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Abstract 
Engineering design and analysis is replete with examples of mathematical transforms. This paper discusses 
the use of mathematical transforms at the operational stage implemented by superimposing the system with 
a control system to (1) convert a decoupled or coupled system to uncoupled, (2) achieve robustness to noise 
factors and (3) eliminate imaginary complexity. This paper proves with examples that such controller design 
and implementation is much easier for an uncoupled or decoupled design as compared to a coupled design.  
The case study presents a new customizable automotive suspension with independent control of stiffness, 
damping and ride-height. This system was proposed, designed and built using axiomatic design principles. 
The mechanical design is decoupled with respect to the functional requirements (FRs) of stiffness and ride-
height; moreover ride-height is affected by the load on the vehicle (noise factor). This paper presents the 
design and implementation of a feedback control system for the customizable suspension to uncouple the 
system and to make it robust to the noise factor. 
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1 INTRODUCTION 
Mathematical transforms are frequently employed in 
design process at different stages; conceptual design, 
parametric design and even during the operation of the 
designed system. For instance, the frequently 
encountered second order differential equation of the 
form FKxxBxM =++ is invariably converted to 

22 n nx x x f+ ζω + ω = using the transform /n K Mω =  

and / 2B KMζ = . This is essentially the transformation 

from the physical DPs{ }TB K to intermediate DPs { }Tnζ ω  
to aid the designer as they are trained to think in terms of 
these intermediate DPs. These intermediate DPs are 
most widely used when the FRs are uncoupled or 
decoupled with respect to the intermediate DPs, whereas 
they may be coupled with respect to the physical DPs. 
For instance, in the example above, the FRs of percent 
overshoot and peak time are decoupled with respect to 
the intermediate DPs{ }Tnζ ω , whereas they are coupled 

with respect to the physical DPs{ }TB K . Another example 
is the introduction of dimensionless parameters in thermal 
and fluid sciences [1]. The physical DPs like density, 
velocity, viscosity and length scales are transformed to 
intermediate DPs such as the Reynolds number to aid the 
designer develop insight.  
Another common use of mathematical transforms is at the 
operational stage of the designed system. Open-loop 
control systems can be used to convert a coupled or 
decoupled system to an uncoupled system, but such 
application is restricted due to presence of noise factors 
and limited knowledge of the system. Feedback control 
systems can be used to achieve this uncoupling as well 
as robustness to noise factors. This paper illustrates, with 
examples, how open-loop or feedback control can be 
used to implement such a transform and the potential 
benefits. The case study describes the development of a 
decoupled customizable automotive suspension and 
design of feedback control to convert it to an uncoupled 
system, which is also robust to noise factors. The 

effectiveness of mathematical transforms implemented at 
the operational stage is illustrated through this example. 
 
2 INTRODUCTION TO AXIOMATIC DESIGN [2] 
Axiomatic design is a structured design method created 
to improve design activities by establishing criteria on 
which potential designs may be evaluated and by 
developing tools for implementing these criteria. 
Axiomatic design discusses the existence of four domains 
in the design world- customer, functional, physical and 
process domains. Customer attributes {CAs}, functional 
requirements {FRs}, design parameters {DPs}, and 
process variables {PVs} are the characteristic vectors of 
these domains. Design of products involves mapping 
from the functional domain to the physical domain and 
design of processes involves mapping from the physical 
domain to the process domain. 
The axiomatic design process is centered on the 
satisfaction of FRs, which are defined as the minimum set 
of independent requirements that completely characterize 
the functional need of the product. Given a minimum set 
of independent FRs, the designer conceives a physical 
embodiment or a design containing a set of DPs, which 
are key physical variables in the physical domain that 
characterize the design that satisfies the specified FRs. 
The design and the choice of DPs are guided by the two 
design axioms. 
• Axiom 1: Independence Axiom- Maintain the 

independence of all functional requirements.  
• Axiom 2: Information Axiom- Minimize the information 

content of the design. 
 
