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Abstract. We study the dynamics of modularization in a minimal substrate. A module is a functional unit relatively
separable from its surrounding structure. Although it is known that modularity is useful both for robustness and for
evolvability (Wagner 1996), there is no quantitative model describing how such modularity might originally emerge.
Here we suggest, using simple computer simulations, that modularity arises spontaneously in evolutionary systems
in response to variation, and that the amount of modular separation is logarithmically proportional to the rate of
variation. Consequently, we predict that modular architectures would appear in correlation with high environmental
change rates. Because this quantitative model does not require any special substrate to occur, it may also shed light
on the origin of modular variation in nature. This observed relationship also indicates that modular design is a generic
phenomenon that might be applicable to other fields, such as engineering: Engineering design methods based on
evolutionary simulation would benefit from evolving to variable, rather than stationary, fitness criteria, as a weak and
problem-independent method for inducing modularity.
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A common characteristic of both natural lifeforms and
man-made products is their modular structure (Hartwell et
al. 1999). It has long been recognized that architectures that
exhibit functional separation into modules are more robust
and amenable to design and adaptation. Modularity creates
a separation that reduces the amount of coupling between
internal and external changes, allowing evolution to rearrange
inputs to modules without changing their intrinsic behaviors
and so to reuse modules as high-level building blocks. In
nature this idea is supported by theoretical arguments, such
as that proteins are difficult to evolve once they are partic-
ipating in many different interactions (Waxman 1998) and
by observations of phenomena such as tight coordination of
the expression of groups of genes functioning in a common
process (Niehrs and Pollet 1999). Halder et al (1995) suc-
ceeded in sprouting extra functional eyes on the wings, legs
and antennae of Drosophila by targeted misexpressions of
Drosophila ‘‘eyeless’’ gene cDNA, suggesting the entire eye
is represented as a modular unit. Conversely, there is evi-
dence that proteins which interact with many other proteins,
such as histones, actin and tubulin, have changed very little
during evolution. In artificial systems modularity is critical
too: Herbert Simon (1969) noted, in his famous ‘‘Tempus
and Hora’’ fable, that the evolution of complex forms from
simple elements depends critically on the numbers and dis-
tribution of potential stable intermediate forms. Modularity

has also been recognized as a primary facilitating character-
istic of system engineering (Steward 1981; Huang and Kusiak
1998), economics (Langlois 2001), and named as one of the
principles of design (Suh 1990; Ulrich and Eppinger 2000).
In our own preliminary experiments in the evolution of ro-
botic lifeforms (Lipson and Pollack 2000), we reached a com-
plexity barrier partially due to the lack of modularity and
component reuse, and so the question of how modularity
arises in nature has become a critical issue.

Although several mechanisms that can give rise to mod-
ularity have been suggested, such as symbiosis (Margulis and
Fester 1991; Watson and Pollack 2000), developmental seg-
mentation (Holland 1999), and connectivity-sensitive growth
(Barabási and Albert 1999), these require advanced substrates
to exist before they can be realized. Moreover, not enough
is known yet to quantify the ‘‘amount’’ of modularity these
mechanisms may introduce. Here we investigate the possi-
bility that modularity arises in a natural system merely in
response to variation in the conditions in which it evolves.
This simple mechanism suggests a ‘‘weak’’ process that in-
troduces modularity without relying on a particular repre-
sentation or substrate. We thus argue that modularity is a
fundamental consequence of variation and selection. Because
modularity in turn affects the variability and evolvability of
an individual, the proposed process sheds light on the ques-
tion of the origin of variation (Levinton 1988) and the evo-
lution of evolvability (Wagner and Altenberg 1996).
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FIG. 1. The model represents an individual, subject to selection, as a matrix A which transforms a set of environmental resources E
into an arbitrary set of products A 3 E. When compared to requirements F, the residual zF 2 A 3 Ez determines the fitness of the
individual, which in turn affects its selection. Variation and noise can be introduced at any point in this feedback loop, and the consequential
effect on the structure of A is examined.

We have chosen to examine the evolution of modularity
using a simple and abstract model of an adaptive system as
a transformation of a set of resources into a set of arbitrary
functional requirements for survival (exact formulation fol-
lows below). Although we realize that not all lifeforms can
be abstracted in this way, and that naturally occurring systems
are much more elaborate and nonlinear, we argue that this
abstraction captures basic connectivity aspects that are nec-
essary for the statistical quantification of the modularization
process and for studying its dynamics. Furthermore, the sim-
plification is necessary methodologically to keep the as-
sumptions transparent and the simulation as unbiased as pos-
sible (Forbes 2000).

MODEL

We denote an individual as a matrix A, the environmental
resources at its disposal as a vector E, and the set of arbitrary
functional requirements it has to meet as a vector F. The
feedback relationship between these elements is illustrated
in Figure 1. In this model, the individual A transforms a set
of environmental resources E into an arbitrary set of products
A 3 E. When compared to requirements F, the residual zF
2 A 3 Ez determines the fitness of the individual which in
turn affects its selection (Fitness is inversely proportional to
the magnitude of the residual). We will introduce random
variation into this feedback loop and investigate the conse-
quence on the composition of A. Variation can be introduced
at any point in this feedback loop, for example, we can vary
resources E over time, we can vary the requirements F, we
can vary the selection process, we can vary the way fitness
is calculated or selection is performed, and we can arbitrarily
put noise into the system. In the following experiments, how-
ever, we chose to introduce variation at E.

