Modular High Temperature Pebble Bed Reactor

Faculty Advisors Andrew C. Kadak Ronald G. Ballinger Michael J. Driscoll Sidney Yip David Gordon Wilson

Student Researchers

- Fuel Performance
 - Heather MacLean
 - Jing Wang

- Thermal Hydraulics
 - Chunyun Wang
 - Tamara Galen

Core Physics
Julian Lebenhaft

Safety
Tieliang Zhai

Project Objective

Develop a sufficient technical and economic basis for this type of reactor plant to determine whether it can compete with natural gas and still meet safety, proliferation resistance and waste disposal concerns.

Generation IV Reactor

- Competitive with Natural Gas
- Demonstrated Safety
- Improved Proliferation Resistance
- Readily Disposable Waste Form

Advanced Reactor Technology Pebble Bed Project

Modular High Temperature Pebble Bed Reactor

- 110 MWe
- Helium Cooled
- "Indirect" Cycle
- 8 % Enriched Fuel
- Built in 2 Years
- Factory Built
- Site Assembled MPBR-5

- On-line Refueling
- Modules added to meet demand.
- No Reprocessing
- High Burnup
 >90,000 Mwd/MT
- Direct Disposal of HLW

Advanced Reactor Technology Pebble Bed Project

What is a Pebble Bed Reactor ?

- 360,000 pebbles in core
- about 3,000 pebbles handled by FHS each day
- about 350 discarded daily
- one pebble discharged every 30 seconds
- average pebble cycles through core 15 times
- Fuel handling most maintenance-intensive part of plant

Advanced Reactor Technology Pebble Bed Project

MPBR Specifications

Thermal Power	250 MW
Core Height	10.0 m
Core Diameter	3.0 m
Pressure Vessel Height	16 m
Pressure Vessel Radius	5.6 m
Number of Fuel Pebbles	360,000
Microspheres/Fuel Pebble	11,000
Fuel	UO ₂
Fuel Pebble Diameter	60 mm
Fuel Pebble enrichment	8%
Uranium Mass/Fuel Pebble	7 g
Coolant	Helium
Helium mass flow rate	120 kg/s (100% power)
Helium entry/exit temperatures	450°C/850°C
Helium pressure	80 bar
Mean Power Density	3.54 MW/m³
Number of Control Rods	6
Number of Absorber Ball Systems	18

Competitive With Gas ?

- Natural Gas
- AP 600
- ALWR
- MPBR

3.4 Cents/kwhr3.62 Cents/kwhr3.8 Cents/kwhr3.3 Cents/kwhr

Levelized Costs (1992 \$ Based on NEI Study)

Improved Fuel Particle Performance Modeling: Chemical Modeling

Student: Heather MacLean Advisor: R. Ballinger

Advanced Reactor Technology Pebble Bed Project

Objective

- Model fuel particle chemical environment
 - particle temperature distributions
 - internal particle pressure
- Model chemical interactions with coatings (SiC)
 - migration of fission products (Ag) through coatings (SiC)
 - chemical attack (Pd) of SiC

Advanced Reactor Technology Pebble Bed Project

Accomplishments

- Analyzed likely temperatures in fuel particles in different core locations
 - $-\Delta T$ across any particle < 20 °C
 - peak kernel temperature range: 500-1100 °C
- Diffusion experiment in progress
 - 2 diffusion couples heated, continuing
 - characterization in progress

Advanced Reactor Technology Pebble Bed Project

Coated Particle Fuel System

SiC

OPyC

Individual Microsphere

780 µm nominal diameter

60 mm diameter

Fuel Pebble

~11,000 microspheres per fuel pebble ~350,000 pebbles per core MPBR-14

Thermal Model

Calculate temperatures in a pebble:

