MIT/INEEL Modular Pebble Bed Reactor

Andrew C. Kadak Massachusetts Institute of Technology

March 22, 2000

Observations

- No New Construction of Nuclear Plants for Many Years
- Current Generation of Plants Can Be Competitive
- "Next" Generation of LWRs Are Not Competitive
- Focus of LWR Technology is Shifting Outside the US
- Nuclear Engineering Education is in Decline

However!!!

- We Are Learning to be Competitive
- Nuclear Technology is Can Play a Key Role in the Future
- We Need to Solve the Problems
- We Need to Regain US Position in Nuclear Technology

Requirements for New Nuclear Technology

It Must Be Competitive

Current Leader is Natural Gas

• It Must Be Demonstrably Safe

And the Public Needs to Know It

• It Must Be Proliferation Resistant

And the Public Needs to Know It

• It Must Exist in the Current Political Climate

♥

We Need a Good Product and Competent Operators

We Need To Change The Way We:

- Build Them
- Operate Them
- License Them

Presentation Objectives

- What's A Pebble Bed Reactor ?
- MIT/INEEL Program Objectives
- International Activities
- Plan to Build a Reactor Research Facility
- Actions Necessary
- Opportunities

Project Objective

Develop a sufficient technical and economic basis for this type of reactor plant to determine whether it can compete with natural gas and still meet safety, proliferation resistance and waste disposal concerns.

Modular High Temperature Pebble Bed Reactor

- 110 MWe
- Helium Cooled
- "Indirect" Cycle
- 8 % Enriched Fuel
- Built in 2 Years
- Factory Built
- Site Assembled

- On-line Refueling
- Modules added to meet demand.
- No Reprocessing
- High Burnup >90,000 Mwd/MT
- Direct Disposal of HLW

What is a Pebble Bed Reactor ?

- 360,000 pebbles in core
- about 3,000 pebbles handled by FHS each day
- about 350 discarded daily
- one pebble discharged every 30 seconds
- average pebble cycles through core 15 times
- Fuel handling most maintenance-intensive part of plant

Core Neutronics

- Helium-cooled, graphite moderated high-temp reactor
- ~360,000 fuel balls in a cylindrical graphite core
- central graphite reflector
- graphite fuel balls added and removed every 30 s
- recycle fuel balls up to 15 times for high burnup

TRISO Fuel Particle -- "Microsphere"

- 0.9mm diameter
- ~ 11,000 in every pebble
- 10⁹ microspheres in core
- Fission products retained inside microsphere
- TRISO acts as a pressure vessel
- Reliability
 - Defective coatings during manufacture
 - ~ 1 defect in every fuel pebble

MPBR Side Views

MPBR Core Cross Section

- A Pebble Bed Core
- **B** Pebble Deposit Points
- C Inner Reflector
- **D** Outer Reflector
- E Core Barrel
- F Control Rod Channels
- G,H Absorber Ball Channels
- I Pebble Circulation Channels
- J Helium Flow Channels
- K Helium Gap
- L Pressure Vessel

MPBR Specifications

Thermal Power	250 MW
Core Height	10.0 m
Core Diameter	3.0 m
Pressure Vessel Height	16 m
Pressure Vessel Diameter	5.6 m
Number of Fuel Pebbles	360,000
Microspheres/Fuel Pebble	11,000
Fuel	UO ₂
Fuel Pebble Diameter	60 mm
Fuel Pebble enrichment	8%
Uranium Mass/Fuel Pebble	7 g
Coolant	Helium
Helium mass flow rate	120 kg/s (100% power)
Helium entry/exit temperatures	450°C/850°C
Helium pressure	80 bar
Mean Power Density	3.54 MW/m ³
Number of Control Rods	6
Number of Absorber Ball Systems	18

Safety Advantages

- Low Power Density
- Naturally Safe
- No melt down
- No significant radiation release in accident
- Demonstrate with actual test of reactor

"Naturally" Safe Fuel

- Shut Off All Cooling
- Withdraw All Control Rods
- No Emergency Cooling
- No Operator Action

Thermal Hydraulics

Major Components

- IHX
- Turbomachinery
- Generator
- Recuperator
- Precooler / Intercoolers
- Heat sink

Conceptual Design Layout

Balance of Plant

Can Fit on a Flat Bed Truck

Competitive With Gas ?

