are required.
- Good news is that long time frames are involved at allow for corrective actions (70 to 200 hours).
- MIT working on detailed analysis of the event with baseline modeling and testing with German Julich NACOK upcoming tests on air ingress.

Competitive With Gas ?

- Natural Gas
- AP 600
- ALWR
- MPBR

3.4 Cents/kwhr3.6 Cents/kwhr3.8 Cents/kwhr3.3 Cents/kwhr

Relative Cost Comparison (assumes no increase in natural gas prices) based on 1992 study

ESKOM's estimate is 1.6 to 1.8 cents/kwhr (bus bar)

MPBR PLANT CAPITAL COST ESTIMATE (MILLIONS OF JAN. 1992 DOLLAR WITH CONTINGENCY)

Account No.	Account Description	Cost Estimate		
20 21 22 23 24 25 26	LAND & LAND RIGHTS STRUCTURES & IMPROVEMENTS REACTOR PLANT EQUIPMENT TURBINE PLANT EQUIPMENT ELECTRIC PLANT EQUIPMENT MISCELLANEOUS PLANT EQUIPMENT HEAT REJECT. SYSTEM	2.5 192 628 316 64 48 25		
	TOTAL DIRECT COSTS	1,275		
91 92 93 94	CONSTRUCTION SERVICE HOME OFFICE ENGR. & SERVICE FIELD OFFICE SUPV. & SERVICE OWNER'S COST TOTAL INDIRECT COST	111 63 54 147 375		
TOTAL BASE CONTINGEN	1,650 396			
TOTAL OVERNIGHT COST UNIT CAPITAL COST (\$/KWe) AFUDC (M\$)				
TOTAL CAPITAL COST				
FIXED CHARGE RATE LEVELIZED CAPITAL COST (M\$/YEAR)				

MPBR BUSBAR GENERATION COSTS ('92\$)

Reactor Thermal Power (MWt)	10 x 250			
Net Efficiency (%)	45.3%			
Net Electrical Rating (MWe)	1100			
Capacity Factor (%)	90			
Total Overnight Cost (M\$)	2,046			
Levelized Capital Cost (\$/kWe)	1,860			
Total Capital Cost (M\$)	2,296			
Fixed Charge Rate (%)	9.47			
30 year level cost (M\$/YR):				
Levelized Capital Cost	217			
Annual O&M Cost	31.5			
Level Fuel Cycle Cost	32.7			
Level Decommissioning Cost	5.4			
Revenue Requirement	286.6			
Busbar Cost (mill/kWh):				
Capital	25.0			
O&M	3.6			
FUEL	3.8			
DECOMM	0.6			

TOTAL

33.0 mills/kwhr

O&M Cost

- Simpler design and more compact
- Least number of systems and components
- Small staff size: 150 personnel
- \$31.5 million per year
- Maintenance strategy Replace not Repair
- Utilize Process Heat Applications for Offpeak - Hydrogen/Water

INCOME DURING CONSTRUCTION?

Graph for Income During Construction

Generating Cost PBMR vs. AP600, AP1000, CCGT and Coal

(Comparison at 11% IRR for Nuclear Options, 9% for Coal and CCGT¹)

(All in ¢/kWh)	<u>AP600</u>	<u>AP10</u> <u>3000Th</u>	<u>00 @</u> <u>3400Th</u>	PBMR	<u>Coa</u> ' <u>Clean'</u>	<u>al²</u> <u>'Normal'</u>	<u>CCGT @</u> <u>\$3.00</u>	<u>Nat. 0</u> \$3.50	Sas = ³ <u>\$4.00</u>
Fuel	0.5	0.5	0.5	0.48	0.6	0.6	2.1	2.45	2.8
O&M	0.8	0.52	0.46	0.23	0.8	0.6	0.25	0.25	0.25
Decommissioning	0.1	0.1	0.1	0.08	-	-	-	-	-
Fuel Cycle	<u>0.1</u>	<u>0.1</u>	<u>0.1</u>	<u>0.1</u>	-	<u> </u>			<u> </u>
Total Op Costs	1.5	1.22	1.16	0.89	1.4	1.2	2.35	2.70	3.05
Capital Recovery	<u>3.4</u>	<u>2.5</u>	<u>2.1</u>	<u>2.2</u>	<u>2.0</u>	<u>1.5</u>	<u>1.0</u>	<u>1.0</u>	<u>1.0</u>
Total	4.9	3.72	3.26	3.09	3.4	2.7	3.35	3.70	4.05