- Linear axial bulk He temperature rise (450-850 °C)
- Packed-bed He heat transfer correlation (ΔT across He film surrounding a pebble)
- \Rightarrow Pebble surface temperature for any core location
- Homogenized (volumetric averages) pebble thermal conduction model based on core average power
- Thermal conductivity depends on temperature
- \Rightarrow Temperature distribution inside a pebble
- \Rightarrow Fuel particle thermal model

Fuel Particle Thermal Model

Calculate temperatures in a particle:

- Particle surface temperature determined by radial location in a pebble
- Fuel kernel fission product swelling data 1% volume swelling per 10 GWd/T
- Buffer densification to accommodate kernel swelling
- Kernel thermal expansion -- 10⁻⁶ K⁻¹

Advanced Reactor Technology Pebble Bed Project

Typical Particle Temperatures

Pebble Power	Average	Average	2x Average
Axial Location	Core Inlet	Core Outlet	Core Outlet
Loc. In Pebble	Outer Edge	Center	Center
Bulk He Temp.(°K)	723	1123	1123
Temperatures			
Kernel Center	786	1241	1347
Kernel Outer Edge	779	1234	1340
Buffer Outer Edge	771	1225	1329
IPyC Outer Edge	770	1224	1329
SiC Outer Edge	770	1224	1329
OPyC Outer Edge	770	1224	1328
Particle ∆T	16	17	19

Advanced Reactor Technology Pebble Bed Project

Significance of Temperatures

• Small ∆T across all particles

⇒ can use average temperature in a particle for chemical analyses

Variation in particle peak temperature

⇒ chemistry phenomena (diffusion) vary exponentially with temperature

Gradient across particle

 \Rightarrow significant impact on mechanical phenomena MPBR-19

Chemical Interactions

- Palladium
 - very destructive, local attack
 - can open a pathway for fission product release
 - limited data

• Silver

- diffuses through intact SiC
- activity / maintenance concern
- limited data in MPBR proposed temperature range

SiC Diffusion Experiments

- Limited data for specific fission products and temperatures of interest
- Develop experimental foundation for future study of advanced fission product barrier materials

Advanced Reactor Technology Pebble Bed Project Experimental Procedure

Status of Experiments

- Experimental procedure defined
- System operational
- 2 diffusion heat treatments completed
 - 1500 °C, 24 hours, Ag-SiC
 - 1400 °C, 44 hours, Ag-SiC
 - other temperatures in progress
- Characterization in progress MPBR-23

Advanced Reactor Technology Pebble Bed Project

Future Work

- Continue diffusion couple heat treatments
- Collect and analyze diffusion experiment data
- Update thermal and pressure models
 - include UCO data
 - include radial and axial power peaking

Fuel Performance Modeling — **Mechanical Analysis**

Student: Jing Wang Advisors: Prof. Ballinger & Prof. Yip

Objective

 Develop a mechanical model to predict the mechanical behavior of TRISO fuel particles, including failure, that can be used as a tool in understanding past behavior and in developing advanced particles

Advanced Reactor Technology Pebble Bed Project

Conclusion

 Currently with closed form solutions, the fracture mechanics based failure model, developed as part of this task, yields a good prediction of the failure probability of TRISO fuel particles

Closed Form Solutions

- System: IPyC/SiC/OPyC
- Assumptions
- Spherical layers
- Elastically isotropic
- Creep and swelling are treated for IPyC/OPyC
- SiC is just elastic shell
- Three layers are tightly bonded

TRISO Fuel Particle

Advanced Reactor Technology Pebble Bed Project

Time Evolution of Radial Stress Distribution in TRISO Fuel Particles

Advanced Reactor Technology Pebble Bed Project

Time Evolution of Tangential Stress Distribution in TRISO Fuel Particles

Finite Element Method

- Check with analytical solutions and other calculations
- Study the non-ideal particles
 - anisotropy of material
 - anisotropy of geometry
- Evaluate the effects of crack and debonding
- Combine with analytical solutions to predict failure

