
Jeziorek 1

Cost Estimation of Functional and Physical Changes
Made to Complex Systems

by

Peter Nicholas Jeziorek

B.S. Mechanical Engineering
University of California, Los Angeles, 2003

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN MECHANICAL ENGINEERING
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 2005

© 2004 Massachusetts Institute of Technology. All rights reserved.

Signature of Author: __

Department of Mechanical Engineering
January 14, 2005

Certified by: __

Nam P. Suh
Ralph E & Eloise F Cross Professor of Mechanical Engineering

Thesis Supervisor

Accepted by: __

Lallit Anand
Professor of Mechanical Engineering

Chairman, Committee for Graduate Students

Jeziorek 2

Cost Estimation of Functional and Physical Changes
Made to Complex Systems

by

Peter Nicholas Jeziorek

Submitted to the Department of Mechanical Engineering

On January 14, 2005 in Partial Fulfillment of the
Requirements for the Degree of Master of Science in

Mechanical Engineering

Abstract
 Current cost estimation practices rely on statistically relating physical parameters of a
system to historical cost data. Unfortunately, this method is unable to effectively communicate
the increasing complexity of system design to cost data. Additionally, current cost estimation
techniques have had a historical inability to produce credible and explainable results. It is often
considered to be a “black art” with the recurring question: “Where did that number come from?”
This thesis systematically links design and cost information together, and demonstrates the utility
of that link by estimating the impact of functional and physical design changes on the life-cycle
cost and determining key cost drivers. The ability to quickly estimate the cost impact of design
changes is important for decision makers and serves as a medium of communication between
customers and developers.

Credible estimation is gained by intimately linking the axiomatic design framework to the
already existing costing unit (or component) domain and providing design traceability.

Development cost is predicted by determining the functional requirements (FRs) affected
by a change in customer needs or constraints, then by determining the propagation of that change
from FRs to design parameters (DPs) to costing units. The list of affected components and the
magnitude of the impact on each component is found and then used to determine through a
parallel iteration process model how much development labor will be necessary to implement
those changes. The labor is directly related to development costs.

A formal method to designing operations using axiomatic design is presented in this
thesis. Operations exist due to the time-variant combinatorial complexity of FRs. Operations
implement reinitialization procedures in order to maximize the probability of success of FRs. This
provides the way that axiomatic design can derive operations and the related cost parameters.
This information could then be plugged into the cost impact model of a design change to
determine the list of affected operations. A new method of estimating the change in cost
parameters due to a design change will be the focus of future research.

Two main forms of key cost drivers are identified: the most expensive FRs and design
iteration. A method of mapping estimates from the costing unit domain to the FR-DP map is
suggested in order to cost out FRs. Design iteration as a key cost driver can be seen from two
points of view. Axiomatic design identifies small design ranges, coupling and imaginary
complexity as contributors to cost. Design structure matrices identify the most iterative set of
tasks in the development process and offer procedures to reduce or speed up the iteration.

Thesis Supervisor: Nam P. Suh
Title: Ralph E & Eloise F Cross Professor of Mechanical Engineering

Jeziorek 3

Acknowledgements
 The day I came in to interview for this project, I had absolutely no knowledge of
axiomatic design whatsoever. Now after almost nine months, I am able to tackle such difficult
design problems such as robustness and complexity. I would not have been able to grow as fast as
I had without the help of Professor Nam P. Suh and Taesik Lee.
 I’d like to thank Professor Suh for overseeing this project. He has always been a strong
supporter of the project, and stood by the cost estimation method that I developed along with
Taesik. His style of management has helped me to become an independent thinker and researcher.
I am not just regurgitating the ideas of others, but creating new ones. With just one short line
from Professor Suh like “Why don’t you think about this a little more” or “That’s it, huh?” I will
add another ten pages to my thesis!
 I’d like to thank Taesik Lee for all the discussions we’ve had concerning axiomatic
design and even various matters of life. Often I wouldn’t even know what I was trying to say until
I tried conveying it to Taesik. He would sit there silent for five minutes and then give some very
powerful insight. Without Taesik, this project would have gone nowhere fast. Instead, we hit the
ground running and though we slowed down midway, we will be ready to pick up the pace once
again to finish the race in first place.
 I’d like to thank Lockheed Martin for their support on this project: Robert Ford, Ray
Damaso, Chip Woods, Rich Freeman, and Gregory Kerhl. Constant dialogue between MIT and
Lockheed has pushed this project forward, making it a very practical and cutting-edge cost
estimation tool. I’d like to especially thank Chip Woods for all his correspondence and feedback.
 I’d like to thank all the people at Axiomatic Design Solutions Inc. (ADSI): Matt Pallaver,
Christian Arangio, and Sung Hee Do. I appreciate all the discussions and the endless number of
questions that you guys have.

Thank you Steven D. Eppinger for the presentation you made at ADSI and the discussion
that we had thereafter. Your insight and work have been indispensable.
 I’d finally like to thank all my lab mates Hrishikesh Deo, Beto Peliks, and AJ Schrauth,
for their constant cheer and rowdiness brought to the environment. Without them I would have
been done several months ago, but it wouldn’t have been half as fun. Thanks Hrishikesh for all
your in-depth discussion about Axiomatic Design and Mechanical Engineering. I can always
count on you to know what I’m talking about within a few minutes and have good feedback.
 Thank you mom and dad. Thank you for your overwhelming support in whatever I do. I
respect and love both of you. You are both champion parents and are capable of parenting even
the most challenging sons: Alek and I!
 Finally I’d like to thank Victoria Tai for all her love and support. She is main the reason I
am here at MIT today, and is the reason I am continuing on for a Ph.D. Vicky instantly realized
my potential, when I could not. She is an inspiration and an amazing person to spend all my time
with. Thank you, Vicky!

I’ve learned so much, even about the process of learning itself. Learning floats vague
ideas somewhere in the depths of your mind. Writing down the idea makes you realize all the
problems. You address those problems with countless scribbles and thrown away scraps of paper.
Finally, you present the finalized, internalized idea a hundred times. I hope to never stop learning.
I hope to never stop growing.

Jeziorek 4

Table of Contents

ABSTRACT .. 2
ACKNOWLEDGEMENTS ... 3
TABLE OF CONTENTS... 4
CHAPTER 1 ... 6
INTRODUCTION .. 6

THE NEED FOR COST ESTIMATION ... 6
THE CURRENT STATE OF COST ESTIMATION .. 7
THESIS OBJECTIVE ... 8
COST BACKGROUND AND TERMINOLOGY .. 8

1. Development ... 9
2. Production .. 9
3. Operation .. 9

SUMMARY .. 10
CHAPTER 2 ... 12
ENHANCING THE CREDIBILITY OF COST ESTIMATION WITH AXIOMATIC DESIGN...... 12

AN INTRODUCTION TO AXIOMATIC DESIGN ... 12
CONNECTING DESIGN AND COST INFORMATION .. 15
TRACEABILITY ... 15
SUMMARY .. 17

CHAPTER 3 ... 19
QUICKLY ESTIMATING THE COST IMPACT OF A DESIGN CHANGE TO DEVELOPMENT
.. 19

IDENTIFY THE COMPONENTS AFFECTED BY A FUNCTIONAL CHANGE... 19
DETERMINE THE DEVELOPMENT LABOR COST... 25
ESTIMATE THE COST IMPACT OF A DESIGN CHANGE.. 29
SUMMARY .. 33

CHAPTER 4 ... 35
OPERATIONS COST.. 35

AN INTRODUCTION TO COMPLEXITY .. 35
AXIOMATIC DESIGN OF OPERATIONS ... 38
COST OF OPERATION .. 39
SUMMARY .. 43

CHAPTER 5 ... 44
KEY COST DRIVERS... 44

THE COST OF FUNCTIONAL REQUIREMENTS .. 44
DESIGN ITERATION... 45

Axiomatic Design - Discussion on Design Iteration ... 45
Design Structure Matrices - Discussion on Design Iteration ... 49

SUMMARY .. 50
CHAPTER 6 ... 52
CONCLUSION... 52

Jeziorek 5

SUGGESTIONS FOR FUTURE RESEARCH .. 53
GLOSSARY OF TERMS .. 55
APPENDIX – MATLAB CODE ... 56

MAINSCRIPT.M.. 56
CREATEPOSSIBLEMATRICES.M ... 58
DETERMINESEQUENCES.M .. 60
EXPECTEDNUMBEROFITERATIONS.M ... 61

REFERENCES ... 63

Jeziorek 6

Chapter 1

Introduction
One of the largest difficulties in developing complex systems is managing and estimating

the cost. Life-cycle cost is a measure of the total cost of a system in each phase of its existence:
development, production and operation. By knowing the life-cycle cost of a product one can
make a decision on whether to proceed with the development of the system or not. This
knowledge of the life-cycle cost is invaluable, and can determine the future success or failure of a
system. The following examples illustrate the current need for accurate life-cycle cost estimates
in complex systems.

The Need for Cost Estimation
In early 1969, Ingalls Shipbuilding Company, by far the largest shipyard in the world,

received a contract from the United States Navy to build nine amphibious assault ships (LHAs)
for a firm fixed price. The LHA is 20 stories high and the length of three football fields and is
capable of deploying 2000 fully-equipped Marines and 200 combat vehicles via landing craft and
30 large helicopters. By the Navy’s standards, the LHA was “the largest, fastest and most
versatile vessel in the history of American amphibious warfare.” In the mid 1970s, Ingalls
received another contract from the Navy to produce 30 DD963 Spruance-class destroyers. Ingalls
more than doubled its workforce to take on both programs. At the onset of each project, the Navy
had only given Ingalls performance specifications of each ship. As a result, at each phase of
Ingalls’ development process, the Navy interfered by suggesting hundreds of design changes that
caused an increase in the amount of work needed to be accomplished, and whose ripple effects
seriously slowed down the project. By 1977 Ingalls had filed against the Navy for over $2.7
billion in unsettled claims. What was the mechanism that caused all the delays and cost overrun?
How could the cost have been properly estimated? This situation could have been avoided if the
Navy and Ingalls Shipbuilding Company had been at an understanding and agreement as to the
cost impact of the changes being made.1

In 1993, the Big Dig, hailed as the most complex construction project ever attempted in
the United States, was a grand plan to revitalize a traffic-plagued Boston. An elevated highway
opened in 1959, called the central artery, ran through the heart of Boston, comfortably holding
75,000 passengers per day. By the early 1990s, the highway was squeezing 200,000 passengers
per day with 10 hours of standstill traffic. The Big Dig was initiated in order to alleviate the
congestion. The concept, originally estimated to cost $3.4 billion, was to replace the central artery
with an underground 8-10 lane highway that would culminate in a 14 lane highway and two
bridges that would cross the Charles river. In 2004, though construction has nearly finished, the
cost of the Big Dig has soared close to $15 billion, repeatedly facing unexpected cost overruns
and scrutiny from the Massachusetts residents and state government, as well as the federal
government. Why were there so many unpredictable cost overruns? If the decision-makers had
known of the actual life-cycle cost of the system, they might have sought cheaper and better
alternatives or they might have tried to reduce the costs considerably.2

In the mid 1970s, the space shuttle program, the most complex engineered system ever
attempted at that time, was conceived to be a replacement of expendable launch vehicles as a
cheaper alternative. Today, the cost per unit weight for the shuttle is far higher than expendable
launch vehicles. During the 1990’s, when comparing other heavy launch vehicles price per pound,

1 See reference [8].
2 See references [9] and [10].

Jeziorek 7

the space shuttle tops the list at $4,729 per pound. Other expendable heavy launch vehicles
include European Ariane 5G at $4,162 per pound, Chinese Long March 3B at $2,003 per pound,
the Russian Proton at $1,953 per pound, and the Ukrainian Zenit 2 at $1,404 per pound. The only
advantage of the space shuttle is that it can transport 20,000 lbs more than any of the competitors
is manned. The initial intent of the space shuttle program to become a cheaper replacement has
been lost. The cost to operate and maintain the space shuttle has proven to be more of a cost
penalty than a cost savings. Why couldn’t they properly predict the cost of operation far down the
line?3
 On January 14th, 2004, President George W. Bush announced a new and bold vision for
NASA. Four goals were outlined by the President:4

1. Complete the International Space Station by 2010.
2. Develop and Produce a Crew Exploration Vehicle (CEV) for testing by 2008 and

conduct the first manned flight with the CEV by 2014.
3. Return to the moon by 2020, as the launching point for missions beyond.
4. Manned space flight to Mars.
The one thing on everyone’s mind is how much will these items cost? Are we willing to

pay that much? The current state of cost estimation tells us, that without action, we will not
surprisingly be in for huge cost overruns and disappointments. The CEV and continued space
exploration systems promise to be the most complex system ever developed and the most costly.
We should take care as to develop credible methods of cost estimation that will fully account for
the life-cycle cost.

The Current State of Cost Estimation
The root of the problem of cost estimation is that it is part art and part science. There is a

degree of subjectivity in estimation. This means that each estimate and methodology can be and is
argued over and misunderstood. Parametric estimating methodologies are by far the most
prevalently used. Parametric estimates utilize statistical relationships between historical costs and
other project variables such as system physical or performance characteristics, contractor output
measures, manpower loading, and weight. However, historical costs cannot always predict future
costs, since new problems of increasingly larger magnitude continue to surface. The system
variables, too, can be very subjective.

Another problem is the “throw it over the wall” behavior between design engineers and
cost estimators. The term “throw it over the wall” was made famous over the past few decades by
design engineers who would design a product and then give it to manufacturing engineers to “just
make it.” Frustrated manufacturing engineers would find many faults in the way the product was
designed that made it prohibitively expensive to manufacture. As a result, manufacturing
engineers and design engineers would enter into many quarrels. Now new methods of designing,
such as design for manufacturing, have emerged that ensure that design and manufacturing work
hand-in-hand to produce an effective product that is capable of being fabricated. The same
situation is occurring today with cost estimators. As long as cost estimators have some type of
number to plug into their model, they are happy. The design engineers really have no care for the
overall cost estimate; only caring to design the most cost effective and high performance system
possible. Cost estimates are too loosely tied to the actual design of a system and the scope of the
cost estimation is not well understood. Design engineers are simply throwing numbers over the
wall to satisfy the cost estimator. These numbers are not effectively communicating the actual
mechanism that is causing cost overrun, and failed estimations.

3 See references [12] and [17].
4 See reference [11].

Jeziorek 8

In the case of the Ingalls Shipbuilding company, cost overruns occurred due to excessive
design changes made by the Navy. Therefore, a quick way of assessing the cost impact of a
change to a design must be developed. With such a tool conflicts could be avoided or attended to
before any money has been spent and better decisions can be made.

Finally, key cost drivers must be easily identifiable and quantifiable. Key cost drivers are
the most significant contributors to the life-cycle cost of the system. By quickly identifying key
cost drivers, one can devise strategies on how to minimize the cost impact of these cost-
increasing mechanisms.

New ways of estimating cost should be pursued in order to grapple with the new
challenges presented to us. These new methods should be concerned with the problems of
subjectivity and the lack of communication of the design to the cost estimate. It should provide a
quick way of determining the impact of a design change. Finally, it should be able to quickly
identify the key cost drivers of a system. The results should be easily communicable and easily
understood.

Thesis Objective
With this setting as the background, this thesis is a step forward in the development of an

accurate and effective cost estimation model for complex systems. The objective of this model is
to facilitate and improve the task of cost engineering to aid in decision making. The model will
enhance the credibility of cost estimations and increase utility of the cost information. In
particular, this model will accomplish the following tasks:

1. Enhance the credibility of cost estimation by creating the cost model based an
Axiomatic Design FR/DP map

2. Quickly estimate the cost impact of changes introduced to a system
3. Identify key cost drivers

This is done by systematically linking three branches of information: system architecture map
(FR/DP map), costing-unit interaction model, and process model.