- Natural Gas
- AP 600
- ALWR
- MPBR

3.4 Cents/kwhr3.62 Cents/kwhr3.8 Cents/kwhr3.3 Cents/kwhr

Levelized Costs (1992 \$ Based on NEI Study)

MPBR PLANT CAPITAL COST ESTIMATE (MILLIONS OF JAN. 1992 DOLLAR WITHOUT CONTINGENCY)

Account No.	Account Description	Cost Estimate		
20 21 22 23 24 25 26	LAND & LAND RIGHTS STRUCTURES & IMPROVEMENTS REACTOR PLANT EQUIPMENT TURBINE PLANT EQUIPMENT ELECTRIC PLANT EQUIPMENT MISCELLANEOUS PLANT EQUIPMENT HEAT REJECT. SYSTEM	2.5 192 628 316 64 48 25		
	TOTAL DIRECT COSTS	1,275		
91 92 93 94	CONSTRUCTION SERVICE HOME OFFICE ENGR. & SERVICE FIELD OFFICE SUPV. & SERVICE OWNER'S COST	111 63 54 147		
	TOTAL INDIRECT COST	375		
TOTAL BASE CONSTRUCTION COST CONTINGENCY (M\$)				
TOTAL OVERNIGHT COST UNIT CAPITAL COST (\$/KWe) AFUDC (M\$)				
TOTAL CAPITAL COST				
FIXED CHARGE RATE LEVELIZED CAPITAL COST (M\$/YEAR)				

Capital Cost

• Cost Savings Come From:

More Factory Fabrication, Less Site Work Learning Effect From 1st to 10th Unit Natural Safety Features Shorter Construction Time

• Total capital Cost for 1100 MWe Plant \$2,296 Million

Construction Flowpath for a Standard Unit

initial interest

Construction Plan / Techniques

- Factory Assembly
- Existing Technology
- Modular Construction Allows:
 - Parallel Construction
 - Ease of Shipment
 - Rapid Assembly
 - Streamlined Testing

Instantaneous Work in Progress : Most Likely

Week

Unit 5 : Most Likely

Unit 10 : Most Likely

Net Construction Expense : Most Likely

Instantaneous Work in Progress : Most Likely -	 Week
Instantaneous Work in Progress : Unit-4 Hits Water	 Week
Instantaneous Work in Progress : Intervenors -	 Week
Instantaneous Work in Progress : Module Delay	 Week

Graph for Net Construction Expense

O&M Cost

- Simpler design and more compact
- Least number of systems and components
- Small staff size: 150 personnel
- \$31.5 million per year

MPBR Busbar Generation Costs ('92\$)

Reactor Thermal Power (MWt)	10 x 250	
Net Efficiency (%)	45.3%	
Net Electrical Rating (Mwe)	1100	
Capacity Factor (%)	90	
Total Overnight Cost (M\$)	2,046	
Levelized Capital Cost (\$/kWe)	1,860	
Total Capital Cost (M\$)	2,296	
Fixed Charge Rate (%)	9.47	
30 Year Level Cost (M\$/yr):		
Levelized Capital Cost	217	
Annual O&M Cost	31.5	
Level Fuel Cycle Cost	32.7	
Level Decommissioning Cost	<u>5.4</u>	
Revenue Requirement	286.6	
Busbar Cost (mill/kWhr):		
Capital	25.0	
O&M	3.6	
Fuel	3.8	
Decommissioning	<u>0.6</u>	
Total	33.0	