¹ All options exclude property taxes

² Preliminary best case coal options: "mine mouth" location with \$20/ton coal, 90% capacity factor & 10,000 BTU/kWh heat rate

³ Natural gas price in \$/million Btu

Nuclear Nonproliferation

Spent Fuel Pebble-bed reactors are highly proliferation resistant: Pu238 small amount of uranium (9 g/ball) Pu239 high discharge burnup (80 MWd/kg) Pu240 TRISO fuel is difficult to reprocess Pu241 small amount of excess reactivity limits Pu242 number of special production balls First Pass Diversion of 6 kg Pu239 requires: Pu238 157,000 spent fuel balls - 1.2 yrs Pu239 • 258,000 first-pass fuel balls - 2+ Pu240 ~20,000 'special' balls - 1.5 + Pu241

MIT Nuclear Engineering Department 30

Pu242

1.9%

36.8

27.5

18.1

15.7

~0%

82.8

15.2

1.9

0.1

Extrinsic Safeguards Protection System for Pebble Bed Reactors

Proposed Concept

Extrinsic Safeguards System for Pebble Bed Reactors

Overhead of Fuel Storage Area (Not to scale) All areas under video surveillance

Damaged Fuel Storage Tank Vol. = 0.1 m³

Typical Waste Storage Room

Waste Disposal Conclusions

- Per kilowatt hour generated, the space taken in a repository is less than spent fuel from light water reactors.
- Number of shipments to waste disposal site 10 times higher using standard containers.
- Graphite spent fuel waste form ideal for direct disposal without costly overpack to prevent dissolution or corrosion.
- Silicon Carbide may be an reffective retardant to migration of fission products and actinides.

Pebble Flow

- Issue is the central graphite column and its integrity
- Don't want fuel pebble in graphite or graphite pebble in fuel
- How to assess flow to assure high power peaks do not occur that could lead to fuel failure

Conducted Experiment to determine flow

Radial Fuel Distribution

 A central core of pure graphite reflector pebbles is surrounded by an annulus of a 50/50 fuel-andreflector mix, and a larger annulus of pure fuel pebbles.

Flow Diffusion

- Several mathematical models for granular flow exist, with different amounts of diffusion and different velocity profiles.
- The neutron physics of the core relies on the assumption of laminar flow and low diffusion levels during flow down.

Molecular Dynamic Simulation of Pebble Flow in Reactor

PBMR Analysis

Dropping Diffusion

• The radial spread of pebbles dropped into the core is also an important factor in keeping the fixed radial distribution of the pebbles, as refueling is on-line during reactor operation.

Aerial View of Core

Half Model Design

Half Model Data Collection

Comparison to Design Profile

Trial with Central Column

Video Demo

Streamlines Confirmed by 3D Experiment

Radial Dispersion of Fuel and Graphite Pebbles During Refueling in the Pebble Bed Modular Reactor

Full 9-location drop

MIT's Project Innovations

- Advanced Fuels
- Totally modular build in a factory and assemble at the site
- Replace components instead of repair
- Indirect Cycle for Hydrogen Generation for fuel cells & transportation
- Advanced computer automation
- Demonstration of safety tests

Sequence of Pebble Bed Demonstration

- China HTR 10 December 2000
- ESKOM PBMR Start Construction 2002
- MIT/INEEL Congressional Approval to Build 2003 Reactor Research Facility
- 2007 ESKOM plant starts up.
- 2010 MIT/INEEL Plant Starts Up.