The design matrix (DM) is used to note the effect of DPs 
on FRs as follows: 

11

21 22

A OFR1 DP1
=

A AFR2 DP2
    
    
    

                                            (1) 

where A11 denotes the effect of DP 1 on FR 1, A21 
denotes the effect of DP 1 on FR 2, etc. To satisfy the 
Independence Axiom, the DM must be must be either 



 

 

diagonal or triangular. In an uncoupled design, the DM is 
diagonal and each of the FRs can be satisfied 
independently by adjusting one DP. In a decoupled 
design, the matrix is triangular and the independence of 
FRs can be guaranteed only if the DPs are determined in 
a proper sequence. In the case shown, DPs should be set 
in the order: DP 1 followed by DP 2. A full design matrix 
leads to a coupled design and the satisfaction of FRs 
becomes difficult. 
The Information Axiom guides the designer to maximize 
the probability of satisfaction of the FRs. It becomes 
increasingly difficult to satisfy FRs when FRs are coupled 
by the chosen DPs. This is because the allowable 
tolerance for DPs decreases with the increase in the 
number of FRs and the number of off-diagonal elements 
in the design matrix. 
 
3 IMPLEMENTATION OF MATHEMATICAL 

TRANSFORMS  

3.1 Open loop control (Inversion of DM) 
Equation 2 represents a linear time-invariant and 
physically decoupled design, not affected by any noise 
factor. DP1 and DP2 are the operational DPs that the 
user varies during system operation to set the FRs.   

FR1 A O DP1
FR2 B C DP2
    

=    
    

                                                  (2)                                  

This system has the following disadvantages. First, the 
DPs have to be set in a particular order to maintain the 
independence of the FRs; also a change in DP1 
necessitates a change in DP2 to compensate for change 
in FR2 due to DP1. Second, without the knowledge of  the 
DM, there is an imaginary complexity [3] involved in 
finding the correct order of setting the DPs. Imaginary 
complexity becomes increasingly important as the 
number of FRs (n) increases, as the probability of finding 
the correct sequence of setting DPs for a decoupled 
design without knowledge of the design interactions is 
1/(n!). 
If the physically decoupled system shown by equation 2 is 
superimposed with a control system having a DMcontroller 
(equation 3), that is the inverse of the original DM in 
equation 2 (X=1/A, Z=1/C and Y=-BX/C), then we get a 
resultant uncoupled DM as shown in equation 4. 

user

user

DP 1DP1 X O
DP 2DP2 Y Z
    

=    
     

                                             (3) 

user

user

DP 1FR1 1 O
DP 2FR2 O 1
    

=    
     

                                             (4)                                        

This implementation of mathematical transform, by 
superimposing the design with an open-loop control 
system, makes the decoupled system appear uncoupled 
to the user during operation (equation 4). It also 
eliminates the imaginary complexity as any sequence of 
setting the DPs is acceptable. This mathematical 
transform of inversion could be implemented by a control 
system, hardware or even by the user while the system is 
in use. For instance, a hot water faucet is a coupled 
design with the hot water knob position (H) and cold water 
knob position (C) as the DPs as shown by equation 5. 
The user can make this system behave as uncoupled 
during operation as shown in equation 6. By moving the 
hot water knob and the cold water knob by the same 
amounts (H+C), the user can change only flow rate and 
not temperature; and by moving the hot water knob and 
cold water knob by opposite amounts (H-C), the user can 
change only temperature and not flow rate. The same 

transform could be achieved through hardware or a 
control system.   

FR1: Flow Rate X X DP1: H
FR2: Temperature X X DP2: C
    

=    
    

                         (5)                    

user

user

DP 1: H CFR1: Flow Rate X O
DP 2: H CFR2: Temperature O X

+    
=     −     

              (6)       

In theory, the DM for a coupled system can also be 
inverted and used to implement this mathematical 
transform for a coupled system, assuming that the system 
is modeled accurately and noise factors are not present. 
Inversion of DMs for coupled design is more involved than 
decoupled systems, but nothing can be said about 
performance comparisons in the absence of noise 
factors. 

3.2 Closed loop control 
Note that application of open loop control to invert the 
DM, discussed above, is restricted only to linear systems 
not affected by noise factors. But in real-life design 
situations, noise factors always affect FRs and a common 
alternative is the use of feedback control to compensate 
for the noise factors. This feedback could be either 
manual or automatic. For manual control, it is easy to see 
that uncoupled designs are far easier to control than 
coupled designs, more so as the number of FRs or the 
degree of coupling increases. For automatic feedback 
control, an uncoupled system can be considered as an 
integration of SISO systems and implementation of such 
a feedback system is straightforward with classical control 
schemes. Decoupled systems can also be looked at as 
SISO systems, if the FRs (or DPs) are set in a particular 
order. Coupled systems present themselves as MIMO 
systems, require modern control techniques and are 
significantly more difficult to control. Moreover, feedback 
control of coupled systems requires state feedback and 
accurate modeling of the system, whereas only output 
feedback and coarse modeling suffices for uncoupled or 
decoupled systems. This illustrates the importance of the 
Independence Axiom, which guides the designer to come 
up with uncoupled or decoupled systems, which are 
easily amenable to either manual or automatic “measure 
and compensate”. Hence uncoupled or decoupled 
designs are far superior in operation to coupled designs.  
 