Cost Background and Terminology
It will serve well to first introduce some terms and background information that will be

consistently used throughout this thesis.
What is cost? Who is responsible for this cost? Life-cycle cost is a useful all

encompassing definition. It is the total cost incurred from the initial development of a system
until withdrawal and disposal, and it is the ultimate goal of the cost engineering effort. It includes
all the costs due to development, production and operation. Development cost is paid by the
developer of the system and typically includes design, testing, and evaluation. Production cost is
paid by the producer, who is often the developer or contracted by the developer. This cost
includes the cost to manufacture a number of components, including labor, materials, and facility
costs; but it does not include the development of those manufacturing systems, which is
accounted for in the development cost. Operation cost is paid by the user of the end product. This
cost can include the cost of maintenance, energy, time, and disposal. In mathematical lingo, the
life-cycle cost is the sum of the development, production and operation costs, seen in Equation 1.

Life Cycle Cost = $Development + $Production + $Operation

Equation 1

To further illuminate what development, production and operation means, consider the
following example of the life-cycle of an airplane:

Jeziorek 9

1. Development
A company first determines what type of market exists for the airplane. They may spend

time researching the current and future trends in passenger flow, including average time and
distance flown, how often a person flies, current hot locations, and current Federal Transportation
Administration (FTA) regulations. They then begin to lay out requirements in order to meet the
customer needs that they want to fulfill. During the conceptual design, these requirements after
some work become actual engineering parameters. Engineers diligently work out solutions,
exchange information and then iterate, until finally a flyable aircraft that is able to be
manufactured is designed. Note that iteration is caused by two phenomena: (1) the exchange of
information between people working on dependent tasks, and (2) the correct sequence of tasks is
not known before beginning work. Prototypes may be built that test and validate the
aerodynamics, structural stability, and avionics. If any faults are discovered, engineers re-iterate
and introduce fixes to the design. Meanwhile, the developers search for contractors who can
provide certain parts required to produce the system. The company develops the means of
producing the desired number of aircrafts. Also, marketing directors attempt to sell the finished
product with airlines and foreign nations. A final prototype, which looks like the real airplane, is
built and tested before released to the public. Now with many customers waiting for orders, the
company is ready to produce the desired lot of airplanes. The cost of development included
everything up to this point from the very initial research considerations to the last test flight.
Development costs included both labor and material costs accrued during the development phase.

$Development = $Labor + $Material
Equation 2

2. Production
 The company produces a lot of seventy-five airplanes to satisfy the orders that it has
received, and promises delivery by a certain date. The cost of production then is associated with
running the already existing manufacturing line. Some improvements may be made to the
manufacturing line at this time that improve productivity or lower the cost per part. This cost
should really be considered development costs. Maintenance, labor, material, and facility costs
are included in the production cost.

$Production = $Labor + $Material + $Facility + $Maintenance
Equation 3

3. Operation
An airline company made an order for 10 airplanes. Before they received the airplanes,

they spent several months negotiating deals with airports to buy gates and also began hiring new
pilots, stewardesses and mechanics. They ran new advertising campaigns, outlining their new
flights and prices. The airline prepares itself to use all 10 airplanes to maximize the profit that it
can gain from its operation. Finally, once the airplanes are delivered to their respective locations,
the airplanes enter normal operating conditions with several flights a day. It maintains a regular
schedule of maintenance, with regular tests of its engines, wings and avionics. Finally, after a
couple decades of service, the airline company decides that it is more cost-effective to buy a new
airplane than maintain the one it is currently operating. As a result, the airline sells, stores, or
disposes of the airplane. The cost of operation is the cost of all these activities.

$Operation = $Labor + $Consumables + $Facilities + $Maintenance + $Disposal

Jeziorek 10

An interesting point to note is that life-cycle cost does not include the benefits gained
during the operation of the system, though this is extremely important to the system’s
marketability. The buyer of the system wants to know exactly how much they will have to pay
and what will be the benefits of its use. Life-cycle cost is only concerned with the cost and not the
benefits of operation, but life-cycle cost estimates are used in conjunction with the benefits of
operation in order to make a product sellable.

Life-cycle cost is also used by the developer to determine how much profit it can gain by
continuing with development and production. Making a change to the production phase may
make parts cheaper to produce, but it may also reduce the quality of the system during operation.
One could spend more money in development, in order to make operations cheaper, and thus
make the product more sellable to the customer. These types of games are played by the decision-
makers among the developers. In order to make the best decisions possible, they need to be able
to see the cost impact of their decision at each stage of the life-cycle.

Summary
 Life-cycle cost is the most important measure of the cost during each phase of existence.
The three phases of the life-cycle are the development, production and operation stages. The
development phase includes all design, testing and evaluation activities from the system
conception to directly before the manufacturing of the system. The production phase includes all
the activities associated with manufacturing the system with the fully developed manufacturing
processes in place. The operation phase consists of all activities that the user of the system must
perform in order to properly use the system. These activities include maintenance and using the
functions. The cost of each phase is the cost of performing these activities, including all resources,
like labor, material, and facilities, required to perform those activities. An example of the life-
cycle of an airplane was given to aid in drawing the lines between the three phases of the life-
cycle. Life-cycle cost estimates serve in aiding decision makers on whether or not to implement a
change to a program. Different scenarios can be posed to see what effect a change can have on
each phase of the life-cycle cost. Life-cycle cost does not concern itself with the benefits of
operating the system. However, both life-cycle cost and the benefits of a system are important in
justifying the final price and worth of the system.
 Several examples from industry were highlighted to illustrate the current state of cost
engineering. In the 1970s, The Ingalls shipbuilding company received two contracts from the
Navy to build state-of-the-art warships. Ingalls was originally given performance specifications
by the Navy, but as the design progressed, the Navy interfered with hundreds of design changes.
Ingalls, as a result, ran over the allotted budget from the Navy and sought legal reparations in
order to pay for the loss. If a method existed in which Ingalls and the Navy could evaluate the
impact of each change before they were made, then perhaps the Navy would be more careful in
making changes and the project would have been within budget. The Big Dig is the largest and
most complex construction project ever undertaken in the United States, and is riddled with cost
overruns. It was originally forecasted to cost $3.4 billion, but instead cost $15 billion. What was
the mechanism that caused these cost overruns and why was it not estimated correctly? Now the
United States boldly states its space exploration goals for the 21st century, of using the moon as a
launch pad to the rest of the solar system and manned exploration of Mars. This will be the most
difficult and challenging engineering project ever attempted, and will likely be the most costly.
Before embarking on such a journey, proper cost estimating techniques should be developed that
would prevent the problems experienced by Ingalls and the Big Dig and countless other firms that
engineer large complex systems.
 The problems with current cost estimating practices are the following:

1. Cost estimation is a “black art,” consisting of one part science and one part art. The
art of an estimate comes from a certain level of subjectivity in the estimate.

Jeziorek 11

2. Cost estimation today is based on historical data linked to physical parameters of a
design. On one hand, historical cost data that reflects past problems in designing
systems cannot always predict the cost of future problems. On the other hand, the
physical parameters that attempt to describe a design do not embody the actual design
and have a degree of subjectivity.

3. As a result, a “throw it over the wall” syndrome that was associated with design and
manufacturing engineers in the past is now present among design engineering and
cost estimators. The cost estimator only cares to receive the number he needs to plug
into his model, while the design engineer only cares to design the best performing
and cost-effective system possible. The communication that currently exists is not
sufficient in communicating the foreseeable and unforeseeable problems that can
exist in the design. This results in the cost estimates not accurately reflecting the
problems occurring in the design.

4. Key cost drivers must be quickly and easily identified for the purpose of cost
minimization.

5. The results must be easily understood and justified.

With these problems evident in current cost estimation practices, the goal of this thesis is
to:

• Enhance the credibility of cost estimation by creating the cost model based on the
FR/DP map

• Quickly estimate the cost impact of changes introduced to a system
• Identify key cost drivers

These goals are accomplished by using the Axiomatic Design Framework along with a Process-
Based Model. The method is expounded upon in subsequent chapters.

Jeziorek 12

Chapter 2

Enhancing the Credibility of Cost Estimation with
Axiomatic Design
 Enhancing the credibility of cost estimation is the first goal of this model. Recall from
Chapter 1 that there exists an information exchange between designers and cost estimators.
Currently, this exchange takes the form of the passing of different types of physical variables that
loosely describe the design and relate to historical cost data. Unfortunately, this communication is
not adequate enough to transfer the design information. Key mechanisms such as design coupling
and iteration are not represented clearly in the cost domain in a way that reflects the true design.
Additionally, the cost information solely resides in the physical domain. Only parameters such as
power, torque, weight, number of gear teeth, etcetera are collected and then translated into costs.
Customer needs, functional requirements (FRs), and design parameters (DPs) are in no way
currently connected to the cost information. This chapter outlines how these vital aspects of the
design are joined to the cost domain. The key element is the Axiomatic design framework with
the addition of the Costing Unit domain. Additionally, this chapter demonstrates how axiomatic
design improves the traceability of a design. Cost estimation that is based on a traceable design
will be more credible.

An Introduction to Axiomatic Design
Axiomatic design is a design methodology that is useful in guiding the design process. It

was developed in order to formalize the oftentimes haphazard procedures of design commonly
practiced in industry. Axiomatic design states that a design develops from customer needs into
FRs. Each FR must be satisfied by a single DP. The relationship between each FR and DP is
captured by the design matrix. The independence axiom states that each FR must be independent
of the other FRs. The information axiom states that the information content of a design should be
minimized. By using these two axioms along with a rigorous process for design, one can design a
system that best satisfies all the FRs, without unnecessary iteration.

A product is developed solely to satisfy a customer’s needs. The customer is willing to
pay for his/her satisfaction, so that the developer can earn a profit. Therefore, the start of every
design is in the customer needs (CN) domain. Depending on whom the customer is this process
could be quite involving or easy. In the case of designers in the aerospace industry, they may only
have one customer, such as NASA or the Department of Defense. This one customer may clearly
states its needs. In other cases, when there are many customers, marketing research must be
performed in order to gain insight into what the customer’s needs are.

From the CN domain, a designer must unravel the minimum set of independent FRs
required to meet each CN. Thus, the designer must create a map from the CN domain to the FR
domain. The first design axiom, the Independence Axiom, states that the designer should
maintain the independence of the FRs. Similarly, as each FR is defined, a design parameter (DP)
must be defined in order to satisfy that functional requirement. That design parameter may have
certain functional requirements of its own, therefore, requiring further breakdown. This process is
called zigzagging because the design progresses by jumping between both the FR and DP
domains, as seen in Figure 1. FRs can also be subject to certain constraints that limit the range of
possibilities of that FR. Constraints can be either introduced into the system by the designer, or
can be inherent, like the laws of physics.

Jeziorek 13

FR1

FR11 FR12

FR111 FR112 FR121 FR122

FR1111 FR1112 FR1211 FR1212

:

DP1

DP11 DP12

DP111 DP112 DP121 DP122

DP1111 DP1112 DP1211 DP1212

:

Functional Domain Physical Domain

Figure 1. Axiomatic Design process creates a hierarchical description of a system by zigzagging

between the functional and physical domains.

The relationship between FRs and DPs is represented by the design matrix. Ideally, each

DP should only affect a single FR. The design matrix of such a system is said to be uncoupled
(Figure 2a). Having one DP affect multiple FRs causes many problems. The design matrix of
such a system is said to be decoupled (Figure 2b) or coupled (Figure 2c). Notice in Figure 2b that
if DP3 is changed, then it affects FR1, FR2, and FR3. A decoupled design must be performed in a
certain sequence in order to prevent iteration. A coupled design requires multiple iterations in
order to satisfy the functional requirements. The X at ijth position of the matrix in the design
matrix denotes that a relationship between the ith FR and the jth DP exists. Also, Aij can be a
variable relating FRi and DPj.

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

3

2

1

3

2

1

DP
DP
DP

X00
0X0
00X

FR
FR
FR

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

3

2

1

3

2

1

DP
DP
DP

XXX
0XX
00X

FR
FR
FR

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

3

2

1

3

2

1

DP
DP
DP

XXX
XXX
XXX

FR
FR
FR

 (a) uncoupled (b) decoupled (c) coupled
Figure 2. Varying degrees of coupling in design matrices. (X’s mark a relationship, 0’s mark no

relationship)

 The complexity of a design is measured in the uncertainty of the DPs ability to satisfy the
FRs. In a time-invariant design, the uncertainty is the probability that an FR will be successfully
fulfilled. This probability is captured by the overlapping of the design range and the system range.
The design range is the acceptable range of values in which an FR can reside. The system range is
the range of values in which the FR actually resides. For example, suppose that a FR is satisfied
on the design range of 0.125. +/- 0.03125 and the FR actually remains uniformly distributed on
the system range of 0.109375 +/- 0.015625. This system range is entirely within the design range,
and therefore that FR has a 100% probability of success. Suppose that, instead, the FR’s system
range was 0.25 +/- 0.125 with uniform probability. This determines that the probability of success
of that DP satisfying that FR is 0.03125/0.25 or 12.5%.

In general, the design range is the acceptable range of values that an FR can take, and the
system range is the actual range of values that the FR takes, typically represented by a probability

Jeziorek 14

density function, seen in Figure 3. The probability of success is the area underneath the curve of
the probability density function, fFR, of the FR on the design range (DR). This relationship is
captured in Equation 4.

() ∫= DR FR dxxf

i
)(Successful FRP i

Equation 4

A Probability Density Function of FRi

X (Values FRi can take)

fF
R

i(X
)

Figure 3: Probability Density Function of FRi

The uncertainty can also be represented in another way, called information. The
information of the uncoupled FRi is defined in terms of the probability Pi of Satisfying FRi, as
seen in Equation 5.5

ii PI 2log−=

Equation 5

The information axiom states that the designer should minimize the information content
of the design. The best design therefore is the one with the least information content, or in other
words, the best design is one that has the highest probability of satisfying all the FRs. Information
content, therefore, becomes a useful measurement of the complexity of a system, which can also
be defined in terms of uncertainty of being able to fulfill all the FRs of the system.

Thus, the design information is completely captured in the Axiomatic Design framework,
from the customer needs domain, to the functional and physical domains. The complexity of the
design is captured by the uncertainty in fulfilling all the FRs.

5 For a more in depth description of information see p. 39 of reference [1].

Mean Value

Design Range

fFRi(X)

Jeziorek 15

Connecting Design and Cost Information
 In order to connect the design description of the system with cost information, another
domain is created. This new domain is termed as the costing unit domain. The costing units (CUs)
are physical entities that represent the actual system. To some degree, it is equivalent to the bill of
materials (BOM), list of components, or work breakdown structure (WBS). CUs are not the same
as DPs, since DPs can be variables or characteristics that are not necessarily physical parts. For
example, a beverage can has 12 FRs and 12 corresponding DPs, but only three CUs – integrated
physical components. The design of the main body of the can should satisfy the FRs of containing
radial and axial pressure and withstanding impact from a 2m height by modifying DPs like the
material, thickness, radius, length, and convex shape of the bottom of the can.6 In our model, FRs,
driven by customer needs, are mapped into DPs, and DPs are mapped into CUs. This chain of
information enables us to assess the impact of the FRs on cost. Thus, information that historically
has resided in two separate domains is now integrated together, as seen in Figure 4.

FR1

FR11 FR12

FR111 FR112 FR121 FR122

FR1111 FR1112 FR1211 FR1212

:

FR1

FR11 FR12

FR111 FR112 FR121 FR122

FR1111 FR1112 FR1211 FR1212

:

DP1

DP11 DP12

DP111 DP112 DP121 DP122

DP1111 DP1112 DP1211 DP1212

:

DP1

DP11 DP12

DP111 DP112 DP121 DP122

DP1111 DP1112 DP1211 DP1212

:

Functional
Domain

Physical
Domain

CU1, $

CU2, $

CU11, $

CU21, $

CU12, $

CU13, $

CU22, $

:

Cost
Domain

Figure 4: FRs and DPs are connected to CUs, naturally linking design and cost information together.

The FR-DP structure in our model is hierarchical. As the design matures from conceptual
solutions to detailed solutions, the FR-DP map develops deeper levels of hierarchical structure.
Since the cost information is closely tied to the FR-DP map in our model, it naturally produces a
system design cost breakdown from the top-level to leaf-levels. This cost breakdown, along with
the hierarchical design description, offers a good way to manage cost information. In the next
chapter, one example of the utility of this link will be shown. The framework will be used to track
the propagation of a design change to a functional requirement into the cost domain.