Generation IV Reactor

- Proliferation Proof
- Demonstrated Safety
- Disposable High Level Waste Form
- Competitive with Natural Gas
- Used Internationally to Meet Kyoto

Proliferation Advantages

- High Burnup Bad Weapons Material
- Diversion from Closed System Unlikely
- Don't need research reactors to train people to run plant safely.
- Need to steal thousands of balls for weapon.
- Can use Thorium cycle to reduce risk further
- Can be used as excess Plutonium burner

Waste Disposal Conclusions

- Per kilowatt hour generated, the space taken in a repository is 7 times less than spent fuel from light water reactors.
- Number of shipments to waste disposal site 10 times higher using standard containers.
- Graphite spent fuel waste form ideal for direct disposal without costly overpack to prevent dissolution or corrosion.
- Silicon Carbide may be an reffective retardant to migration of fission products and actinides.

Licensing

- Use "Risk Informed" Methods
- Demonstrate Safety Through Actual Test

International Activities Countries with Active HTGR Programs

- China 10 Mwth Pebble Bed 2000 critical
- Japan 40 Mwth Prismatic
- South Africa 250 Mwth Pebble 2003
- Russia 330 Mwe Pu Burner Prismatic
 2007
- Netherlands small industrial Pebble
- Germany (past) 300 Mwe Pebble Operated
- MIT 250 Mwth Intermediate Heat Exch.

Technological Differences

- Intermediate Heat Exchanger
- Balance of Plant Flexibility in Design
- Ease of Maintenance
- Advanced Fuel

- Enhanced Modularity
- Automation Objective
- Cost Estimates
- Process Heat Applications

International Application

- Design Certified & Inspected by IAEA
- International License
- Build to Standard
- International Training
- Fuel Support
- No Special Skills Required to Operate

International Cooperation, University & Lab Involvement

- Germany
- South Africa
- China
- Netherlands
- Russia
- Japan
- US (GA)

- Idaho National Engineering & Environmental Lab
- Oak Ridge National Lab
- Ohio State
- U of Cinncinatti
- U of Tennessee

Highlights of Plan to Build

- Site Idaho National Engineering Lab
- "Reactor Research Facility"
- University Lead Consortium
- Need Serious Conceptual Design and Economic Analysis
- Congressional Champions
- Get Funding to Start from Congress this Year - 2000

Reactor Research Facility Full Scale

- License by Test as DOE facility
- Work With NRC to develop risk informed licensing basis in design South Africa
- Once tested, design is "certified" for construction and operation.
- NRC licensing biggest obstacle to success of new reactor designs.
- Use to test process heat applications, fuels, and components

Sequence of Pebble Bed Demonstration

- China HTR 10 December 2000
- ESKOM PBMR Start Construction 2001
- MIT/INEEL Congressional Approval to Build 2003 Reactor Research Facility
- 2003 ESKOM plant starts up.
- 2006 MIT/INEEL Plant Starts Up.

Modular Pebble Bed Reactor Organization Chart (hypothetical)

Opportunities

- Major New Source of Electric Generation
- Competitive with natural Gas
- Markets in US and worldwide including China.
- Introduce new way of manufacturing plants

- Build Demo plant in Idaho - \$ 300 Million
- US Utilities will buy if competitive.
- Desalinization Market
- Process Heat Market
- Hydrogen Generation
 Market

National Importance of Project

- Need New Competitive Nuclear Technology - Generation IV
- Small Modular Plants Fit the Market
- Manufacture Plants vs. Construct Plants
- Need New Visions for Students & Industry
- US Viewed as Leader by Rest of World

Summary

- Many believe that HTGRs are not credible due to past failures.
- Our work is meant to turn that belief around with substantive analysis.
- If successful, propose building a reactor research facility to "license by test", explore different fuel cycles, process heat applications, and advanced control system design, helium gas turbines and other components. (Within 5 years !)