Highlights of Plan to Build

- Site Idaho National Engineering Lab (maybe)
- "Reactor Research Facility"
- University Lead Consortium
- Need Serious Conceptual Design and Economic Analysis
- Congressional Champions
- Get Funding to Start from Congress this Year

Modular Pebble Bed Reactor Organization Chart

US Pebble Bed Company

University Lead Consortium

Governing Board of Directors

MIT, Univ. of Cinn., Univ. of Tenn, Ohio State, INEEL, DOE, Industrial Partners, et al.

Reactor Research Facility Full Scale

- "License by Test" as DOE facility
- Work With NRC to develop risk informed licensing basis in design South Africa
- Once tested, design is "certified" for construction and operation.
- Use to test process heat applications, fuels, and components

Why a Reactor Research Facility ?

- To "Demonstrate" Safety
- To improve on current designs
- To develop improved fuels (thorium, Pu, etc)
- Component Design Enhancements
- Answer remaining questions
- To Allow for Quicker NRC Certification

License By Test

- Build a research/demonstration plant -reactor research facility
- Perform identified critical tests
- If successful, certify design for construction.

Risk Informed Approach

- Establish Public Health and Safety Goal
- Demonstrate by a combination of deterministic and probabilistic techniques that safety goal is met.
- Using risk based techniques identify accident scenarios, critical systems and components that need to be tested as a functional system.

Cost and Schedule

- Cost to design, license & build ~ \$400 M over 7 Years.
- Will have Containment for Research and tests to prove one is NOT needed.
- 50/50 Private/Government Support
- Need US Congress to Agree.

	Cost Esti	mate for First MPBF	R Plant		
Adjustments Made to MIT Cost Estimate for 10 Units					
Estimate Category	_	Original Estimate	Scaled to 2500 MWTH	New Estimate	For single un
21 Structures & Imp	provements	129.5	180.01	24.53	
22 Reactor Plant E	quipment	448	622.72	88.75	
23 Turbine Plant Ec	luipment	231.3	321.51	41.53	
24 Electrical Plant I	Equipment	43.3	60.19	7.74	
25 Misc. Plant Equ	ipment	32.7	45.45	5.66	
26 Heat Rejection S	System	18.1	25.16	3.04	
Total Direct Costs		902.9	1255.03	171.25	
91 Construction Se	rvices	113.7	113.70	20.64	
92 Engineering & H	ome office	106	106.00	24.92	
93 Field Services		49.3	49.30	9.3	
94 Owner's Cost		160.8	160.80	27.45	
Total Indirect Cos	ts	429.8	429.80	82.31	
Total Direct and Indirect Costs		s 1332.7	1684.83	253.56	
Contingency (25%)	333.2	421.2	63.4	
Total Capital Cost		1665.9	2106.0	317.0	
Engineering & Lic	ensing Dev	elopment Costs		100	
Total Costs to Buil	d the MPBF	2		417.0	

Key Technical Challenges

- Materials (metals and graphite)
- Code Compliance
- Helium Turbine and Compressor Designs
- Demonstration of Fuel Performance
- US Infrastructure Knowledge Base
- Regulatory System

Technology Bottlenecks

- Fuel Performance
- Balance of Plant Design Components
- Graphite
- Containment vs. Confinement
- Air Ingress/Water Ingress
- Regulatory Infrastructure

Regulatory Bottlenecks

- 10 CFR Part 50 Written for Light Water Reactors not high temperature gas plants
- Little knowledge of pebble bed reactors or HTGRs codes, safety standards, etc.
- Fuel testing
- Resolution of Containment issue
- Independent Safety Analysis Capability

International Application

- Design Certified & Inspected by IAEA
- International "License"
- Build to Standard
- International Training
- Fuel Support
- No Special Skills Required to Operate

Collaborative Research Areas

- Air Ingress
- Accident Performance of TRISO Fuel
- Water Ingress
- Burnup Measurements
- Power Distribution Measurements
- Graphite Lifetime