Fracture Mechanics based Failure Model

- Consider the impact of the cracking of IPyC to SiC
- Stress distributions come from closed form solutions
- Currently use stress intensity factor to evaluate local stresses
- Predict failure probability with MC sampling process
 (Gaussian Distribution : Layer thickness, kernel & buffer densities
 Weibull Distribution : Fracture strength of IPyC, SiC and OPyC
 Triangular Distribution : Critical stress intensity factor of SiC)

The Sketch for FM based Failure Model

Prediction by FM based Failure Model

• Inputs

SiC layer — (Sampled with triangular distribution)

 $K_{IC}(SiC)$ (mean) = 3300MPa· μ m^{1/2} ^[1] Standard Deviation = 530MPa· μ m^{1/2}

IPyC layer — (Sampled with Weibull distribution)

End-of-life Burnup — 75% FIMA

Particles Sampled — N=1,000,000

• Outputs

Cases with IPyC Failure: 595 Cases with SiC Failure: 17

Failure Probability: 5.95×10⁻⁴ Failure Probability: 1.70×10⁻⁵

[1] Material Specification No. SC-001, Morton Advanced Materials, 185 New Boston Street, Woburn, MA 01801
 [2] J. L. Kaae, et al., Nucl. Tech., 35, 1977, p368

Advanced Reactor Technology Pebble Bed Project

Conclusions

- The previous mechanical model, based on a pressure vessel failure by overpressure, from INEEL predicts zero fuel failure
- New fracture mechanics based failure model gives reasonable prediction of the failure probability of TRISO fuel particles

Future Work

- Use finite element method (ABAQUS) to incorporate non-ideal particles
- Improve the fracture mechanics based failure model
- Build a more realistic pyrocarbon model
- Use specialized finite element method

Advanced Reactor Technology Pebble Bed Project

Dynamic Modeling for MPBR

Chunyun Wang Advisors: Prof. R. G. Ballinger Dr. H. C. No

(Draft) Presentation for INEEL Review Aug. 01, 00

Advanced Reactor Technology Pebble Bed Project

Objective

- Develop a dynamic model as the primary tool for
 - developing the control system
 - performing transient analysis
 - optimizing power conversion system

Summary

- Have developed dynamic models for core , heat exchanger. A simple steady state turbo-machinery model is used.
- Verification of core kinetic model
- Verification heat exchanger model
- Provide control methods and use PID controller to implement them

Model Structure

Advanced Reactor Technology Pebble Bed Project

Core Thermal-Hydraulic Model

- Nodalization
- Assumptions
 - Fuel region is treated as a homogeneous region
 - Helium heat conduction is negligible
 - The heat loss from the reactor vessel is negligible
- Pebble bed effective thermal conductivity (GE correlation, taking into account both conduction and radiation).
- Helium convection:KFA correlation

Advanced Reactor Technology Pebble Bed Project Core neutronics, product poisoning and verification

- One effective group point kinetics equation (Fig. 1)
- Fission product poisoning (Fig.2)
- Temperature coefficient of reactivity(Doppler effect)

Fig. 1 Numerical result versus analytical result for one effective group kinetics equation

Advanced Reactor Technology Pebble Bed Project

Fig.2 ¹³⁵Xe buildup following the core shutdown

- Heat exchanger model
 - For counter flow heat exchanger
 - Divide it into many equally length sections
 - In each section, for gas side, ignore the gas mass, therefore ignore the gas stored energy

Fig. 3 Recuperator steady state temperature distribution

Fig. 4 Recuperator transient response to a step temperature increase of 200 C at hot helium inlet side

Advanced Reactor Technology Pebble Bed Project

Fig. 5 Helium energy storage's effect on the recuperator performance

Control Model

- Control methods
 - Control rod motion
 - Primary circulator speed
 - Bypass control in the power conversion system
 - Inventory control in the power conversion system
- Controller: PID

Summary

- Have developed dynamic models for core , heat exchanger. A simple steady state turbo-machinery model is used
- Verification of core kinetic model
- Verification of heat exchanger model
- Provide control methods and use PID controller to implement them

Future Work

- Use programmed turbo-machinery characteristic maps (Cooperate with NREC) in the model
- Develop valve model
- Simulate electric load ramp

Comparison Between Air and Helium for Use as Working Fluids in the Energy-Conversion Cycle of the MPBR

> Student: Tammy Galen Faculty: D. G. Wilson

To assess the relative advantages of using air and helium for the working fluid in the MPBR energy-conversion cycle.