4 CASE STUDY  

4.1 Motivation for customizable suspension 
Design of automotive suspension systems typically 
involves a trade-off between the conflicting requirements 
of comfort and handling. For instance, cars need a soft 
suspension for good comfort, whereas a stiff suspension 
leads to better handling and attitude control. Cars need 
high ground clearance on rough terrain, whereas a low 
center of gravity height is desired for swift cornering and 
dynamic stability at high speeds.  It is advantageous to 
have low damping for low force transmission to vehicle 
frame, whereas high damping is desired for fast decay of 
oscillations. To avoid these trade-offs, we have proposed, 
designed and built a customizable suspension system 
with independent control of ride-height, stiffness and 
damping. The user can set the stiffness, damping and 
ride-height according to his choice to get desired 
performance from the car. Damping control, typically 
achieved through orifice control, is an established 
technology in existing vehicles [4,5]. Several road 
vehicles with pneumatic springs are capable of achieving 
variable ride-height [6]. Advantages of variable stiffness 
have been illustrated in literature [7], but no system with 
independent control of stiffness and ride-height has been 
proposed. Designs, proposals, benefits and 



 

 

disadvantages of advanced ground vehicle suspension 
systems have been reported in the form of a classified 
bibliography [8]. The design and working of the proposed 
adaptive suspension system is explained in the next sub-
section.   

4.2 Proposed design of customizable suspension  
Figure 1 shows the kinematic representation of a SLA 
(short long arm) suspension, which is the most widely 
used architecture for independent front-wheel 
suspension. Variable stiffness and ride-height can be 
achieved by making the lower and upper spring pivots 
movable. Figure 2 shows one possible mechanism for 
achieving this. The lower spring pivot is driven by a linear 
stage, consisting of a stepper motor, a lead screw and a 
linear bearing. Motion of the lower spring pivot changes 
the effective stiffness Kw by changing the relation 
between the wheel travel and spring deflection. The 
effective stiffness seen at the wheel Kw is related to the 
spring stiffness Ks and DP1: x as given by equation 7. 
Ride-height can be changed by moving the upper pivot by 
a motor driven cam. Movement of the upper pivot (lift of 
the cam) is used as DP2: U as shown in the design matrix 
in equation 8. FR3: Control damping is achieved by DP3: 
Orifice control. The damper (not shown in the figure for 
clarity) is connected in parallel with the spring. Since FR3 
is independent and DP3 doesn’t affect any other FR, we 
will neglect this FR/DP pair in the subsequent analysis for 
simplicity. 

2

w s
xK K
L

 =  
 

                                                                 (7)                                                         

FR1: Stiffness X O O DP1: Pivot position x
FR2: Ride-height X X O DP2: Cam position U

FR3: Damping O O X DP3: Orifice control

    
    =    
        

               (8)              

 

Figure 1: Kinematic representation of existing 
independent SLA suspension 
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Figure 2 : Proposed modifications to achieve independent 
control of stiffness and ride-height 

FR2: Ride-height depends not only on the cam position U 
(DP2), but also on stiffness (hence on DP1), and load on 
the vehicle (noise factor DPnf). Note that DPnf is not a DP 
that the user can set, but is introduced in the design 
equation to indicate effect of the noise factor (DPnf) on 
FRs [9]. To study the effect of the DPs on FR2: Ride-
height, the system is modeled as a single degree of 
freedom (DOF) quarter car model as shown in Figure 3. 
The actuator (motor driven cam) is modeled as a low 
frequency displacement provider. The actuator provides 
displacement U (DP2) in series with the spring.  The block 
diagram in Figure 4 shows the transfer functions relating 
the output Xs to the inputs to the system: road noise Xr, 
load on vehicle F and cam displacement U. Equation 9 
shows that this is a decoupled system (due to off-
diagonal term C) and FR2: Ride-height is affected by the 
DPnf: Load on the vehicle (term D). 