- Defueling Systems
- Verification of Computer Codes -VSOP, Tinte
- Xenon Effects
- Modeling of Pebble Flow
- Mixing in Lower Reflector

Research Areas Continued

- Containments
- Terrorist Impacts
- Burning Potential
- Advanced I&C Computer Control
- Safeguards
- International Standards
- Materials ASME

- Blowdown Impacts
- Release Models
- Break Spectrum
- Water Ingress
- Seismic Impacts
- Post Accident Recovery
- "License By Test"

A "New" Question

- Can Nuclear Plants withstand a direct hit of a 767 jet with a plane load of people and fuel ?
- Can it deal with other Terrorist Threats?
 - Insider
 - Outsider
 - General Plant Security

Pebble Advantages

- Low excess reactivity on line refueling
- Homogeneous core (less power peaking)
- Simple fuel management
- Potential for higher capacity factors no annual refueling outages
- Modularity smaller unit
- Faster construction time modularity
- Indirect cycle hydrogen generation
- Simpler Maintenance strategy replace vs repair

Generation IV

- Very High Temperature Gas Reactors (VHTR)
 - Pebble or Prismatic
 - ->1100 C
 - Large Materials Challenges
- Fast Gas Reactors
 - Fast Spectrum need to manage reactivity coefficients
 - Pressurized Containment decay heat removal
 - Need new fuel type (pebble or prismatic)
 - Need to develop full fuel cycle (reprocessing)

Very High Temperature Reactor Pebble or Prismatic

- Reactor power 600 MWth
- Coolant inlet/outlet temperature 640/1000°C
- Core inlet/outlet pressure Dependent on process
- Helium mass flow rate 320 kg/s
- Average power density 6–10 MWth/m 3
- Reference fuel compound ZrC-coated particles in blocks, pins or pebbles
- Net plant efficiency >50%

Fast Gas Reactor

- Advantage of Sustainability
- Disadvantage post shutdown decay heat removal
- Need new fuel development for either pebble or prismatic - cermet or composite metal fuels

Design Features of the GFR Concept

Reactor Design Parameter	Conceptual Data		
wer plant	600 MWth		
et efficiency (direct cycle helium)	48 %		
olant pressure	90 bar		
itlet coolant temperature	850 °C (Helium, direct cycle)		
et coolant temperature	490 °C (Helium, direct cycle)		
ominal flow & velocity	330 kg/s & 40 m/s		
ore Volume	10.9 m ³ (H/D ~1.7/2.9 m)		
ore pressure drop	~ 0.4 bar		
plume fraction (%) Fuel/Gas/SiC	50/40/10 %		
verage power density	55 MW/m ³		
ference fuel compound	UPuC/SiC (50/50 %)		
	17 % Pu		
eeding/Burning performances	Self-Breeder		
aximum fuel temperature	1174 °C (normal operation)		
	< 1650 °C (depressurization)		
core heavy nuclei inventory	30 tons		
ssion rate (at %); Damage	~ 5 at%; 60 dpa		
el management	multi-recycling		
el residence time	3 x 829 efpd		
ppler effect (180°C-1200°C)	$-1540 \ 10^{-5}$		
layed neutron fraction	356 10 ⁻⁵		
tal He voidage effect	+230 10 ⁻⁵		
verage Burn up rate at EOL	~ 5 % FIMA		
imary vessel diameter	< 7 m		

Schematic of a Fast Gas Reactor

Figure 5. Schematic diagram of possible core layout with inner reflector for a modular, heliumcooled fast nuclear energy system with ceramics fuel (cercer), or ceramics/metal (cermet) or composite metal (metmet) as back-up solutions. Could also be a smaller pebble bed .

Summary

- Pebble Power Appears to Meet Economic, Safety and Electricity Needs for Next Generation of Nuclear Energy Plants
- Eskom to decide in December whether to build protoype plant in South Africa.
- MIT Project aimed at longer term development with focus on innovation in design, modularity, license by test, using a full scale reactor research facility to explore different fuel cycles, process heat applications, and advanced control system design, helium gas turbines and other components.