Comparisons:

- •Cycle efficiency
- Component design
 - •Size
 - •Efficiency

Possible development work required

Conclusion

Use of helium in a closed-cycle configuration is best suited to the modularity requirement of the MPBR. It results in the smallest sized components, high efficiency, and implements well established turbomachinery technology.

Advanced Reactor Technology Pebble Bed Project

Influence of choice of working fluid

Advanced Reactor Technology Pebble Bed Project

Thermophysical Properties of Helium and Air at 700K and 2MPa

Turbines and Compressors

- ↑ Specific heat
- **^ Number of stages**
- ↓ Viscosity, ↑Re # ↑ Efficiency
- ↑ Sonic velocity,
 ↑ Compressor blade speed
 ↓ Mean diameter
- ↑ Density
 ↓ Mean diameter

Heat Exchangers ↑ Thermal conductivity ↓ Size MPBR-60

	Air	Helium
Molecular weight	28.97	4.003
Specific heat (J/kgK)	1074	5193
Sonic velocity (m/s)	590	1500
Thermal conductivity (W/mK)	.056	.273
Viscosity (10 ⁻⁵)	3.33	3.56
Density (kg/m ³)	9.96	1.42

Advanced Reactor Technology Pebble Bed Project Turbomachinery industrial experience

- Air open-cycle experience
 - Majority of gas-turbomachinery experience
 - Combustion-gas turbines: power and aircraft industries
- Air closed-cycle experience
 - Less popular demand and less industrial experience to date
 - First built in 1939 by Escher Wyss in Switzerland
 - 20 plants built in Europe following WW2 ranging in power under 20MWe
- Helium experience:
 - 2 facilities part of HHT international high tempera reactor project
 - Oberhausen II (50MWe, 2MPa), HHV(90MWe, 5MPa)
 - Circulators from previous gas reactors

Industrial experience conclusions

•Open-cycle air plant

•Least amount of development work required for MPBR deployment

Closed-cycle helium and closed-cycle air plants
Comparable amount of development work required
Technology has been tested and judged successful*
Open-cycle turbomachinery design methodology and operating experience is directly applicable

*IAEA Summary report on technical experiences from high-temperature helium turbomachinery testing in Germany, 1995

Busbar Efficiency

• Deducts

Primary circulator work, 7.7 MW
-3.5 MW station load
-98% electric generator efficiency

Advanced Reactor Technology Pebble Bed Project

Baseline Thermodynamic Comparison

	Helium	Air closed	Air open
Pressure ratio	3.0	4.7	4.6
Busbar efficiency	45.2%	46.9%	47.7%
Reactor T _{in} (K)	767	792	797
Turbine T _{in} (K)	1101	1101	1101

Reactor inlet temperature constrained to 718K*

	Helium	Air closed	Air open
Pressure ratio	3.7	7.4	7.3
Busbar efficiency	44.8%	46.0%	46.8%
Turbine T _{in} (K)	1101	1101	1101

*Permissible using 9Cr-1-Mo-V as the vessel material according to ASME Class 2 &3 pressure-vessel in Codes Case N-47

Turbine Design Choices

Maximum blade speed at tip (m/s)	550
Work Coefficient (Ψ)	1 and 2
Flow coefficient (\$)	0.5
Reaction (%)	50
Hub shroud ratio at turbine outlet	0.6

Component volumes (m³)