Traceability
Traceability is being able to track the relationship between requirements and the solutions

that satisfy those requirements. How does Axiomatic design aid in traceability? Refer to Figure 5
and Figure 6. Notice that the design parameter, DP121 affects FR121, FR122, and FR123.
Suppose that we need to determine the impact of a requirement change to FR121. In order to
satisfy the change in that requirement, DP121 will have to be changed. Because DP121 affects
FR122 and FR123, then those requirements may not longer be satisfied after DP121 is changed.
This, therefore, implies that DP122 and DP123 must change as well. Note that a change to DP123
will propagate to the lower levels FR1231 and FR1232. Therefore, traceability is obtained by
identifying which solutions are likely to change due to a requirement change and then see what

6 See p. 19 of reference [1].

Jeziorek 16

other requirements may be affected. The design matrix provides an easy way to determine which
requirements and design solutions will be affected by a change.

Figure 5: A Requirement and Solution Decomposition

Figure 6: A matrix highlighting the relationship between solutions and requirements.

The current process of capturing traceability in the industry lacks DPs and their
relationship to requirements. Instead only requirements and their related hierarchy are captured.
Suppose that a design had the same situation as described by Figure 5. Following the industry’s
process, the requirements hierarchy would look like the one in Figure 7.

Jeziorek 17

Figure 7: A hierarchial system requirement (SR) decomposition of the same design as in the previous

two Figures.

 In order to provide an adequate amount of traceability (the same as provided when design
parameters are used), SR 11 should link to SR 12, SR 121 should link to SR 122 and 123, and SR
1231 should link to SR 1232. These links are represented by the dotted-lines in Figure 7. This
would provide the same result as that from the previous two figures. The way that these links are
typically determined is through design parameters. So whether or not design parameters are
recorded, the links are established by design parameters. There would be no other way to
determine how two seemingly unrelated system requirements are related. It is only by
determining an intermediate parameter that affects whether both requirements are satisfied.
Design parameters are inherently in the design process, but are typically not recorded and related
to functional requirements. Axiomatic design requires the designer to record design parameters
and their relation to requirements. Traceability, therefore, is inherent in the Axiomatic design
process.
 The credibility of a cost estimate is enhanced by traceability because it provides
additional information about the design that was not available before. For example, when a design
change is introduced, it will become immediately apparent which functional requirements, design
parameters, and costing units are involved in that change. This helps to define what the scope of
the design change should be. When a design change is introduced, without traceability it is
difficult to determine which costing units will be affected. As a result, the actual list of costing
units that will be affected by a change may be different from what is identified and, therefore, the
scope of the design change could be incorrect. A cost estimate based on an incorrect scope, no
matter how accurate the cost estimating tools used, will still be incorrect. The next chapter shows
how traceability is used to define the scope of a design change.

Summary
 Current cost estimation practices do not adequately take into account all aspects of the
design, including customer needs, functional requirements, design parameters, and complexity.
They solely rely on physical parameters of a design like weight, power, number of gear teeth, etc
to determine cost information. Historical data attempts to fill in the gap by taking into account

SR 0

SR 1 SR 2

SR 21 SR 22 SR 23 SR 11 SR 12

SR 121 SR 122 SR 123

SR 1231 SR 1232

Dotted-lines
are difficult to
determine
without DPs

Jeziorek 18

past trends in design complexity and iteration. Our model enhances the credibility of cost
estimation by linking design and cost information together.

The axiomatic design framework provides a good description of the design. It maps the
customer needs into functional requirements (FRs), and then to design parameters (DPs). The
relationship between FRs and DPs is represented by the design matrix. The design matrix is
essential in revealing the complexity of the design, which is defined as the uncertainty in
fulfilling all the FRs. This uncertainty is measured in terms of the overlap of the design and
system ranges. The design matrix also uncovers the coupled nature of the design. This coupling
can either be eliminated through developing a better design or can be dealt with properly by
varying the DPs in the correct sequence or through design iteration. When used correctly,
axiomatic design becomes a great tool to aid in the designing process and results in a solid
description of the design.

Design and cost information are linked together by linking the FR and DP domains to a
new costing unit domain. A costing unit (CU) can be thought of as a component of the Work
Breakdown Structure (WBS) and is the typical object of the cost estimation efforts. The link
occurs by mapping DPs to the respective CUs. Since the cost information is closely tied to the
FR-DP map, it naturally produces a system design cost breakdown from the top-level to leaf-
levels. The utility of this link is shown in the following chapter in determining the cost of a
design change.

Traceability is being able to track the relationship between requirements and the
solutions that satisfy those requirements. The axiomatic design process requires the
designer to record all the design solutions and their relation to FRs. By doing so, the
designer is inherently increasing the traceability in the design. Traceability aids in
defining the scope of a design change. Without traceability, a team of experts must come
together and try to identify the requirements and solutions that will be affected by the
change. The team of experts can potentially include unaffected requirements and
solutions and exclude others that are affected. The result is that the scope of the cost
estimate is erroneous. With traceability, it immediately becomes apparent which FRs,
DPs and CUs will be affected by the design change. The scope of the design change is
clearly and correctly defined, adding credibility to the cost estimate.

Jeziorek 19

Chapter 3

Quickly Estimating the Cost Impact of a Design Change
to Development

 How does a design change affect the life-cycle cost of a system? First of all, it will help
to define what a design change is. A design change is usually implemented by a designer either
because the customer needs or constraints have changed, or because the functional requirements
(FRs) directly have been changed. Design parameters (DPs) are then modified in order to meet
the changed FRs. Also, technical advances or roadblocks may encourage the use of a different DP.
The general procedure in determining the cost impact of a design change should start with
determining which DPs must change. Then a magnitude of the change to each DP should be
determined. This magnitude should then translate into an increase or decrease in life-cycle cost.
 This chapter focuses on determining the cost impact of a design change to the
development cost. The general method of determining the cost impact of a design change applies
here. A set of FRs are identified as changed, thereby requiring certain DPs change. The set of DPs
that must change are determined from the design matrix. Now, in order to estimate the
development cost, the affected components, or CUs, are identified by a DP-CU, and CU-CU
matrix and the time required to complete the design changes for each component is determined
using a Task-based model. This procedure takes into account the physical interactions between
components, in order to determine how the change propagates through the system. The additional
iterations required to make the change are determined by a Task-based model, which quantifies
the coupling of tasks. Once the additional time required to finish each component after a design
change is determined, the time directly translates into labor costs. Historically, the development
labor cost is approximately directly proportional to the total development cost, which includes
material and labor costs. The total development cost due to the design change, then, is estimated.

Once the model is constructed, all that is required is the input of several parameters in
order to determine the cost impact of a design change. This model once encoded into software,
therefore, is an extremely quick and useful tool that aids in the management process as design
changes are being considered for implementation. Typically, it takes organizations several weeks
to determine what the actual impact of a design change will be to the design and life-cycle cost.
Their analysis is not always guaranteed to be complete either. Instead, this model outputs the
affected components, how they are affected, and what the cost impact will be. The output from
this model also serves as a medium of discussion about design changes for organizations like
Ingall’s and the US Navy. The implications of this model, therefore, are of interest to not only
cost estimators, but to the system-developing organization as a whole.

Identify the Components Affected by a Functional Change
The Axiomatic design framework provides a mapping from customer needs into FRs, or

the set of functions that the product must perform in order to satisfy the needs of the customer.
FRs are then mapped into DPs, or specific engineering parameters that are varied in order to
perform the desired functions.7 By doing this, a clear connection is established between the
customer’s needs and the actual product being designed. The relationship between FRs and DPs,
as seen in Figure 8, is of special interest. There are three FRs and three DPs that are related to
each other by this matrix. FR1 is affected by DP1, FR2 is affected by DP2 and FR3 is affected by
DP2 and DP3. Or in other words, if DP1 is changed, FR1 will be affected, if DP2 is changed,
FR2 and FR3 will be affected, and if DP3 is changed, FR3 will be affected. Later, this

7 See Chapter 2, reference [1] and [2] for more detailed information about Axiomatic Design.

Jeziorek 20

information will be used to identify which DPs will be necessary to change in order to satisfy a
change to a functional requirement.

 DP1 DP2 DP3
FR1 X
FR2 X
FR3 X X

Figure 8: The FR-DP Relationship

 The V-model, shown in Figure 9, illustrates how the design process works. The left-hand
part of the V shows the top-down axiomatic design approach, which was described at length in
Chapter 2. FRs are developed from customer needs. DPs are then created that can satisfy those
FRs. The decomposition process unravels more details of the design. Once this process is
completed, all the physical components, or costing units (CUs), must be identified. CUs are the
objects of the cost estimation, and the physical artifacts generated from the design. For the
beverage can, the three physical components of the can would be the three CUs. Each DP can be
embedded in multiple CUs and each CU can embody multiple DPs. The reason one DP can map
to several CUs originates from the fact that designers create CUs that are at a lower level than the
available DPs. For example, one FR may state “Provide fuel to the engine” and the corresponding
DP would be a Fuel Delivery System. This may include CUs such as a fuel tank, fuel pump, fuel
lines. This higher level DP would correspond to these three CUs in the absence of further
decomposition. After full decomposition, this problem will no longer occur. The relationship
between DPs and CUs can be seen in the example in Figure 10. CU1 contains DP1 and DP2; CU2
contains DP1, DP2 and DP3; CU3 contains only DP4. Finally, once all CUs have been identified,
these CUs must be integrated into a complete system.

Figure 9: The V-Model illustrates how DPs are integrated into physical entities, or CUs.

Detailed
system

(Bottom - up)

Establish
interfaces

Construct local
assemblies

Satisfy system
morphology

Identify
physical
components

Detailed
system

Integrate CUs

(Bottom - up)

Establish
interfaces

Construct local
assemblies

Satisfy system
morphology

Identify
physical
components

Customer
Needs

Define
FRs

Map to
DPs

Map DPs
into CUs

Build FR - DP
hierarchy
(Top - down)

Decompose

Customer
Needs

Define
FRs

Map to
DPs

Build FR - DP
hierarchy
(Top - down)

Jeziorek 21

 CU1 CU2 CU3
DP1 X X
DP2 X X
DP3 X
DP4 X

Figure 10: The DP-CU Relationship

 With the FR-DP and DP-CU matrices, we can determine the list of components that are
affected by a functional change. Suppose that the following design matrix, in Figure 11, was
under consideration for a significant design change. In order to best satisfy the customer needs, a
manager decides that FR1 will have to change. Consequently, in order to satisfy FR1, DP1 will
also have to change. Because DP1 also affects FR6, DP6 will have to be changed in order to
compensate for the change in DP1 and still satisfy FR6. The result of the change to FR1 is that
DP1 and DP6 will have to change.

Figure 11: A change to FR1 requires a change in DP1 and DP6

 From the DP-CU relationship, seen in Figure 12, we can find the CUs (components) that
will be affected by the changes to DP1 and DP6. Reading from left to right and then up, we can
identify CU1 and CU3 as the components that will need to be changed as a result of the change to
FR1. Thus the output from the DP-CU matrix is a list of components affected by the functional
changes.

Development

DP1 X 0 0
DP2 X X 0
 : : : :
DP6 0 0 X

 : : : :
DPn 0 X 0

FR change

Off-diagonal term
Indicates FR6 is
affected by DP1 change

DP6 to respond
FR6 effect XXX

XXX

X

X

XXX

XX

X

XX

X

X

X

X

X

XXX

XXX

X

XXX

XX

X

XX

X

X

X

X

FRi
FRj
FRk
:
:

FRn

DPi
DPj
DPk
:
:

DPn

=

XXX

XXX

X

X

XXX

XX

X

XX

X

X

X

X

X

XXX

XXX

X

XXX

XX

X

XX

X

X

X

X

XXX

XXX

X

X

XXX

XX

X

XX

X

X

X

X

X

XXX

XXX

X

XXX

XX

X

XX

X

X

X

X

FRi
FRj
FRk
:
:

FRn

FRi
FRj
FRk
:
:

FRn

DPi
DPj
DPk
:
:

DPn

DPi
DPj
DPk
:
:

DPn

=

FR1
FR2
 :
:
:

FR6
 :
 :
FR9

DP1
DP2
 :
:
:

DP6
 :
 :
DP9

CU3 CU2 CU1

Jeziorek 22

Figure 12: A change in DP1 and DP6 necessitates a change in CU1 and CU3.

 This list of affected components only takes into account functional interactions between
DPs. Many components interact with each other physically as well as functionally. However, this
information is typically not captured by a design matrix. Instead, a new CU-CU matrix was
created in order to capture physical interactions between CUs. Imagine a set of components that
physically interact with each other, as in Figure 13. Five examples of component attributes that
can interact with other components are physical, spatial, thermal, information and
electromagnetic. The physical attribute indicates that this component physically integrates with
another component, for example, by a mount or tubing. The spatial attribute specifies size or
location of the component. The thermal attribute marks the presence of heat exchange or
generation. The information attribute is the flow of information into and out of a component. The
electromagnetic attribute is the transmission of an electromagnetic signal into or out of a
component. A component can interact with its neighbors through any combination these five
attributes. For example, In Figure 13, the physical attribute of Component 1 interacts with the
physical attribute of Component 3 and the information attribute of Component 1 interacts with the
electromagnetic attribute of Component 2. These interactions are two way because of the question
that we ask: “Does the information attribute of Component 1 interact with the electromagnetic
attribute of Component 2?” “Does the electromagnetic attribute of Component 2 interact with the
information attribute of Component 1?” is the same question. The answer is yes for both
questions, since they are the same question. Even an attribute within component 1 could interact
with another attribute of component 1. In the example in Figure 13, the information and
electromagnetic aspects of component 1 interact with each other.

Figure 13: Component Interactions

 Unfortunately, diagrams like this become difficult to create and read as the number of
components or CUs increases to the hundreds, or even thousands. A CU-CU matrix better
captures this information. Essentially, the CU-CU matrix is a collection of two-way pointers that
connect the CU attributes. By definition, this matrix is symmetric. The equivalent matrix of
Figure 13 can be seen in Figure 14. This matrix is also similar to that of a component design
structure matrix.

Costing Unit CU1 CU2 CU3

Component 1

Component 2

Component 3

physical

physical
thermal spatial

electromagnetic

information

electromagnetic

Jeziorek 23

 Aspect ph
ys

ic
al

in
fo

rm
at

io
n

el
ec

tro
m

ag
ne

tic

sp
at

ia
l

el
ec

tro
m

ag
ne

tic

ph
ys

ic
al

th
er

m
al

Physical X X
information X X X CU1
electromagnetic X X
Spatial X X CU2
electromagnetic X X
Physical X X CU3
Thermal X X

Figure 14: The CU-CU Matrix

 By using a CU-CU matrix, the list of affected CUs from a functional change can be
refined and expanded. The following example will demonstrate the propagation of changes
through interfaces of components. Recall from Figure 12 that CU1 and CU3 had been identified
as the affected CUs by a functional change in FR1. Suppose that the interactions between the
three CUs were characterized by the CU-CU matrix in Figure 14. Certain attributes of CU1 and
CU3 will change to satisfy the FRs that had been changed. Suppose that the information attribute
of CU1 and the thermal attribute of CU3 were changed. This type of change would necessitate a
change in the electromagnetic attribute of CU1 and the spatial and electromagnetic attributes of
CU2. The interface between the information and electromagnetic attributes of CU1 is represented
by the two X’s at (2,3) and (3,2). Because this interface was identified as necessary to change,
both X’s are marked. The method of determining the affected interfaces is known as change
propagation outlined in Figure 15. All the X’s in the column of a changed attribute are marked as
necessary to change. For example, following the line from the thermal attribute of CU3 identifies
the spatial attribute of CU2 as being affected. The input to the CU-CU matrix is the information
attribute of CU1 and thermal attribute of CU3 and the output is the information and
electromagnetic attributes of CU1, the spatial and electromagnetic attributes of CU2, and the
thermal attribute of CU3. This successfully identifies the complete list of affected CUs and even
the attributes and interfaces of the CUs that will be affected by the change. This step can be
repeated with the output as input in order to reflect further propagation of the change.