nfDP : Load F
FR1:Stiffness O A O

DP1: Pivot position x
FR2:Ride-height D C B

DP2: Cam position U

 
     =    
     

 

                (9)              
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Figure 3 : Representation of the system as a quarter-car 
1-DOF system 
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Figure 4 : Block diagram representation of the proposed 
system  

4.3 Implementation of feedback 
FR1: Stiffness is not affected by any noise factor; hence 
we have used open loop control of stiffness. Equation 7 is 
used to calculate position of the lower pivot (DP1: x) from 
the desired value of FR1: Stiffness Kw.  
The off-diagonal terms C and D, in the DM of equation 9, 
indicate the dependence of ride-height on stiffness 
change and load change respectively. Any change in 
DP1: stiffness setting or DPnf : load necessitates a change 
in DP2 by the user to maintain ride-height constant. To 
achieve insensitivity to stiffness change and load change, 
a feedback control system for ride-height was designed 
as shown in Figure 5. Since the system is decoupled and 
we set the DPs in appropriate order, we can treat 
ride-height control as a SISO system. This enables the 
use of classical control techniques treating DP2: U as 
input to the plant and Kw and F as noise factors. The 
actual ride-height (Xs-Xr)actual is measured and compared 
with the desired ride-height (Xs-Xr)desired. An encoder 
connected to the suspension control arm gives a 



 

 

measurement for (Xs-Xr)actual. The controller determines 
the desired value for DP2: Udes according to a control law 
based on the difference between the actual and desired 
ride-height values.  The controller in the customizable 
suspension prototype built at MIT is a PI controller in 
series with a low pass filter. PI controller is used for zero 
steady state error. The low-pass filter is to filter out the 
high frequency component of the actual ride-height 
change: (Xs-Xr)actual caused due to road-noise. 
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Figure 5 : Ride-height feedback control 

Representation of the resultant system in equation 10 
shows that after introducing the feedback control, the 
decoupled system is converted to uncoupled. Note 
the difference between DP2: Cam position U in equation 
9 and DPuser 2: Ride-height command (Xs-Xr)desired in 
equation 10. Also equation 10 shows that ride-height is 
independent of the load on the vehicle and hence this 
transform has also achieved robustness to a noise 
factor. Also the imaginary complexity is eliminated as 
the system appears uncoupled to the user during 
operation. With minimal hardware change, the physically 
decoupled system (equation 9) has been converted to a 
system (equation 10) that the user sees as uncoupled 
during the operation of the system!  

nf

user

user s r desired

DP :Load F
FR1:Stiffness O A O

DP 1:Pivot position x
FR2:Ride-height O O 1

DP 2: RH (X -X )

 
     =    
     

 

      (10) 

 
5 CONCLUSIONS 
A novel customizable suspension system with 
independent control of stiffness, ride-height and damping 
has been proposed. This system when used in open loop 
is decoupled with respect to the FRs of stiffness and ride-
height; moreover the ride-height is affected by the load on 
the vehicle (noise factor). A feedback control system for 
ride-height control is designed and implemented for this 
decoupled system. This implementation of mathematical 
transforms makes the system uncoupled with respect to 
stiffness and ride-height, and also achieves robustness to 
noise factor (load on the vehicle).  
This illustrates an interesting use of mathematical 
transforms during operation of a design to uncouple a 
physically decoupled system, to achieve robustness to 
noise factors and to eliminate the imaginary complexity 
from the system. It is further shown that such 
mathematical transforms are very simple to design and 
implement for uncoupled or decoupled systems as 
opposed to coupled systems, thereby illustrating the 
importance of the Independence Axiom. 
Superposition by an open-loop control system during 
operation and introduction of intermediate DPs during 
conceptual and parametric design stage are also 
presented as decoupling or uncoupling strategies.  
  
6 SUMMARY 
The use of mathematical transforms in design is 
illustrated to achieve uncoupling or decoupling and 
robustness. Introduction of intermediate DPs during 
conceptual and parametric design, and superposition by 

open loop control or feedback control during operation 
are cited as means to achieve these mathematical 
transforms. The case study presents the axiomatic design 
of a new customizable automotive suspension with 
independent control of stiffness, damping and ride-height. 
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8 NOMENCLATURE 
FR: Functional Requirement 
DP: Design Parameter 
DM: Design Matrix 
SISO: Single Input Single Output 
MIMO Multi Input Multi Output 
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