	Helium	Air-closed	Air-open
IHX	17	86	260
HP turbine	0.27	0.06	2.2
LP turbine	0.58	0.22	13
LP compressor	0.35	0.13	2.7
Recuperator	13	61	180
Precooler	50	97	
Intercooler 1	41	80	180
Intercooler 2	41	80	180
Sum	160	400	820

Advanced Reactor Technology Pebble Bed Project

Final Cycle Conclusions

	Helium	Air-closed	Air-open
Pressure ratio	3.7	7.1	7.1
Busbar efficiency	45.3%	47.1%	47.3%
Turbine T _{in} (K)	1101	1101	1101
Component volume (m ³)	160	400	820
Number of flatbed trucks*	1	2	N/A

*Based on volume analysis, carries all components except IHX and ducting

Conclusion

Use of helium in a closed-cycle configuration is best suited to the modularity requirement of the MPBR. It results in the smallest sized components, high efficiency, and implements well established turbomachinery technology.

Pebble-Bed Reactor Physics Research at MIT

> Julian Lebenhaft Professor Michael Driscoll

Advanced Reactor Technology Pebble Bed Project

Overview

- Statement of progress
- Program goals
- Neutronic design methodology
 - MCNP/VSOP model of PBMR
 - Preliminary results
- Proliferation resistance of PBMR
- Path forward

Advanced Reactor Technology Pebble Bed Project

Progress

- MCNP4B benchmark of HTR-10 completed
- VSOP94 fuel management code implemented
- Procedure established for linking MCNP and VSOP for core neutronic calculations
- MCNP/VSOP model of PBMR developed and preliminary analysis performed
- Proliferation resistance of PBMR investigated

Program Goals

- Establish a Monte-Carlo based methodology for modeling neutron and photon transport in PBRs
- Ability to model cores with fuel burnup
- Integrated computer-aided design tools
- Perform preliminary design calculations
- Investigate fuel cycles and assess their proliferation resistance
- Validation of codes and methods

Advanced Reactor Technology Pebble Bed Project

Neutronic Design Methodology

- Monte Carlo method for accurate analysis of:
 - control rod worth
 - void effects
 - geometry changes
 - shielding
 - heat deposition
- Diffusion-theory code for burnup calculation

Why MCNP?

- Solves the Boltzmann equation by the Monte-Carlo method
- Exact representation of neutron and photon transport
- Continuous-energy cross sections
- Detailed geometry specification
- Millions of n-histories used to generate ensemble averages

accurate calculations

VSOP

- Very Superior Old Programs
- Widely used for PBRs
- Diffusion theory
- Comprehensive code suite:
 - Neutronics
 - Thermal hydraulics
 - Fuel cycles
 - Economics
- Installed at MIT
- Verification in progress

Advanced Reactor Technology Pebble Bed Project

MCNP/VSOP Model of PBMR

Detailed MCNP4B model of ESKOM Pebble Bed Modular Reactor:

- reflector and pressure vessel
- 18 control rods (HTR-10)
- 17 shutdown sites (KLAK)
- 36 helium coolant channels

Core idealization based on VSOP model for equilibrium fuel cycle:

- 57 fuel burnup zones
- homogenized compositions

Massachusetts Institute of Technology Department of Nuclear Engineering Advanced Reactor Technology Pebble Bed Project MCNP4B Model of Control Rod

Advanced Reactor Technology Pebble Bed Project MCNP4B Model of Shutdown Site

- 1) empty channel
- 2) channel filled with absorber balls
- 3) 0.25 in. absorber ball with graphite coating

Bottom of core

Advanced Reactor Technology Pebble Bed Project MCNP4B/VSOP Model Output .. 2

Advanced Reactor Technology Pebble Bed Project

MCNP4B/VSOP Model Output .. 3

Advanced Reactor Technology Pebble Bed Project

Nonproliferation

Pebble-bed reactors are highly proliferation resistant:

- small amount of uranium (9 g/ball)
- high discharge burnup (100 MWd/kg)
- TRISO fuel is difficult to reprocess
- small amount of excess reactivity limits number of special production balls