Jeziorek 24

Component

Aspect ph
ys

ic
al

in
fo

rm
at

io
n

el
ec

tro
m

ag
ne

tic
sp

at
ia

l
el

ec
tro

m
ag

ne
tic

ph
ys

ic
al

th
er

m
al

physical X X
information X X X
electromagnetic X X
spatial X X
electromagnetic X X
physical X X
thermal X X

CU3

CU1

CU2

CU3

CU1 CU2

3/6 50% Rework

2/4 50% Rework

2/4 50% Rework

Inputs

Outputs

Component

Aspect ph
ys

ic
al

in
fo

rm
at

io
n

el
ec

tro
m

ag
ne

tic
sp

at
ia

l
el

ec
tro

m
ag

ne
tic

ph
ys

ic
al

th
er

m
al

physical X X
information X X X
electromagnetic X X
spatial X X
electromagnetic X X
physical X X
thermal X X

CU3

CU1

CU2

CU3

CU1 CU2

3/6 50% Rework

2/4 50% Rework

2/4 50% Rework

Inputs

Outputs

Figure 15: Determining the complete list of CUs affected by a functional change by analyzing the

interactions between CUs.

 The nature of propagation of a change can be understood better through an example.
Suppose that in the middle of the design of a car, it is decided that the size of the trunk must
change. The trunk is connected to the frame of the car, and therefore, a change in the size of the
trunk could affect the design of the frame. The frame of the car is also connected to the engine
bay, and if the frame design changes, then perhaps the engine bay design must also change. If the
engine bay design changes, perhaps the engine, intake, headers, or throttle body may have to
change. This question could continue until all components had been identified as affected due to a
change in the trunk. This is not very useful for cost estimation analysis. Instead, the “nearest
neighbor” rule is employed. The nearest neighbor rule states that a change to a component only
propagates changes to components that are directly connected to that component. For the CU-CU
matrix, this means that the process of change propagation is only performed once.
 A measure of the magnitude of a change is the number of affected interfaces or attributes
out of the total number of interfaces and attributes. Note that interfaces are indicated by off-
diagonal X’s, while diagonal X’s indicate attributes in a CU-CU matrix. We later use this
measurement to determine the amount of rework that must be done to complete the design change.
The calculation of percentage rework can be seen in Equation 6.

AttributesandInterfacesof#Total
Attributesor Interfaces Affected of # Rework % =

Equation 6

Take, for example, CU1 from Figure 15 and calculate the % Rework. There are three attributes
and three interfaces, for a total of six interfaces and attributes.8 The information attribute will
have to change and the CU1 Information – CU1 Electromagnetic, and CU1 Information – CU2
Electromagnetic interfaces will have to change, for a total of 3 affected interfaces and attributes.
The % Rework is then calculated to be 3/6, or 50%. This indicates that 50% of the CU1 design
must be redone, while the other 50% can still be used.

8 The X’s at (3,2) and (2,3) count as one interface within CU1.

Jeziorek 25

Determine the Development Labor Cost
 Now that the complete list of CUs has been identified and the amount of rework required
for each CU has been calculated, the amount of development time required to implement those
changes can be determined. By measuring the impact of a change on the development time of a
project, the cost of labor can be determined. This is accomplished using a task based model.9
Recall from Equation 2 that the total development cost is the sum of the labor and material costs
accrued during the development phase. This section is specifically dealing with the labor portion.

The task based model is a record of the interaction between all the processes in a project
and a means of calculating the time required to complete each task. There are three different
configurations of two tasks A and B, as seen in Figure 16. If task B requires information from
task A, the task A must be completed before task B. These two tasks are sequenced in series. If
tasks A and B do not require information from each other, then they can be performed in parallel.
If tasks A and B require information from each other, then they have to be performed in parallel
with iterations involved. We chose to model tasks as being done all at the same time (in parallel),
though development typically involves a mixture of the three forms of task sequencing.

Figure 16: Three possible sequences for two tasks.10

 Drawing figures aids in the visualization of how tasks interact, but this practice becomes
less useful and more cumbersome as the number of tasks increases. The work transformation
matrix, WT, is used instead, as seen in Figure 17. This matrix shows that tasks A and B are
coupled, interdependent tasks. In a parallel iteration model, tasks run through an iteration, and
then exchange information, thereby creating additional work called rework. Both tasks iterate in
this way until both tasks are completed. The total time in order to complete each task, therefore, is
the sum of the time spent on each iteration. The values in the matrix represent the percentage of
rework created at the end of each iteration. The work transformation matrix in Figure 17 indicates
that task B creates an additional 50% of rework for task A and that task A creates an additional
30% rework for task B after each exchange of information.

 A B
A 0.5
B 0.3

Figure 17: A Work Transformation Matrix, WT, with Two Coupled Tasks

 Mathematically, the total time required to complete two tasks in parallel is the following.
The initial work vector, u0, represents the initial amount of work required to complete each task

9 See reference [3] and [4].
10 From reference [4]

Jeziorek 26

assuming completely independent tasks. This is represented by a column vector of 1’s of length m,
where m is the number of tasks.

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

1
:
:
1

u 0

Equation 7

In order to find the amount of rework required to complete the nth iteration, we multiply un-1 by
WT.

1-nn WTuu =

Equation 8

For example, to calculate u1 for the WT matrix in Figure 17, multiply WT and u0:

⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
==

3.0
5.0

1
1

00.3
0.50

WTuu 01

As n gets large, the work vector should converge to 0. If it doesn’t, this means that the tasks are
too interdependent and will continue to iterate forever. The total work vector, U, is the sum of all
the work vectors.

∑ ∑ ∑ ∑ ⎟
⎠

⎞
⎜
⎝

⎛
==+==

N

0

N

1

N

0
0

N

0

n
0

n
1-n0n uWTuWTWTuuuU

Equation 9

The total work vector, U, for the example in Figure 17 is calculated to be
⎭
⎬
⎫

⎩
⎨
⎧

=
1.5294
1.7647

U , with

the u10 converging to the zero vector, a vector in which all its elements are zero.11 This means that
task A will have to do 76.47% more work due to the dependency on task B and that task B will
have to do 52.94% more work due to the dependency on task A.
 With a task based model, we can calculate the amount of time required to complete each
component (CU). Each component has a certain set of interdependent tasks required to complete
that component. For a system with thousands of components, it could become tedious to identify
all tasks required to complete each component and the interdependencies between tasks. One
solution is to assume that all components require the same set of tasks. For example, this set of
tasks could be design, tooling, fabrication and testing. Or to obtain finer detail, components could
be categorized by type: heat exchanger, software, avionics, mechanical, sensors, actuators, etc.
Each component category would have a different set of tasks. For example, a software
“component” of a system would include tasks like design, code, and test while an avionics
component may include define requirements, perform trade studies, perform analysis, design,
build prototype, and test. Each component category, or bucket, will have a unique work
transformation matrix. With this method, a set of tasks and work transformation matrices for each
component category would have to be identified and each component would have to be associated
with a category. This greatly reduces the time required to set up a task based model. Additionally,
there can be a distinction in the set of tasks between a parent component and its subcomponents.

11 This is defined by a convergence criterion. All elements of ui must meet the convergence criterion in
order to state that the ui vector has converged to the zero vector.

Jeziorek 27

For example, a parent component may need to be conceptually designed and later its
subcomponents would have to be assembled and then tested. A typical work transformation
matrix or process matrix produced in this way can be seen in Figure 18.
 The total work vector, U, must converge to a finite value. A non-converging U suggests
that the given the set of interdependent tasks cannot be completed in a finite amount of time. We
know from experience that in nearly all cases, designs are completed in a finite amount of time.
Convergence is really determined by the values in the work transformation matrix, WT. Because
these values are estimates of some true value, it is possible to create a non-converging matrix.
Therefore, the values in the matrix should be carefully chosen in order to create convergence.
One way to create convergence is to incorporate the “learning effect.” After each iteration, the
task performer becomes slightly more efficient at their task. This can be represented by
multiplying the entire WT matrix by a value less than 1 after each iteration. This value would
need to be experimentally verified, but could be as high as 15% decrease in time required to
finish the task.

C
on

ce
pt

ua
lly

 D
es

ig
n

A
ss

em
bl

e

Te
st

D
es

ig
n

To
ol

in
g

Fa
br

ic
at

io
n

Te
st

In
st

al
la

tio
n

D
es

ig
n

To
ol

in
g

Fa
br

ic
at

io
n

Te
st

In
st

al
la

tio
n

D
es

ig
n

To
ol

in
g

Fa
br

ic
at

io
n

Te
st

In
st

al
la

tio
n

D
es

ig
n

To
ol

in
g

Fa
br

ic
at

io
n

Te
st

In
st

al
la

tio
n

Conceptually Design 0.00 0.00 0.10 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00

Assemble 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.10

Test 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00

Design 0.05 0.05 0.10 0.00 0.10 0.10 0.50 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tooling 0.00 0.00 0.00 0.50 0.00 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fabrication 0.00 0.00 0.00 0.00 0.50 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 0.00 0.00 0.00 0.70 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Installation 0.00 0.00 0.00 0.00 0.00 0.80 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Design 0.05 0.05 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.50 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tooling 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fabrication 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Installation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Design 0.05 0.05 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.50 0.10 0.00 0.00 0.00 0.00 0.00

Tooling 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00

Fabrication 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00

Test 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Installation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.80 0.00 0.00 0.00 0.00 0.00 0.00

Design 0.05 0.05 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.50 0.10

Tooling 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.20 0.10 0.00
Fabrication 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.10 0.00
Test 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.00 0.40 0.00 0.00
Installation 0.00 0.80 0.80 0.00

C
U

2
C

U
3

C
U

4

CU1 CU2 CU3 CU4

Process
Matrix

C
U

0
C

U
1

CU0

Figure 18: A Complete Work Transformation Matrix using the same WTs for each component with

one parent component.

Once the total work vector U [unit time] has been calculated, the total labor cost can be
calculated. First, an estimate of the time it would take to complete the task independently from
any other tasks is necessary, also known as the time to complete the first iteration. This vector,
W0 [time per unit time], is then multiplied by U to determine the total work load vector, WL

Jeziorek 28

[time]. The WL vector is the total amount of time required to complete each task, given all the
interdependencies. The ith component WL is multiplied by the ith component of C, which contains
the cost per hour of each task, to yield the ith component of the total cost vector, TC. This process
is summarized in Equation 10.

TCi = WLi Ci = Ui W0i Ci

Equation 10

Equation 10 demonstrates the calculation of the final labor cost using the work transformation
matrix in Figure 18. The first column represents u0, a column vector of 1’s. The total work vector,
U, is calculated in the second column using Equation 9 and converges in 50 iterations. The vector,
W0, which contains the time to complete the first iteration for each task was estimated in the third
column. The vector, WL, which contains the total time to complete each task is in the fourth
column. The cost vector, C, which contains the cost per hour for each task is in the fifth column.
The vector, TC, which contains the total cost for each task, is in the final column. The sum of
each element of the TC vector yields the total cost of the system given the work transformation
matrix, WT, and estimates of W0 and C. If this development labor cost estimate does not seem to
be accurate, then the W0 vector must be inaccurate. The model can be calibrated by adjusting the
values of W0 until TC matches with either historical data or other estimates. This process of
calibration tries to match the amount of iteration performed historically with the amount that will
be performed with this design.

Jeziorek 29

C
om

po
ne

nt

Ta
sk

u0
 (u

ni
ts

 o
f t

im
e)

U
 fo

r D
es

ig
n

A
(u

ni
ts

 o
f t

im
e)

W
0

- T
im

e
to

 C
om

pl
et

e
Fi

rs
t I

te
ra

tio
n

(h
ou

rs
)

W
L

- T
ot

al
 N

um
be

r o
f H

ou
rs

 P
er

 T
as

k

C
 -

C
os

t P
er

 H
ou

r o
f T

as
k

($
/h

ou
r)

TC
 -

La
bo

r C
os

t o
f T

as
k

($
)

Conceptually Design 1 3.582 400 1432.79 $150.00 $214,918.67
Assemble 1 6.856 40 274.22 $50.00 $13,711.05
Test 1 5.138 100 513.76 $75.00 $38,532.16
Design 1 10.357 150 1553.60 $150.00 $233,039.55
Tooling 1 8.511 150 1276.66 $75.00 $95,749.62
Fabrication 1 6.326 75 474.42 $75.00 $35,581.70
Test 1 10.768 20 215.36 $75.00 $16,152.12
Installation 1 14.658 10 146.58 $100.00 $14,657.93
Design 1 10.357 150 1553.60 $150.00 $233,039.55
Tooling 1 8.511 150 1276.66 $75.00 $95,749.62
Fabrication 1 6.326 75 474.42 $75.00 $35,581.70
Test 1 10.768 20 215.36 $75.00 $16,152.12
Installation 1 14.658 10 146.58 $100.00 $14,657.93
Design 1 10.357 150 1553.60 $150.00 $233,039.55
Tooling 1 8.511 150 1276.66 $75.00 $95,749.62
Fabrication 1 6.326 75 474.42 $75.00 $35,581.70
Test 1 10.768 20 215.36 $75.00 $16,152.12
Installation 1 14.658 10 146.58 $100.00 $14,657.93
Design 1 10.357 150 1553.60 $150.00 $233,039.55
Tooling 1 8.511 150 1276.66 $75.00 $95,749.62
Fabrication 1 6.326 75 474.42 $75.00 $35,581.70
Test 1 10.768 20 215.36 $75.00 $16,152.12
Installation 1 14.658 10 146.58 $100.00 $14,657.93

Total 23 218.06 2160 16887.3 n/a $1,847,885.56

C
U

4
C

U
0

C
U

1
C

U
2

C
U

3

Figure 19: Sample labor cost calculation, based on the work transformation matrix in Figure 12.

Estimate the Cost Impact of a Design Change
 In order to estimate the change in cost of a system due to a functional change, the
magnitude and the phase of the change must be known.

The phase of the system is important in identifying in what phase of the design the
change is being implemented. The phase of the system answers the question of “How much of the
full design has been finished?” This can be thought of as the amount of FR-DP decomposition
completed. If a change is made early in the design phase, when say 10% of the design is
completed, then the design change should be relatively cheap to make. A change made late in the
design phase, when say 90% of the design is completed, will be have a far higher cost penalty.
American car companies, for example, sometimes find it necessary to make a design change
when the car is already in the consumers hands due to dangerous failures. These recalls cost
American car companies millions of dollars more than they would have had to pay if they had

Jeziorek 30

made the change while early in the design phase. The phase of the change lies in the calculation
of the total work vector. The cumulative sum of all the elements of U are plotted versus the
number of design iterations, N, in Figure 20.12 The total amount of work for all tasks that must be
done is 220 units of time. Therefore, the phase of the design can be determined by dividing the
current amount of time completed by the total amount of time. 10% of the design would be
completed if 22 units of time had been completed, 20% of the design would be completed if 44
units of time had been completed, and so on.13

Convergence of Time in a Design

0.0

50.0

100.0

150.0

200.0

250.0

0 10 20 30 40 50 60

Design Iterations, N (steps)

Un
its

 o
f T

im
e

Figure 20: Seeing the phase of the design in the total work vector, U. Please note that these are units

of time, before multiplication of W0, and not actual hours.

 The magnitude of the change comes from the percentage rework that was calculated from
Figure 15. This tells us how much more work must be done in order to complete the new design.
Recall that the percentage rework is calculated for each of the CUs, not each task. Therefore, the
percentage rework vector will look something like the following:

where the tasks corresponding to the same CU have the same % rework factor.
 Mathematically speaking, the actual calculations work as follows. Rewriting Equation 10:

TCi = Ui W0i Ci
Equation 11

12 This graph is obtained used the following method: for example step 0 is the sum of all elements in u0,
step 10 is the sum of all elements in u0, u1, …, and u10. This is a measure of the total amount of work
completed in units of time as the number of design iterations or steps increases.
13 It should be noted that, in the end, each unit of time for each task is weighted differently by the W0
vector. The best way to determine the design completion would be to compare with the weighted times, and
not the unweighted times. This is not done in this analysis.

{ }T0.33 0.33, 0.33, 0.33, , ... 0.67, 0.67, 0.67, 0.67, 0.25, 0.25, 0.25, 0.25, Rework % = = α

Converges to 220

Design 50% Complete, 5th iteration

Design 25% Complete, 2nd iteration

Design 75% Complete, 11th iteration

Design 100% Complete, 50th iteration

Jeziorek 31

If we make a change at the jth iteration, with a rework vector, α, then the ith component of uj
becomes

() iijiij
uu αα +−= 1*

Equation 12

This means that of the work that has been completed by the jth iteration, α% of that work must be
completely redone. This will affect the total work vector, U.

() () *1
0

* j
Njj uWTWTuWTWTIU ++++++= +

 Finally, substitute this new work vector, U*, into Equation 11.

ii
*
ii C W0UTC =

Equation 13

Suppose that for the same example from Figure 18, Figure 19 and Figure 20, the %
rework for CU0, CU1, CU2, CU3, and CU4 was determined to be 25%, 50%, 75%, 100%, 25%,
respectively. Also assume that we decided to make a change from design A to design B when
about 60% of the design had been completed by the 7th iteration. The time to complete the system
design is plotted in Figure 21, as done before in Figure 20. Notice that making this change
requires an additional 70 units of time to complete. The final results are calculated in

Figure 22.

Time to Complete
Design A vs. Design B

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

0 10 20 30 40 50 60

Design Iteration, N (steps)

U
ni

ts
 o

f T
im

e Design A

Design A ->
Design B

Figure 21: The impact on the total amount of time to complete the design when making a change

from design A to design B at 60% completion

70 units of time

Jeziorek 32

C
om

po
ne

nt

Ta
sk

u0
 (u

ni
ts

 o
f t

im
e)

u7
 (u

ni
ts

 o
f t

im
e)

α
(%

 re
w

or
k)

u7
* (

un
its

 o
f t

im
e)

U
* f

or
 D

es
ig

n
A

 c
ha

ng
ed

 to
 D

es
ig

n
B

 (u
ni

ts
 o

f t
im

e)

W
0

- T
im

e
to

 C
om

pl
et

e
Fi

rs
t I

te
ra

tio
n

(h
ou

rs
)

W
L

- T
ot

al
 N

um
be

r o
f H

ou
rs

 P
er

 T
as

k

C
 -

C
os

t P
er

 H
ou

r o
f T

as
k

($
/h

ou
r)

TC
 -

La
bo

r C
os

t o
f T

as
k

($
)

Conceptually Design 1 0.142 0.25 0.356 4.638 400 1855.14 $150.00 $278,270.47
Assemble 1 0.334 0.25 0.500 8.963 40 358.51 $50.00 $17,925.46
Test 1 0.232 0.25 0.424 6.699 100 669.92 $75.00 $50,244.30
Design 1 0.515 0.50 0.758 13.279 150 1991.79 $150.00 $298,768.85
Tooling 1 0.416 0.50 0.708 10.950 150 1642.45 $75.00 $123,183.45
Fabrication 1 0.292 0.50 0.646 8.207 75 615.49 $75.00 $46,161.73
Test 1 0.537 0.50 0.769 13.804 20 276.09 $75.00 $20,706.49
Installation 1 0.743 0.50 0.872 18.731 10 187.31 $100.00 $18,730.61
Design 1 0.515 0.75 0.879 14.268 150 2140.15 $150.00 $321,022.34
Tooling 1 0.416 0.75 0.854 11.848 150 1777.14 $75.00 $133,285.44
Fabrication 1 0.292 0.75 0.823 8.943 75 670.69 $75.00 $50,301.95
Test 1 0.537 0.75 0.884 14.907 20 298.13 $75.00 $22,359.91
Installation 1 0.743 0.75 0.936 20.265 10 202.65 $100.00 $20,265.27
Design 1 0.515 1.00 1.000 15.257 150 2288.51 $150.00 $343,275.82
Tooling 1 0.416 1.00 1.000 12.746 150 1911.83 $75.00 $143,387.44
Fabrication 1 0.292 1.00 1.000 9.679 75 725.90 $75.00 $54,442.18
Test 1 0.537 1.00 1.000 16.009 20 320.18 $75.00 $24,013.34
Installation 1 0.743 1.00 1.000 21.800 10 218.00 $100.00 $21,799.92
Design 1 0.515 0.25 0.636 12.290 150 1843.44 $150.00 $276,515.37
Tooling 1 0.416 0.25 0.562 10.052 150 1507.75 $75.00 $113,081.45
Fabrication 1 0.292 0.25 0.469 7.470 75 560.29 $75.00 $42,021.50
Test 1 0.537 0.25 0.653 12.702 20 254.04 $75.00 $19,053.06
Installation 1 0.743 0.25 0.807 17.196 10 171.96 $100.00 $17,195.95

Total 23 290.7 2160 22487.3 n/a $2,456,012.31

C
U

4
C

U
0

C
U

1
C

U
2

C
U

3

Figure 22: Labor cost calculation given a change from design A to design B at 60% design

completion

 The cost of implementing design B at 60% completion of design A (at the 7th iteration
step) with the rework vector as previously mentioned will cost an additional $608,126.75 for the
development phase in labor.14
 From historical data, it is known that the labor cost is a certain percentage of the total
development cost. This percentage varies depending on the type of component. For example, for
a software application, labor required for development may be 90% of the total development
costs. For a heat exchanger, perhaps the labor required for development may be 50% of the total

14 This is calculated by subtracting the total cost of design A from the total cost of design B.

Jeziorek 33

development cost. This rule of thumb gives an easy calculation of the total cost of a component.
The way of calculating the total labor cost of a component in this cost estimation method is to
sum the total cost of all the tasks required to complete that component. Then the total
development cost of the component can be calculated (recall from Equation 2 that this includes
both labor and material costs):

Equation 14

 For the example that we have been following, suppose that development labor cost is
typically 50% of the total development cost. The total development cost is then determined by
using Equation 14. Without the design change, the total development cost is $3,695,771.12. With
the design change, the total development cost is $4,912,024.62. The suggested design change,
therefore, has an additional total development cost of $1,216,253.50.

Summary
 The method outlined in this chapter provides a quick way of estimating the cost impact of
a design change. The procedure is as follows:

1. Determine the list of components affected by a change
a. Determine the list of FRs that will change due to changes in constraints or

customer needs.
b. Determine the list of DPs that are necessary to change in order to satisfy the

changed FRs by using the design matrix.
c. Determine the list of components that are affected by using the DP-CU Matrix.
d. Further refine the list of components that are affected by examining the physical

relationship between the changed components and other components, using a
CU-CU matrix.

2. Determine the amount of time required to make the changes to the list of affected
components
a. Determine the total cost without the design change by using Equation 10.
b. Determine the % Rework for each CU.
c. Specify the phase of the design change.
d. Determine the total cost with the design change by using Equation 13.

3. Compare and analyze the total development cost before and after the change.
The ability to quickly estimate the cost impact of design changes is invaluable as a

medium of communication between customers and developers. Recall the case of Ingalls and the
Navy presented in Chapter 1. The customer, the Navy, repeatedly asked for changes to the design
without realizing the resonating effect it was creating throughout the entire development process.
By the time they realized the effect of the design changes, Ingalls had exceeded budget by $2.7
billion. With a tool that can quickly show the impact of design changes, situations like this can be
either avoided or anticipated and then negotiated. It will also aid in the decision making progress
because it will create the opportunity to quickly be able to compare the new life-cycle cost to the
benefits of making that change. Decision-makers can make decisions with more information and
confidence about the advantages of making a design change.

The largest amount of time will be spent developing the model with the FR-DP, DP-CU,
CU-CU, and Task Matrices. But this information, once gathered, has many applications beyond
cost estimation. It can become an incredible resource to understanding not only the life-cycle cost,
but also the design and organizational behavior. Axiomatic design is in itself a very effective

Cost Total of Cost Labor %
Component ofCost Labor Total Component of Cost Total =

Jeziorek 34

design tool that is a great improvement over current methods of design. Using axiomatic design
will surely improve the overall design of the system. Also, there is a huge demand for task-based
models in many organizations. It can be used to identify problems in the organization of projects
and the design process. Please see the references provided on axiomatic design and design
structure matrices for further applications.

If developers already use axiomatic design in their design process, this methodology will
be an easy extension of the information that they have already generated. This practice is highly
recommended. Attempting to record the designing process using axiomatic design, is in effect
just designing and then trying to determine what you designed through the Axiomatic design
perspective. This is, in effect, designing the system twice. Axiomatic design is extremely
effective as a design methodology and was not developed with the intention of recording designs.

Jeziorek 35

Chapter 4

Operations Cost
 What makes a car reliable? Often people have a good sense of how reliable the car they
drive is. A car owner pays an expected amount to maintain the car, as prescribed by the
maintenance, and the car performs as expected. If the car does not perform as expected, or the
owner of the car has to pay more than expected, then the car is thought to be unreliable. In daily
life, we have a good sense of the cost of operations. How do the designers of the car estimate the
cost of operation for a system as large as a car? It is important to be able to estimate because it is
critical to customers. People will often pay more for higher reliability, rather than pay for the high
cost of operation.

An Introduction to Complexity
The key element in the cost of operation is time-dependent complexity. Recall from

chapter 2 that complexity is the uncertainty in the design parameters (DPs) ability of satisfying
the functional requirements (FRs). In axiomatic design, complexity takes on four different forms:

• Time-independent real complexity
• Time-independent imaginary complexity
• Time-dependent combinatorial complexity
• Time-dependent periodic complexity
Time-independent real complexity is the uncertainty that an FR will fall within the design

range. It can be measured for each FRi as the area beneath the probability density function (p.d.f.)
of FRi within the design range. It is often measured by the information content. The range for
which the p.d.f. of FRi and the design range overlap is called the common range. Time-
independent real complexity means that the common range does not change over time. See Figure
23. According to the Information Axiom, a good design is one that has the least information
content (uncertainty). Therefore, the designer should always be diligent in keeping all FRs within
the design range.

Jeziorek 36

A Probability Density Function of FRi

X (Values FRi can take)

fF
R

i(X
)

Figure 23: A graph of an FR with time-independent real complexity. The p.d.f. of FRi and the design

range do not change with time.

Time-independent imaginary complexity is a result of the lack of knowledge of a design.
This uncertainty is difficult to measure, since it is not possible to measure what is not known.
Suppose a designer developed a design that had the following design matrix:

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

4

3

2

1

4

3

2

1

DP
DP
DP
DP

X00X
0XX0
00XX

00X

FR
FR
FR
FR x

Equation 15

Let the large X’s denote the known FR-DP dependencies and the small x denote the unknown
dependency. The designer would think that all that was necessary to complete the design was to
modify the DPs in the proper sequence: DP1, DP2, DP3, then DP4. However, the designer does not
know that DP4 affects FR1. By the time the sequence had been completed, FR1 would no longer
be satisfied. This uncertainty in being able to fulfill all FRs is related to the lack of knowledge of
the design. The only way to reduce imaginary complexity is through research or experience. Only
then can the unknown values of the Aij components of the design matrix be determined.
 Time-dependent combinatorial complexity means that the uncertainty in a design
increases in time. This is typically experienced during the operation of a designed product. The
designed product during operation experiences different effects such as fatigue, corrosion, friction,
impacts, fouling, etc. Or in the case of software, these effects may include memory leaks, data
corruption, etc. The overall result of these degrading effects is that the FRs fall farther and farther
out of the design range. The degrading effects combine and, therefore, the uncertainty increases
in time. Suppose that an FR has a normal p.d.f. with mean µ0 and standard deviation σ0. As time
progresses, a degrading mechanism can increase the mean, as seen in Figure 24, or the standard

Mean

f

Design
Range

Jeziorek 37

deviation, as seen in Figure 25. As a result, the common range decreases in time. Actually, in
real-life applications, the change of the PDF over time is a combination of changes to the
standard deviation and to the mean. The change in time of uncertainty due to degrading
mechanisms is combinatorial complexity.

A Probability Density Function of FRi

X (Values FRi can take)

fF
R

i(X
)

Figure 24: The drift of the mean increases uncertainty over time.

A Probability Density Function of FRi

X (Values FRi can take)

fF
R

i(X
)

Figure 25: The drift of the standard deviation increases uncertainty over time.

 If this is what most FRs experience during normal operation of the system, then how is it
that designed products do not break apart completely in a short amount of time? The reason is
because of time-dependent periodic complexity. Periodic complexity is basically combinatorial
complexity with reinitialization. Car owners know periodic complexity as the periodic

Design
Range

t = t0
µ = µ0

t = t1
µ = µ1 > µ0

t = t2
µ = µ2 > µ1

t ↑, µ ↑

t = t0
σ = σ 0

t = t1
σ = σ 1 > σ 0

t = t2
σ = σ 2 > σ 1

Design
Range

t ↑, σ ↑

Jeziorek 38

maintenance schedule in the owner’s manual, but periodic complexity is far more widespread
than that. Periodic complexity is necessary in all living creatures. The cell cycle is one form of
periodic complexity. A single cell splits into two cells in a very complicated cycle, which causes
cells to be reinitialized periodically. A human life is another example in which a human
experiences various outside degrading mechanisms: exposure to harmful radiation, toxins,
bacteria, viruses, accidents. A natural death is one in which combinatorial complexity causes a
vital organ to malfunction. Without reproduction, a form of periodic complexity, the human race
would be finished. But instead every 20-30 years a new generation of humans are produced, and
humankind perseveres. In another example, suppose that an operating system had been running
for several days. In that time span, millions of operations had been carried out, but several
programs had crashed. Due to combinatorial complexity, eventually the operating system crashes.
However, if we had to buy a new computer after that, the computer industry would not be
thriving as it is today. Instead, we hit the reboot button and the entire operating system is
reinitialized, the memory is wiped clean, and all programs can assume normal operation. The key
element in periodic complexity, therefore, is reinitialization.15

Axiomatic Design of Operations
The operation of a designed system is subject to time-varying complexity and must be

reinitialized in order for all FRs to remain fulfilled. Operation should be accounted for during the
design with the following procedures:

1. Identify all DPs that cause the combinatorial complexity of FRs.
2. Attempt to eliminate combinatorial complexity by transforming it into time-

independent real complexity with zero information content or time-dependent
periodic complexity.

3. Each DP that is still subject to combinatorial complexity implies a new operational
FR that states: “FRi should be maintained within the design range (FRmin, FRmax).”
The DP to solve this FR should be “Maintain DP1, …, DPN within a specified range.”
This introduces periodicity.

4. An operation should be designed according to this newly created FR.

How do we identify the FRs undergoing combinatorial complexity processes and the DPs
that are causing it? We can determine this by watching the mean and variance of an FR over time.
Assume that the design is linear. We know that any FR is given by Equation 16.

∑=
j

jiji DPAFR

Equation 16

 The expected value of an FR is, therefore, given by Equation 17.
[] []∑==

j
jiji DPAEFRE µ

Equation 17

If we take the derivative in time of Equation 17, as seen in Equation 18, we can
determine which FRs will change their mean over time, and by which DPs. The DPs that are
independent of time will drop out of equation, leaving only the DPs that change in time. It is also
interesting to note that even if DPj is independent of time, but Aij is dependent on time, then it can
still change the mean over time.

15 See references [7] and [14] for extensive discussions on periodic complexity and complexity in general.

Jeziorek 39

[] []
∑==

j

jiji DPAEFRE
dt

d
dt

d
dt

d iµ

Equation 18

However, even if the mean does not change with time, the variance still may change with
time. Therefore, it is also necessary to analyze how the standard deviation of FRi changes with
time. Let us assume for simplification that all DPjs are independent of each other and that Aijs are
constant. The variance of FRi can be seen in Equation 19. The standard deviation of a general FRi,
σi, is given by Equation 20.

() () [] []()()∑ ∑∑ −==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

j j

2
j

2
j

2
ijj

2
ij

j
jiji DPEDPEADPvarADPAvarFRvar

Equation 19

() [] []()()∑ −==
j

2
j

2
j

2
iji DPEDPEAFRvariσ

Equation 20

If we take the derivative in time of Equation 20, as seen in Equation 21, we can
determine which FRs will change their standard deviation over time, and by which DPs. By
similar argument as above, time independent DPs will drop out of the equation and leave the time
dependent DPs.