Diversion of 8 kg Pu requires:

- 260,000 spent fuel balls 2.6 yrs
- 790,000 first-pass fuel balls 7.5
- ~50,000 'special' balls 3

<u>Spent Fuel</u>	
Pu238	5.5%
Pu239	24.1
Pu240	25.8
Pu241	12.6
Pu242	32.0

<u>First Pass</u>		
Pu238	~0 %	
Pu239	64.3	
Pu240	29.3	
Pu241	5.6	
Pu242	0.8	

Advanced Reactor Technology Pebble Bed Project

MCNP4B Analysis of Heavy Balls Supercell Model

- Ball with depleted U
 Surrounded by BCC lattice of driver balls
- 3 Spherical driver core with fuel composition from VSOP model
- Critical core (k_{eff} = 1)
- 238 U(n, γ) 239 U

Advanced Reactor Technology Pebble Bed Project

Path Forward

- Complete implementation of MCNP/VSOP link
- Improve model of PBMR ⇒ ESKOM input
- Validate MCNP4B using PROTEUS criticals & VSOP predictions of PBMR startup core
- Investigate proliferation resistance of PBR fuel cycles using VSOP (Th/LEU, OTTO-PAP2)
- Assess applicability of Monteburns to modeling burnup in PBRs using MCNP4B and ORIGEN2

The Safety Analysis of PBMR

Student: Tieliang Zhai Advisors: Prof. A. Kadak Dr. W.Y. Kato

Objectives

- Identification of the Safety Issues for MHTGR
- Analysis of a Major Accident
- The Temperature Distribution Calculation After the Depressurization With the Failure of RCCS

The Identification of the Safety Issues

- Review of Safety Literature on HTGR
- Based on a Specific Design Concept, Identified the Critical Safety Issues:
 - **A. Fuel Performance**
 - **B.** Completely Passive System for Ultimate Heat Sink
 - C. Air Ingress
 - **D.** Lack of Containment
 - **E.** Calculation of Source Term

Air Ingress Accident

- Important parameters governing these reactions: Gas flow rates
 - Temperature
 - Pressure
- 3 steps
- Mainly Depends on Possibility of Enough and continuous air supply

Specific areas for additional research:

- Chimney effect
- Airflow rate
- The extent that a below-grade confinement building could limit the supply of air

The Temperature Distribution Calculation After the Depressurization With the Failure of RCCS

• The Code "Heating-7"

Heating-7 is a general-purpose 3-D conduction heat transfer program written in Fortran 77. It can solve steady-state and/or transient heat conduction problems

The Model Established

- 20-Region 3-Dimensional model. The core void is filled with stagnant helium at atm.
- The air in the confinement is steady and heat transfer only through conductivity and radiation.
- The outer radius of this model is 28.4m, i.e. all the heat transfer happen only in this huge volume.
- The Materials and their thermal properties (Conductivity, Density and Specific Heat): In the case that the thermal properties could not been fully determined, the conservative values would be selected

Advanced Reactor Technology Pebble Bed Project

The Conclusion

- The core peak temperature is 1557°C. This is below the 1600 C SiC fuel temperature target and No Core Melt is predicted assuming only conduction.
- 192 hours (8 days) later, the peak temperatures of the pressure vessel and the Concrete Wall will be 1348 °C and 1322°C, respectively. The temperatures of the vessel and the concrete wall are out of the design capability range
- The sensitivity analyses of the initial temperature of the core, the conductivity of the air, the initial temperature of the air gap, the conductivity of the concrete wall and the soil indicate that: The key factors that determine the temperatures of the pressure vessel and concrete wall are the conductivity and heat capacity of the concrete and soil.
- Some convection cooling will be required to keep the temperature of the vessel and concrete within acceptable ranges conduction alone is not sufficient.

Future Work

- The perfection of the model, especially how to model the core of the reactor and the heat transfer through convection and how to obtain the accurate initial condition of the accident.
- Air ingress accident simulation.