[] [] []

[] []()()∑ −

−
=

j

2
j

2
j

2
ij

j
j

2
j

DPEDPEA2

DPE
DPE2

DPE
dt

d
dt

d

dt
d iσ

Equation 21

Essentially, if 0or 0 ≠≠
dt

d
dt

d ii σµ
, then FRi has combinatorial complexity. If this is

the case, then either FRi must be redesigned to such that 0 and 0 ==
dt

d
dt

d ii σµ
 or an operation

must be developed to maximize the common range of FRi. Thus, combinatorial complexity of FRi
implies a new FRopi that states “Maintain FRi within the design range (FRi(min), FRi(max)) (or
maximize the common range).” The DPopi is also implied: “Stabilize the DPs that contribute to
the combinatorial complexity of FRi.” Then by zigzagging, one can create sub-FRs that address
each of the DPs that contribute to the combinatorial complexity separately. By performing
periodic reinitialization, the combinatorial complexity is guaranteed to be transformed into time-
dependent periodic complexity and long-term stability can be achieved.

Cost of Operation
So now that it is established that each DP whose variance and mean changes with time

necessarily must have an operation to stabilize it during use, we can address the question of, what
is the cost of operation? The key lies in the frequency of the reinitialization, the cost of
reinitialization, and the cost of maintaining the capability of reinitialization per unit time. How
often do we reinitialize the system, how much does it cost us per reinitialization, and how much

Jeziorek 40

does it cost us while we are not reinitializing the system? One could also argue that there is an
initial investment required to setup the capability of reinitialization, but this also can be captured
in the development cost. Define $(g) as the cost of g, where g is an function. The total cost of an
operationi depends on time (how long the function is used), seen in Equation 22, where freinitialization
is the frequency of reinitialization. The total life-cycle cost of all operations can be calculated by
integrating the cost of operations from t0 to tlife-cycle, as seen in Equation 23. Note that the cost of
reinitialization is an all encompassing term that includes the cost of consumables. For example,
the functional requirement of “Store fuel to be supplied to the engine” is fulfilled by a fuel tank
filled with gasoline. Once this fuel tank becomes empty, it can no longer fulfill its original FR
and must be reinitialized by refueling.

$(operationi(t)) = ($(reinitialization)·freinitialization + $(maintaining capability))·t

Equation 22

$(life-cycle operation) = ()()dttoperation
cyclelifet

t
i∫

−

0

$

Equation 23

The cost and frequency of reinitialization are dependent on the design. For example,
suppose that a part from an engine bay had to be reinitialized by replacing the part. The operation
cost is a function of how the part was placed inside the engine bay, how it was mounted, how
large it is, etc. A simple engine bay layout would imply a simple operation of replacing the part,
whereas a very complicated engine bay layout would imply a complex operation of replacing the
part. The frequency of reinitialization is also dependent on the design. How often the part is
replaced depends on the mechanisms of wear: fouling, friction, fatigue, etc. Extensive testing is
often needed in order to determine an approximate frequency of reinitialization, since it is often
difficult to calculate or simulate.

Designers can specify a reasonable frequency of reinitialization, but the user has the
ultimate opinion on the matter. There is a certain sense of subjectivity in the frequency of
reinitialization. The reason for this is because different people have a different value of functions.
Let us take a keyboard for an example. Suppose the z-key had begun to malfunction. Because this
letter is the least used letter in the English language, the user may decide to wait on fixing the
keyboard. The cost of reinitializing the z-key would be either to call a technician to fix the broken
circuit or software or simply to buy a new keyboard. Reinitialization can wait, because the cost of
reinitializing is far greater than the cost of a new keyboard. However, if the a-key had begun to
malfunction, then the user would consider buying a new keyboard since it would cripple the
user’s ability to communicate. The cost of reinitializing the a-key is the same as reinitializing the
z-key. Now suppose that the user was using the keyboard to type in PRC Pinyin to type
simplified Chinese characters. The frequency of the letter z in the Chinese language is far more
frequent than in English. Therefore, when the z-key breaks, a Chinese user may decide to replace
the keyboard. The value of functions to each user is subjective.

What is the frequency of maximum efficiency (or minimum cost)? It is altogether related
to the probability of failure. The probability of failure of any particular FR is given by Equation
24, where DRmin and DRmax are the bounds of the design range. Since fFRi is a function of time,
then Pfailure is also a function of time. You can see from Equation 24 that as the common range
decreases, the probability of failure increases.

() ()∫−= max

min
i

DR

DR FRfailure ,1P dxtxft

Equation 24

Jeziorek 41

The optimal reinitialization frequency can be found by solving Equation 25 for foptimal.
This is when the cost of reinitialization is equal to the cost of the function failure multiplied by
the probability of failure.

() ()
()failurefunction $

zationreinitiali$1P P failurefailure =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

optimal
optimal f

t

Equation 25

In order for us to examine why this is so, let us examine a simple case. Suppose that the
probability of failure is 0 before t0, then increases linearly with time, reaching a final value of 1 at
t1. Then the cost of a functional failure is just a scaling of the probability of failure. The value of
$(functional failure) does not change with time, unless the user changes the value of the function
over time. The cost of reinitialization is a cost defined by the designer, and is thus constant to the
user. Suppose the cost of functional failure as a function of time curve for one user is seen in
Figure 26. If the cost of reinitialization were $(reinitialization)1, then the optimal frequency of

reinitialization would be
optimalt

1
, where toptimal is at the point of intersection of $(reinitialization)1

and P(t)$(function failure). Another interesting case could be when the cost of reinitialization
never intersects P(t)$(function failure). In this case, it would always be more expensive to
reinitialize than have the function fail.

Cost of Functional Failure as a Function of Time

time

P
fa

ilu
re

(t)
x$

(fu
nc

tio
n

fa
ilu

re
) (

$)

Figure 26: The cost of a functional failure compared to the cost of reinitialization.

For the case of the a-key and z-key, assume that the $(reinitialization) and P(t) (not
exactly true) are the same for the two, and that $(a-key failure) > $(z-key failure). We could see
then that the user from Figure 27 that the user would change the keyboard at time toptimal if the a-

Probability of
failure increasing
linearly

Probability of failure is 0

Probability of failure is 1 (ie the
function has failed by time t1)

t0 t1

$(reinitialization)2

$(reinitialization)1

$(reinitialization)1 = P(toptimal)$(function failure)

Jeziorek 42

key broke and would never change the keyboard if the z-key broke. The designer of the keyboard
probably would suggest the change of the keyboard at time t0. However, this is not the optimal
time of reinitialization.

Cost of Functional Failure for the A and Z keys as a Function of
Time

time

P
fa

ilu
re

(t)
x$

(fu
nc

tio
n

fa
ilu

re
) (

$)

Figure 27: The effect of $(a-key failure) > $(z-key failure) .

This analysis is handy, but often it is difficult to directly calculate $(function failure) due
to the matter of subjectivity. It all depends on the value of functions, and the amount of risk that
the user can tolerate. Ultimately, the designer should probably suggest that the frequency of
reinitialization be t0, and then allow the user to decide how much longer after that to actually
perform the reinitialization.
 Operations are defined by the reinitialization procedures that are necessary for FRs that
have combinatorial complexity. The cost of these operations is completely characterized by the
frequency of reinitialization, cost of reinitialization, and the cost of maintaining the capability of
reinitialization. This fits into the goal of determining the cost impact of a design change quite
nicely. Once the design has been decomposed to a significant level with operations embedded
into the design, it is a matter of determining which DPs are affected by which FRs. As before, the
input is a list of FRs that will change, and the output is a list of DPs that are affected. These DPs
could include operational DPs. Therefore, it is easy to see which operations are affected by an FR
change. The next task is to determine the change in cost to the operations. Before the design
change, suppose that all the operational cost parameters, freinitialization, $(reinitialization), and
$(maintain capability) are known. Then it remains to determine what the changes in each of these
parameters are due to the design change. Let $(operation) be $(op), freinitialization be fr ,
$(reinitialization) be $(r), and $(maintaining capability) be $(m). The change in cost would then
be calculated by Equation 26.

$(op2) - $(op1) = ∆$(op2-1) = [$(r2)·fr2 - $(r1)·fr1 + $(m2) - $(m1)]·t

t1 t0

Toptimal for reinitializing
the a-key

P(t)*$(a-key failure)

P(t)*$(z-key failure)

$(cost of reinitializing a key)

Jeziorek 43

∆$(op2-1) = [$(r2)·fr2 - $(r1)· fr1 + ∆$(m2-1)]·t
Equation 26

Summary
 It is important to be able to estimate the cost of operation of a system during the design
phase. Customers will pay a higher upfront cost for a lower operation cost over the long run. For
example, NASA will pay top dollar to re-design certain aspects of the space shuttle in order to
lower the cost of operation.

Vital to understanding the cost of an operation is the knowledge of how the design of the
system affects the design of operation. Operations arise due to the fact that FRs undergo
combinatorial complexity. Operations effectively introduce periodicity into a system with
combinatory complexity. FRs undergo combinatorial complexity because the mean or standard
deviation of the DPs that affect that FR change over time due to degrading mechanisms. FRs that
have combinatorial complexity must either be redesigned to eliminate time-dependent complexity,
or an operation must be designed in order to introduce periodic complexity. If FRi has
combinatorial complexity, then it implies an FRopi that states “Maintain FRi within the design
range (DRmin, DRmax) (maximize the common range).” The corresponding DPopi, then, is
“Stabilize the DPs that contribute to the combinatorial complexity of FRi.” The operation can be
designed by decomposing the DPopi further to address each DP separately. The purpose of each
operation is clearly stated. Any operation that does not maximize the common range of a
functional requirement is superfluous.

The cost of an operation is defined by three parameters: the frequency of reinitialization,
the cost of reinitialization, and the cost of maintaining the capability of reinitialization. The
frequency of reinitialization is dependent on the probability of failure of a function and the value
of the function. The optimal frequency of reinitialization is when the probability of functional
failure multiplied by the value of the function is equal to the cost of reinitialization. The impact of
a design change can be determined by determining what the change to each of these three
parameters is due to the specified design change. For the case of development cost, a method of
determining the change in development cost was presented in Chapter 3. A method for
determining the change of cost to the operational parameters has not yet been determined, but is a
focus of future research.

Jeziorek 44

Chapter 5

Key Cost Drivers

What are the key cost drivers of a system? Being able to identify key cost drivers is
essential in cost minimization efforts. The best example comes from the first generation Space
Shuttle. NASA’s Budget 2002 states that seven flights were anticipated to cost $2,530,900,000, or
$360,000,000 per flight, in operations cost.16 What are the key cost drivers of the operations cost?
Key cost drivers and improving safety are the main reasons that NASA in 2002 planned to spend
$468,000,000 in shuttle upgrades. By spending $468,000,000 in 2002, NASA hoped to save
operation costs and lives over the next decade that it had anticipated the orbiter to remain in use.
NASA has had nearly 25 years of experience operating the space shuttle, with over 100 flights.
How could they have known what the key cost drivers would have been 30 years ago when they
were designing the orbiter? If they had this information, then they would have designed the
system correctly 30 years ago, and would no longer need to upgrade the system. Therefore, 30
years ago, this information would have been worth $468,000,000 (2002) in cost savings.

There are two types of key cost drivers that so far have been identified: 1) the most
expensive functional requirements (FRs), and 2) the amount of design iteration. The most
expensive FRs offer a view to which functions of the system are the biggest source of expense.
This cost-model achieves this by mapping the cost of each costing unit back into the FR-DP
domain in a method called rolling up. The key cost driver of the second type indicates that the
design is coupled. Two strategies for minimizing the impact of this key cost driver are to either
remove the coupling or lessen the time it takes to iterate.

The Cost Of Functional Requirements
 By knowing the cost of all FRs, we can easily see which functions are most costly. The
roll-up method basically takes cost information from the costing unit domain and maps into each
DP. Recall the DP-CU matrix described in Chapter 3. The DP-CU matrix came in handy when
trying to identify which components will have to change as a result of a functional requirement
change. It can also be used to transfer information from the costing unit domain into the
functional domain. Often companies have cost estimates that exist in the costing unit domain and
are based on a work breakdown structure. This cost information can be easily utilized with a DP-
CU matrix to cost out the FR-DP map.
 Recall the DP-CU Matrix from Chapter 3, seen in Figure 28. In chapter 3, the elements of
the DP-CU matrix were X’s. For the purpose of the roll-up method, the element Aij of the DP-CU
matrix denotes the percentage of the cost of CUj that contributes to the cost of DPi. For example,
in Figure 28, $(DP1) = 0.4$(CU1) and $(DP2) = 0.6$(CU1) + 0.2$(CU2) and so on. The values of
all the Aijs must be determined by someone who understands both the design and the cost of each
component. In a sense, this is a forced and subjective method of costing the FR-DP map, but it is
the only method available at this point.

16 See p. 19 of reference [15].

Jeziorek 45

Development

CU1

CU2 CU3

DP1 0.4 0 0
DP2 0.6 0.2 0
 : : : :
DP6 0 0 1
 : : : :
DPn 0 0.8 0

Figure 28: DP-CU used to "roll-up" costing information in the costing unit domain to the FR-DP
domain.

Once the cost of DPs are established, then the task remains to cost out each FR. Recall
that one DP can affect several FRs. One DP could only slightly affect one FR, but heavily affect
another FR. Our intuition would say then, that the cost of that DP must transfer mostly to the
heavily affected FR. Therefore, a method of determining the relative magnitude of a DPs affect
on the FRs is needed in order to apportion the cost of the DP properly among the FRs. This will
be the task of future research.

With the cost of FRs determined, one could analyze the FR-DP hierarchical map to see
which functions of the design are most costly. This could be useful, for example, if one were
deciding whether to make a design change or not. A design change that required the change of
more expensive functions will most likely be a very costly change. It would also serve as an aid
in understanding why the components that are affected by these FRs are costing so much.

Design Iteration
 Design iteration is also another type of key cost driver that heavily impacts the
development cost. There are two methodologies that are helpful when thinking about design
iteration: 1) axiomatic design and 2) design structure matrices. Axiomatic design requires the
designer to “design it right the first time” by removing all the coupling that is causing design
iteration. The design structure matrix process accepts the fact that there is coupling, but tries to
most effectively deal with that coupling. Both schools of thought will be discussed here.

Axiomatic Design - Discussion on Design Iteration
Design iteration, as defined in an Axiomatic design context, is caused by small design

ranges, coupling, and imaginary complexity.
In the design process, one tries to maximize the overlap of the design range and system

range (thereby minimizing the real complexity) by varying the DPs. Most engineers know that
maintaining large tolerances in their DPs will require less expensive processes. Small tolerances
will require expensive precision manufacturing processes, with the probability of failure being
higher. The same is true for the design range of a functional requirement. If the design range is
too small, then it will take many tries to adjust the DPs so that the system range falls within the
design range. Keeping all the design ranges relatively large will lessen the amount of design
iteration.

Coupling in a design also causes iteration. If a design matrix is coupled, then the designer
will have to vary the DPs iteratively in order to maximize the overlap of the system ranges of all
the FRs within their respective design ranges. Dan Frey and Nicolas Hirschi performed a study
that tested the ability of people to solve coupled designs verses uncoupled designs.17 They found
that coupled designs took significantly more time to solve than uncoupled designs did, depending

17 See reference [18]

Jeziorek 46

on the number of variables involved. Their experimental results are summarized by Figure 29. As
the number of variables increases, the amount of time to complete a coupled design increases
exponentially, whereas the amount of time to complete an uncoupled design increases linearly.
As can be seen, the effects of coupling on design iteration cannot be ignored. For a fully coupled
5x5 matrix, it can take up to 10-20 times longer than an uncoupled design. Therefore, it would be
in the designer’s best interest to use axiomatic design to create designs that are uncoupled.

Figure 29: Results of experiments performed by Dan Frey and Nicolas Hirschi. Taken from reference

[18].

Imaginary complexity is another contributor to design iteration. Recall from Chapter 4
that time-independent imaginary complexity is a result of the lack of knowledge of a design.
Imaginary complexity can be seen by examining the design matrix in Equation 27. The small x in
A14 indicates a coupling that the designer is unaware of. After having set all FRs, the designer
will discover that FR1 is no longer satisfied. Unless he observed that FR1 had changed when DP4
was varied, then he would not know whether the coupling was caused by DP2, DP3 or DP4.
Further experimentation would reveal that DP4 was causing the coupling. The designer would
have to iterate between FR1 and FR4 until they are both satisfied and then set FR2 and FR3. In the
process of discovering the small x at A14, the designer would have varied DPs needlessly. If the
coupling at A14 had been known a priori, then the designer would have resolved the coupling
between FR1 and FR4, and then set FR2 and FR3, thereby minimizing the amount of iteration.

Jeziorek 47

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

4

3

2

1

4

3

2

1

DP
DP
DP
DP

X00X
0XX0
00XX

00X

FR
FR
FR
FR x

Equation 27

 The above example outlined how imaginary complexity caused unnecessary iteration in a
coupled design. It is possible for unnecessary iteration to be performed with a decoupled design
as well. If the designer had not used axiomatic design to construct a design matrix, then
unnecessary iterations will be performed. Suppose that a fully decoupled 4 FR-DP problem, as in
Equation 28, was being solved. This matrix suggests that a unique sequence of DP variations
must be performed in order to satisfy all the FRs. FR1 must be set first, followed by FR2, FR3 and
then FR4. If the designer does not follow this sequence, then the system will appear to be coupled.
The probability of choosing the correct sequence is 1/24, or 1/(4!). The designer will iterate until
the correct sequence is chosen.

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

4

3

2

1

4

3

2

1

DP
DP
DP
DP

XXXX
0XXX
00XX
000X

FR
FR
FR
FR

Equation 28

 In fact, we can determine the expected number of steps given the size of the design
matrix. Steps here are defined as the number of times that the FRs are set. For example, two steps
would indicate that the designer had set all the FRs once, and then realized he used the wrong
sequence. He would have to set all the FRs again, but this time in the correct order. If there is one
step, this means that all FRs were set only once. This represents the case when there is no
iterations. Suppose the designer decides to try different sequences, never picking the same
sequence, until the correct sequence is chosen. Assuming that the FRs and the DPs are already
chosen, and the design matrix is only known to be decoupled, then the expected number of steps
can be determined. It is analogous to the following probability problem. Suppose that we have a
total of m balls in a jar of which k are red balls and m-k are green balls. We pull one ball
randomly from the jar. If it is a green ball, we throw it away. If it is a red ball, then we record the
number of balls we’ve picked and stop the game. We want to know the expected number of balls
we have to pick up to and including the first red ball picked. The number of total balls, m, is the
number of possible sequences, which is n! for an nxn matrix. The number of red balls, k, is the
number of correct sequences. The number of green balls, m-k, is the number of incorrect
sequences. The expected number of balls we have to pick up to and including the first red ball is
the expected number of sequences (or steps) we have to try until we pick the right sequence. The
solution to this problem can be seen in Figure 30. The probability of picking the first red ball on
the yth try is given in Equation 29. The expected number of steps is given by Equation 30.

k
ykm
km

m
ymkKyYP ×

+−−
−−

===
)!1(

)!(
!

)!()|(

Equation 29

Jeziorek 48

[] ()∑
+−

=

===
1

1 y

|Y*K|YE
km

kKyPy

Equation 30

Figure 30: A tree diagram describing the probability of choosing the first red ball from a jar of m
balls, k red balls and m-k green balls. R denotes choosing a red ball, while G denotes choosing a

green ball.

 The expected number of steps is dependent on the number of correct sequences, k, that
are available. This dependency is plotted for a 4x4 matrix in Figure 31, where n = 4 and m = 4! =
24. For k = 1, a fully decoupled matrix as in Equation 28, the expected number of steps will be
12.5. For k = 24, a fully uncoupled matrix, the expected number of steps will be 1, meaning that
there is no iteration.

Figure 31: The expected number of iterations for a given number of correct sequences for a 4x4

matrix.

The number of correct sequences, k, is entirely dependent on the amount of decoupling in
the design matrix. k = 1 corresponds to a lower or upper triangular matrix, and k = 24
corresponds to a diagonal matrix, while values of k between 1 and 24 correspond to sparsely
decoupled matrices.

Suppose that we have a 4x4 FR-DP design problem that we know is decoupled. We are
unsure of the severity of the decoupling, and therefore are unsure of the correct number of
sequences. If we plan on following the design process of choosing different sequences until the

G

R k/m

(m-k)/m

G

R k/(m-1)

(m-k-1)/(m-1)

G

R k/(m-2)

(m-k-2)/(m-2)

G

R k/(k+1)

1/(k+1)

R 1

Jeziorek 49

correct sequence is chosen, then what is the expected number of steps? For a 4x4 matrix, there are
26 = 64 different decoupled matrices because there are 6 off diagonal elements that can be an X or
0. Since we are unsure which of the 64 matrices we have, we must assume that we can have all 64
with equal probability. Of the 64 matrices, the possible number of correct sequences varies. The
probability mass function of the number of correct sequences possible for a random decoupled
4x4 matrix can be seen in Figure 32. This graph shows that if a decoupled matrix is chosen at
random, then values of k between 1 and 8 are more probable.

Figure 32: The probability mass function for the number of correct sequences, k, for a random

decoupled 4x4 matrix.

By combining Figure 31 and Figure 32, we can determine the probability mass function
for the expected number of steps for a random matrix, seen in Figure 33. The expected number of
steps for a randomly chosen decoupled 4x4 matrix, as indicated by the vertical blue line, is nearly
six. If we had instead written down the design matrix to begin with, we would have known the
correct sequence immediately, and would never have had to iterate. Therefore, the cost of not
using axiomatic design to find the design matrix and determine the correct sequence to vary DPs
for a 4x4 design problem is nearly six times.18

Figure 33: The probability mass function of the expected number of steps for a random decoupled

4x4 matrix.

Design Structure Matrices - Discussion on Design Iteration
The principal feature of design structure matrices is to determine which part of the

development process is most iterative, and then apply methods to more effectively deal with that
iteration. Identifying the most iterative set of tasks can be done using a method prescribed by
Smith and Eppinger.19 By analyzing the eigenstructure of the work transformation matrix, the
aspects of the design process that most contribute to the total work can be identified.

18 See the appendix for the MATLAB code used to generate these figures.
19 See reference [3].

Jeziorek 50

Just like in the analysis of dynamic systems, we can identify the behavior of the
eigenmodes, also called design modes. The eigenvalues determine the rate of decay of a particular
mode. The eigenvector determines the shape of the mode. In terms of the work transformation
matrix, we can analyze how the work of each design mode decays in time or how a particular
mode is iterating through oscillation. The work transformation matrix A can be broken down into
a multiplication of its eigenvalues and eigenvectors, as seen in Equation 31, where S is the matrix
of eigenvectors and Λ is the matrix of the corresponding eigenvalues on its diagonal. The total
work vector, U, can be calculated from the S, Λ, and the initial work vector (u0) quickly using
Equation 32. The best method of ranking the eigenmodes is by ranking the values of the
diagonals of the matrix (I – Λ)-1. The highest positive real values of the matrix indicate which
eigenmodes contributes the most to the total work vector.

-1SSA Λ=
Equation 31

() 0
-11 uS-ISU −Λ=

Equation 32

 Smith and Eppinger applied this method to identifying the most significant design mode
of a brake-system design process at General Motors. They constructed a work transformation
matrix, A, by surveying the brake-system design team about the tasks typically required to
complete a brake-system and the interactions between those tasks. By determining the most
significant eigenmodes of the A matrix, they were able to identify two key problems in GM’s
brake-system design process: the stopping distance and thermal problems. These two problems
consist of a set of tasks that have a highly iterative nature and contribute most to the total work
required to complete the brake-system design. By knowing of these problems, GM can attempt to
make the iteration process go faster or reducing the total number of iterations by implementing
process improvements.

They suggest the following process improvements to make the iteration process go faster:
• Computer-aided design systems which accelerate individual design tasks
• Engineering analysis tools that reduce the need for time-consuming

prototype/test cycles.
• Information systems that facilitate the rapid exchange of technical information.
They suggest the following process improvements to lessen the amount of iterations:
• Improve coordination of individuals whose work depends on one another.
• Reduce the team size, to allow individuals to work more efficiently.

Therefore, knowing the most iterative aspects of the design process enable for process

improvements that can minimize the cost impact of those highly iterative processes to the overall
cost of the development process. These key cost drivers can be readily attained by analyzing the
process matrix referred to in Chapter 3 and be used to minimize the cost of development.

Summary
 Key cost drivers are essential to the cost minimization effort. Knowing the aspects of the
design and design process that most contribute to the cost before the costly development cycle
sets in full motion can be very valuable information. In this chapter, two types of key cost drivers
were presented: the most expensive FRs and design iteration.
 Having knowledge of the most expensive FRs could prove useful in understanding why
certain aspects of the design and components are more costly than others. With this knowledge,
the designer could seek to eliminate or minimize those costly aspects of the design. Unfortunately,

Jeziorek 51

determining the most expensive FRs is a difficult task. It requires the mapping of the estimated
cost from the costing unit domain into the FR-DP domain. This can be done somewhat artificially
by apportioning the cost of each CU to the DPs. The DP-CU matrix aids in this process. Once the
cost of DPs have been determined, then the cost of each DP must be apportioned to the FRs. This
requires knowledge of the relative magnitude of the DPs affect on each FR. The cost of the DP
will lie mostly upon the FRs that are most heavily affected by it. Further research can improve
upon the method of costing the DPs by either determining their costs individually or by an
improved mapping from the CU domain to the DP domain. Also, determining the mapping of the
cost of DPs into the FR domain is the natural extension of that research effort.
 Design iteration is another key cost driver that impacts the cost of the development cycle.
Axiomatic design shows how design iteration can be minimized by controlling the design range
and by minimizing coupling and imaginary complexity. By leaving large design ranges, it
becomes easier to choose the right DPs to satisfy the FRs. Coupling also adds to design iteration.
Depending on the size of the coupling, the amount of design iteration can be amplified greatly, as
shown in reference [18]. Imaginary complexity adds to the number of design iterations. By not
using axiomatic design to determine the correct sequence in which to vary the DPs, the imaginary
complexity involved amplifies the amount of design iteration even further. For a 4x4 decoupled
case, it was shown that not using axiomatic design could cost six times more on average. Design
structure matrices provide other valuable insight into design iteration. It identifies the most
iterative tasks and suggests ways of effectively dealing with the iteration. A brief summary of a
method developed by Smith and Eppinger of analyzing the eigenstructure of the work
transformation matrix was discussed. By determining the eigenmodes (or design modes) that
most significantly contribute to the total work vector, one can determine the set of tasks that will
be most problematic. One this has been determined, methods that minimize the number of
iterations or speed up the iteration process can be implemented.

Jeziorek 52

Chapter 6

Conclusion

 The life-cycle cost is the main goal of every cost estimation effort. By knowing the cost
at each phase in the life of a system, the designer and customer can better understand the nature
of the product and can use this information along with benefits analysis in order to determine the
true worth of the system. Is it worth it to proceed with the design? Can we change the design
somehow to reduce production costs? Will it be worth it to the customer to operate this system?
All these questions can be tackled effectively by analyzing the life-cycle cost.
 Cost estimation is a “black art,” consisting of one part science and one part art. Current
cost estimation practices rely on physical parameters of the design and correlate these parameters
to historical cost data. These physical parameters cannot completely communicate the complexity
and difficulty in a design and historical data cannot make up for this fact. Without a proper
measure of the complexity of a design, engineers will be unable to communicate the possible
problems in the design. Without a proper measure of the complexity of a design, cost estimation
will remain unable to estimate the cost of future systems. Cost and design engineers have become
comfortable with passing these parameters without fully understanding and communicating the
complexity of the design. How can someone justify the cost of a system without even
understanding the complexity of the system? The two are clearly correlated. New methods should
be developed in order to grapple with the cost estimation of complex systems.

The focus of my research is to understand the problems in design and in the design
process that lead to failures in cost estimation. What is it about complex systems that make it so
difficult to estimate the cost? Researchers of the Axiomatic design theory have grappled with
complexity of a system with some fair amount of success. My research has focused on using what
knowledge of complexity that has become available to improve cost estimation. Axiomatic design
also serves as a very good medium for communication of a design. Recent research in process
design has also led to a better understanding and predictions of its iterative nature. By combining
the information from axiomatic design and process design theory, a better measure of cost can be
obtained. This information can also be used to determine the key cost drivers of a system.

The goal of this thesis was to:

• Enhance the credibility of cost estimation by creating the cost model based on the FR-DP
map.
By basing cost estimation upon the FR-DP design matrix, we can gain a better insight

into how the FRs of a system affect the cost. Current cost estimation practices only take into
consideration physical parameters, without any regards to whether the FRs even satisfy the DPs.
By creating a costing unit domain, cost information that already exists in a similar form as a work
breakdown schedule in most companies can be used. Each costing unit can be linked to the set of
DPs that define its design by using a DP-CU matrix. Now information from the actual design and
cost can easily be communicated. Ideally, one would derive the costing units from the FR-DP
map. With such a setup, the scope of cost estimation is defined by the FRs and customer needs of
a system. Additionally, traceability information is inherently included in the design.

• Quickly estimate the cost impact of changes introduced to a system.

I focused on determining the cost impact of changes introduced to the development phase.
The procedure for determining the cost impact of changes to the development phase is the
following: 1) identify which FRs will change due to a change in constraints or customer needs, 2)

Jeziorek 53

determine the DPs affected by that FR change, 3) determine the CUs that will be changed due to
the DP changes, 4) determine how the changes to this initial list of CUs will affect other CUs that
they physically interact with, and 5) determine the amount of additional development labor
required to make changes to those CUs. A CU-CU matrix was created in order to deal with step
4: to identify how the components physically interact with each other. A work transformation
matrix was used in step 5 in order to quantify the amount of additional labor that would be
incurred due the specified FR changes. When implemented in software, this procedure can
instantly estimate the cost impact of changes introduced to a system.

Operations were defined using the axiomatic design framework. Operations are
necessarily created due to the combinatorial complexity of FRs. A FR that has combinatorial
complexity implies a new operational FR that maximizes the common range. The DP then is to
reinitialize the time-variant DPs at a certain frequency. The design of operation then is the design
of how to reinitialize those DPs and at what frequency.

The cost of operation is defined by three parameters: frequency of reinitialization, cost of
reinitialization, and the cost to maintain the capability of reinitialization. The optimal frequency
of reinitialization was found to be the inverse of the time when the cost of reinitialization was the
same as the cost of functional failure multiplied by the probability of failure. The cost of
functional failure is subjective and depends on the value that the customer places on that function.
The task of cost estimation for operation, therefore, is to define all the operations from the FR-DP
map and then to determine the values of the three cost parameters for each operation. Once the
baseline operation cost is defined, one could predict the cost impact of changes to operation cost
by determining what the change is in the cost parameters.

• Identify key cost drivers

Key cost drivers are critical in the cost minimization process. Only by knowing which
parts of the design or the design process are most costly, can one attempt to minimize their cost.
Two key cost drivers were identified: the most expensive FRs and design iteration.

The most expensive FRs can be determined by mapping the cost from the costing unit
domain back into the FR-DP domain. This can be done using the DP-CU matrix by mapping the
cost of each costing unit to the appropriate DPs. Then the cost of each DP must be appropriately
apportioned to the FRs according to its relative effect on each of the FRs. Design iteration is
another key cost driver. Axiomatic design reveals that design iteration is caused by small design
ranges, coupling, and imaginary complexity. By using Axiomatic design, one can reduce the
amount of design iteration and decrease development costs. Design structure matrices provide yet
another way of identifying design iteration. The most iterative sets of tasks in the design process
can be determined by examining the design modes of the work transformation matrix, or by
examining the sets of tasks that contribute the most time to the design process. This can be done
by the eigenstructure analysis developed by Smith and Eppinger and summarized here. Once the
most iterative set of tasks are determined, several methods can be applied to reduce the number of
iterations or speed up the iterating.

Suggestions for Future Research
 There is much more research to be done in terms of cost estimation of the cost impact of
a design change and key cost drivers.

The method of determining the amount of time required to make the specified design
changes uses a parallel model of iteration, which is not the case in real life but only an
approximation. The tasks required for the development phase in real life are completed
sequentially, in parallel and in an overlapping manner. In addition, the values of the work
transformation matrix are not always time-invariant, as the parallel model of iteration might

Jeziorek 54

suggest. Instead effects like the learning curve could have significant effects. Improved, more
sophisticated process models already exist and only need to be applied to this model.20

Axiomatic design must address production of a design and a model must be developed
that can predict the facets of production costs. The ability to predict the cost impact of a design
change to operations cost is also a very hot topic, but also a very daunting task. This would
require coming up with a model that would take some information about the type of change to the
design, and predict how that would change the cost of reinitialization, the frequency of
reinitialization, and the cost of maintaining the capability of reinitialization for each operation.

The ability to determine the cost of FRs must be further investigated in detail to gain
better insight as to how the cost of costing units truly relates to the FR-DP mapped. Once this is
obtained, key cost drivers will be easy to determine and the proper cost minimization efforts can
be employed.

Also of interest would be to further refine the lower and upper bounds of the cost
estimate. The lower and upper bounds of development cost are largely determined by the amount
of design iteration involved. By monitoring the design ranges, the amount of coupling, and
predicting the amount of imaginary complexity, better estimates of these bounds could be
obtained.

20 See reference [5].

Jeziorek 55

Glossary of Terms
% Rework, α The % Rework (α) is a measure of the magnitude of a change. It is calculated as the number of affected

interfaces or attributes from a change out of the total number of interfaces and attributes. This measurement
is used to determine the amount of rework that must be done to complete the design change. It indicates
that a (1- α)*100% percentage of the work is kept, and α*100% is redone.

Common Range The common range is the overlapping region of the design and system ranges. One can determine the
probability of success of a functional requirement by integrating its probability density function on the
common range

Constraint Constraints (Cs) are bounds on acceptable solutions.
Design Parameter Designer Parameters (DPs) are the key physical variables (or other equivalent terms in the case of software

design, etc.) in the physical domain that characterize the design that satisfies the specified FRs.

Design Range The design range is the range of values that a functional requirement can have and yet still be satisfied.

Development Cost The cost associated with performing the activities from the conception to directly before manufacturing the
first lot. These activities include design, testing and evaluation and require labor, materials and facilities to
be completed. The cost of developing a means of production is considered a development cost. This cost is
paid for by the developer of the system.

Functional Requirement Functional requirements (FRs) are a minimum set of independent requirements that completely
characterizes the functional needs of the product (software, organization, system, etc) in the functional
domain. By definition, each FR is independent of every other FR at the time the FRs are established.

Life-Cycle Cost The life-cycle cost is the sum of the development, production and operation costs. Life-cycle cost estimates
are important making decisions about whether to proceed with a program or a specific set of changes.

Operations Cost The cost associated with using a system. The key parameters of operations cost are the cost of
reintialization, the frequency of reinitialization, and the cost of maintaining the capability of
reinitialization. This cost is paid for by the user of the system.

Phase of Change Changes are made at different phases of a program. The phase of change in the model measures at what
percentage design completion the change is made.

Production Cost The cost associated with producing all lots of a system. This does not include the cost of developing
manufacturing processes, hiring employees, and setting up facilities, which are inherently development
costs. This cost is paid for by the producer of the system, which is oftentimes the developer.

reinitialization The way to transform time-variant combinatorial complexity into periodic complexity is to reinitialize the
functional requirement so as to maximize the common range and prevent failure.

System Range The system range is the range of values that the functional requirement actually has. The system range is
usually defined by the span of the probability density function of a functional requirement.

time-dependent
combinatorial complexity

DPs that satisfy an FR undergoing combinatorial complexity are changing over time due to degrading
mechanisms such as friction, fouling, and fatigue. This decreases the common range over time, thereby
increasing the uncertainty over time.

time-dependent periodic
complexity

DPs that satisfy an FR are changing over time, but are periodically reinitialized in order to maximize the
common range and minimize the uncertainty.

time-independent
imaginary complexity

Time-independent imaginary complexity is uncertainty that is the result of the lack of knowledge of a
design.

time-independent real
complexity

The uncertainty that a functional requirement will fall within the design range.

u0 The initial work vector, u0, represents the initial amount of work required to complete each task assuming
completely independent tasks. It is a vector of 1’s.

Work Load Vector The Work Load vector (WL) is the total amount of time required to complete each task, given all the
interdependencies.

Work Transformation
Matrix

A representation of the interdependencies between tasks. It is used in order to calculate the total amount of
work required to complete a certain set of interdependent tasks.

Jeziorek 56

Appendix – Matlab Code

mainScript.m
%%%
%%% mainScript.m
%%% Peter Jeziorek
%%% 12/06/2004
%%%
clear;

n = 4;
N = factorial(n);
L = n*(n-1)/2; %number of elements on one side of the diagonal

%%%
%%% Create matrices
%%%

%generate a vector of all the possible off-diagonal elements
sizeOfList = 0;
for i=1:n
 for j=1:n
 if (j < i) %if it is a lower-triangular off-diagonal element
 sizeOfList = sizeOfList + 1;
 listOfElements(sizeOfList,1) = i; %add it to the list of elements we care about
 listOfElements(sizeOfList,2) = j;
 end;
 end;
end;

numberOfMatrices = 0;
for i=0:L %Create matrices with i X's inserted into the off-diagonal elements
 %initialize lower triangular off-diagonal elements
 if (i == 0)
 %initialize a diagonal matrix
 A = zeros(n,n);
 for j=1:n
 A(j,j) = 1;
 end;

 numberOfMatrices = numberOfMatrices + 1;
 for j=1:n
 for k=1:n
 allMatrices(numberOfMatrices,j,k) = A(j,k);
 end;
 end;
 else
 combinations = combntns([1:L],i);
 [numCombinations,sizeOfCombinations] = size(combinations);
 %create matrices for each type of combination

Jeziorek 57

 for j=1:numCombinations
 %initialize a diagonal matrix
 A = zeros(n,n);
 for k=1:n
 A(k,k) = 1;
 end;
 for k=1:i
 A(listOfElements(combinations(j,k),2),listOfElements(combinations(j,k),1)) = 1;
 end;

 numberOfMatrices = numberOfMatrices + 1;
 for j=1:n
 for k=1:n
 allMatrices(numberOfMatrices,j,k) = A(j,k);
 end;
 end;
 end;
 end;
end;

fid=fopen('test.dat','w');

khistory = zeros(1,factorial(n));
%calculate k for each matrix and sort all the matrices
for i=1:numberOfMatrices
 %create a usable 2D matrix
 for j=1:n
 for k=1:n
 B(j,k) = allMatrices(i,k,j);
 end;
 end;

 [k, sequences] = determineSequences(B);

 %store k's
 khistory(k) = khistory(k)+1;

 B;
 k;
 sequences;
 %fprintf(fid,'Matrix %i\n',i);
 %fprintf(fid,'%i %i %i\n',B');
 %fprintf(fid,'k = %i\n',k);
 %fprintf(fid,'%i %i %i,',sequences); %this line is messing up somehow.
 %fprintf(fid,'\n\n',0);
end;

khistory

fclose(fid);

Jeziorek 58

%%%
%%% Create graphs
%%%

k = [1:1:N];

[Ex,varx,stdev] = expectedNumberOfIterations(n);
Ex
varx
stdev
subplot(3,1,1);
plot(k,Ex);
title(['Expected Number of Steps for a given number of sequences (DM) for a
',int2str(n),'x',int2str(n),' matrix']);
xlabel('k (number of sequences possible)');
ylabel('Expected Number of Steps');
axis([min(k) max(k) min(Ex) max(Ex)]);
legend('off');

kprobability = khistory/sum(khistory);
WeightedEx = sum(Ex.*kprobability)
varEx = sum(Ex.^2.*kprobability)-WeightedEx^2
stdDevEx = sqrt(varEx)

subplot(3,1,2);
bar(k,kprobability);
title(['PMF of the number of correct sequences, k, for a random decoupled
',int2str(n),'x',int2str(n),' matrix']);
xlabel('k (number of sequences possible)');
ylabel('P(K=k)');
axis([min(k) max(k) min(kprobability) max(kprobability)]);
legend('off');

subplot(3,1,3);
bar(Ex,kprobability);
line ([WeightedEx, WeightedEx], [0, 1]); %average
title('PMF of the Expected Number of Steps');
xlabel('Expected Number of Steps');
ylabel('PMF');
axis([min(Ex) max(Ex) min(kprobability) max(kprobability)]);
legend('off');

createPossibleMatrices.m

%%%
%%% createPossibleMatrices.m
%%% Peter Jeziorek
%%% 12/06/2004
%%%

Jeziorek 59

%generate every decoupled lower-triangular combination of nxn matrix
clear;
n = 4;
L = n*(n-1)/2; %number of elements on one side of the diagonal

%generate a vector of all the possible off-diagonal elements
sizeOfList = 0;
for i=1:n
 for j=1:n
 if (j < i) %if it is a lower-triangular off-diagonal element
 sizeOfList = sizeOfList + 1;
 listOfElements(sizeOfList,1) = i; %add it to the list of elements we care about
 listOfElements(sizeOfList,2) = j;
 end;
 end;
end;

numberOfMatrices = 0;
for i=0:L %Create matrices with i X's inserted into the off-diagonal elements
 %initialize lower triangular off-diagonal elements
 if (i == 0)
 %initialize a diagonal matrix
 A = zeros(n,n);
 for j=1:n
 A(j,j) = 1;
 end;

 numberOfMatrices = numberOfMatrices + 1;
 for j=1:n
 for k=1:n
 allMatrices(numberOfMatrices,j,k) = A(j,k);
 end;
 end;
 else
 combinations = combntns([1:L],i);
 [numCombinations,sizeOfCombinations] = size(combinations);
 %create matrices for each type of combination
 for j=1:numCombinations
 %initialize a diagonal matrix
 A = zeros(n,n);
 for k=1:n
 A(k,k) = 1;
 end;
 for k=1:i
 A(listOfElements(combinations(j,k),2),listOfElements(combinations(j,k),1)) = 1;
 end;

 numberOfMatrices = numberOfMatrices + 1;
 for j=1:n
 for k=1:n

Jeziorek 60

 allMatrices(numberOfMatrices,j,k) = A(j,k);
 end;
 end;
 end;
 end;
end;

fid=fopen('test.dat','w');

khistory = zeros(1,factorial(n));
%calculate k for each matrix and sort all the matrices
for i=1:numberOfMatrices
 %create a usable 2D matrix
 for j=1:n
 for k=1:n
 B(j,k) = allMatrices(i,k,j);
 end;
 end;

 [k, sequences] = determineSequences(B);

 %store k's
 khistory(k) = khistory(k)+1;

 B
 k
 sequences
end;

khistory

fclose(fid);

determineSequences.m

%%%
%%% determineSequences.m
%%% Peter Jeziorek
%%% 12/06/2004
%%%

function [k,correctSequences] = determineSequences(A)
%Determine the number of sequences given an nxn matrix, A

 nxn = size(A);
 n = nxn(1);
 FR = zeros(n,1);
 numberOfCorrectSequences = 0;
 sequences = perms(1:1:n);

Jeziorek 61

 %check each sequence
 for k=1:factorial(n);
 %for each DP
 for j=1:n
 %for each FR
 for i=1:n
 if ((A(i,sequences(k,j)) == 1) & (i == sequences(k,j)))
 FR(i) = 1;
 elseif (A(i,sequences(k,j)) == 1)
 FR(i) = 0;
 end;
 end;
 end;

 returnFlag = 1;
 for i=1:n
 if (FR(i) == 0)
 returnFlag = 0;
 end;
 end;

 if (returnFlag == 1)
 numberOfCorrectSequences = numberOfCorrectSequences + 1;
 for i=1:n
 correctSequences(numberOfCorrectSequences,i) = sequences(k,i);
 end;
 end;

 k = numberOfCorrectSequences;
 end;

expectedNumberOfIterations.m

%%%
%%% expectedNumberOfIterations.m
%%% Peter Jeziorek
%%% 12/06/2004
%%%

function [Ex,varx,stdev] = expectedNumberOfIterations(n)

N = factorial(n);
k = [1:1:N];

for J = 1:N
 Esum = 0;
 Esumsquared = 0;
 for I = 1:(N-k(J)+1)

Jeziorek 62

 %p(I) = factorial(N-k(J))*factorial(N-I)*k(J)/(factorial(N-k(J)-I+1)*factorial(N)); %too
large
 %for following line explanation, see http://www.mit.edu/~pwb/cssm/matlab-
faq.html#factorialratio
 p(I) = exp(gammaln(N-k(J)+1)+gammaln(N-I+1)+log(k(J))-gammaln(N-k(J)-I+1+1)-
gammaln(N+1));
 Esum = Esum + p(I)*I;
 Esumsquared = Esumsquared + p(I)*I^2;
 end;
 Ex(J) = Esum;
 varx(J) = Esumsquared - Esum^2;
 stdev(J) = sqrt(varx(J));
end;

Jeziorek 63

References
[1] Suh, Nam Pyo. Axiomatic Design: Advances and Applications. Oxford University Press, New

York, 2001.
[2] Suh, Nam Pyo. The Principles of Design. Oxford University Press, New York, 1990.
[3] Smith, Robert P. and Eppinger, Steven D. “Identifying Controlling Features of Engineering

Design Iteration,” Management Science, Vol. 43, Issue 3, pp. 276-293 1999.
[4] Eppinger, Steven D., Whitney, Daniel E., Smith, Robert P. and Gebala, David A. “A Model-

Based Method for Organizing Tasks in Product Development,” Research in Engineering
Design, 1994.

[5] Cho, Soo-Haeng and Eppinger, Steven D. “Product Development Process Modeling using
Advanced Simulation,” Proceedings of ASME Design Engineering Technical Conference
(DETC) 2001.

[6] Isakowitz, Steve J. NASA Cost Estimating Handbook 2002.
[7] Lee, Taesik. “Complexity Theory in Axiomatic Design.” Cambridge, MA 2003.
[8] Cooper, Kenneth G. “Naval Ship Production: A Claim Settled and a Framework Built.”

Interfaces, Vol. 10, No. 6, pp. 20-36 December 1980.
[9] Central Artery/Tunnel Project. http://www.bigdig.com/. Published on WWW; accessed in 2004.
[10] Axtman, Kris. “In Boston, a ‘Big Dig’ into taxpayer pockets.”

http://search.csmonitor.com/durable/2000/02/18/p3s1.htm. Published on WWW;
accessed in 2004.

[11] Bush, George W. President Bush Announces New Vision for Space Exploration Program
http://www.whitehouse.gov/news/releases/2004/01/20040114-3.html. Published on
WWW; accessed in 2004.

[12] Wade, Mark. Encyclopedia Astronautica: The Shuttle
http://www.astronautix.com/lvfam/shuttle.htm. Published on WWW; accessed in 2004.

[13] Bertsekas, Dimitri P. and Tsitsiklis, John N. Introduction to Probability. Athena Scientific,
Belmont, Massachusetts, 2002.

[14] Suh, Nam Pyo, Complexity: Theory and Applications. Oxford University Press, New York,
2005.

[15] Lurie, David. “Human Space Flight: Fiscal Year 2002 Estimates.”
http://ifmp.nasa.gov/codeb/budget2002/06_space_shuttle.pdf. Published on WWW;
accessed in 2004.

[16] Reaves, Will. “Reusable Launch Vehicle (RLV) Power Generation Systems - Trail from 1st to
2nd Generation.” Lockheed Martin Technical Operations.

[17] Futron Corporation. “Space Transportation Costs: Trends in Price Per Pound to Orbit 1990-
2000.” http://www.futron.com/pdf/FutronLaunchCostWP.pdf. Published on WWW,
2002; accessed in 2004.

[18] Frey, Daniel D. and Hirschi, Nicolas W. “The Effects of Coupling on Parameter Design.”
Proceedings of the 2002 International Conference on Axiomatic Design.

[19] Shishko, Robert. NASA Systems Engineering Handbook. National Aeronautics and Space
Administration, Washington D.C., 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