The representation of an individual as a matrix A can take
on a variety of interpretations: For example, one interpre-
tation would be where the resource vector E might represent
availability or unavailability of a variety of chemicals, the
target vector F might also represent a variety of chemicals
that must be produced for survival. In this case A would be
modeling the interdependencies of the chemical transfor-
mation processes that transform one set of chemicals, E, into
the chemical set F. Another interpretation would be where
E represents organic building blocks, the vector F represents
some desired functionalities that must be carried out by the
organism to survive, and A represents how building blocks

are composed to achieve this functionality; In this case the
matrix would represent organismal structure. Yet another in-
terpretation would be where the vector E represents genes,
the vector F represents traits, and the transformation matrix
A represents a pleiotropic relationships (Lande 1975). At an
even higher level, the system might represent how individuals
in an ecosystem cooperate to perform some tasks. Whatever
the interpretation, the components can be understood as gen-
eral units, thereby leaving open the hierarchical level at which
the analysis is pitched. The units of F, E and A can also
represent availability (binary), quantity (scalar), or any other
metric. Although we have obtained results also with real-
valued matrices, we present here results for binary/ternary
matrices for simplicity. A variety of possible extensions are
described in the concluding remarks of this paper.

As shown in Figure 2, an individual A needs to satisfy the
following equality to survive, given E and F:

F 2 A 3 E 5 0 (1)

However, when an individual fails to fully satisfy the func-
tional requirements, then there remains a residual term R:

F 2 A 3 E 5 R (2)

The probability of survival of the individual (essentially, its
fitness) is then inversely proportional to the magnitude of R.
Note that the solution to the equation is not unique, and—
as in real life—there are many different ways to carry out
this transformation, some more successful than others. Even
among successful solutions, some solutions exhibit more
modularity, or less coupling, than other solutions. Here we
study the amount of coupling in individuals that evolve under
various conditions.

Quantifying Modularity

We represent an individual A as a ternary matrices con-
sisting of elements {21, 0, 1}. Such matrices are often used
to describe dependencies among system components (Zero
5 independent, Nonzero 5 dependent, and the sign represents
positive or negative feedback). Methods for improving design
process and for identifying modules are based on reordering
this matrix into near-block-diagonal form by swapping rows
and columns (Warfield 1973). In this form, blocks on the
diagonal represent modules, and nonzero elements outside
the blocks represent sparse interactions between modules.
Consider the systems described in Figure 3. Both matrices
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FIG. 2. The model represents a natural system as a matrix A which transforms a set of environmental resources E into an arbitrary set
of requirements F, with unsatisfied requirements yielding a residual R. There are many A’s (alternative systems) that solve this equation
(yield R 5 0), and many more that nearly solve it. The matrix above, for example, is not doing so well, with zRz 5 2. Some of the
matrices are more coupled (less modular) than others. Elements of F and E are random integers 61, and elements of A evolve, and are
either 21, 0, or 11.

FIG. 3. Both matrices (a) and (b) represent exactly the same set of equations. However, in matrix (b), rows and columns have been
swapped so as to group non-zero elements into blocks along the diagonal. This reordering does not change the equations, but reveals
that the set of eight equations is really composed of six subsets of equations, and each subset can be solved and adapted independently
of other subsets. Thus, we can say that the system described in (a) and (b) contains six modules. The system described in (c) also contains
eight linear equations, but it can be rearranged into at most two blocks (d). Therefore, the system shown in (c) and (d) is less modular.
Thus, the maximum number of blocks that a system can be rearranged into is a measure of its modularity.
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FIG. 4. The inverse correlation between the number of nonzero
elements in an 8 3 8 matrix and the maximum number of blocks
it can be rearranged into. Graph is based on 1000 samples uniformly
distributed across the X-axis; error bars represent one standard de-
viation.

FIG. 5. Systems that are sparse yet have low decomposability, such as (a), are possible but exponentially unlikely. Figure (b) shows
distribution of modularity for one thousand 8 3 8 matrices, each filled randomly with 8 nonzero elements.

(a) and (b) represent exactly the same set of equations. How-
ever, in matrix (b), rows and columns have been swapped so
as to group nonzero elements into blocks along the diagonal.
This reordering does not change the equations, but reveals
that the set of 8 equations is really composed of 6 subsets
of equations, and each subset can be solved and adapted
independently of other subsets. Thus, we can say that the
system described in (a) and (b) contains 6 modules. The
system described in (c) also contains 8 linear equations, but
it can be rearranged into at most two blocks (d). Therefore,
the system shown in (c) and (d) is less modular. Thus the
maximum number of blocks that a system can be rearranged
into is a measure of its modularity.

The processes of rearranging a matrix into its block-di-
agonal form is computationally very expensive. Although a
variety of approximation algorithms have been developed for

this purpose, the cost is still prohibitive for simulated evo-
lutionary experiments that require analysis of billions of ma-
trices, as we have conducted. The number of blocks is also
a coarse-grained measure: Most of the matrices with higher
than average density have a block count of 1, and are there-
fore indistinguishable (see Fig. 4). In some cases, some of
these matrices can be rearranged into a near-block-diagonal
form, where most of the nonzero elements are within blocks
on the diagonal, except for a few off diagonal terms that
represent sparse interaction among modules. A coarse-
grained measure may have difficulty detecting such weak
trends.

A possible alternative metric for measuring modularity is
the number of nonzero elements in the matrix, corresponding
to the amount of coupling in the system. As we shall show,
this measure is inversely related to modularity, and therefore
can be used to assess the modularity of a system. Because it
is inexpensive to compute and offers a finer-grained reso-
lution, it is also well suited for detecting weak trends in large
samples.

In a system represented as a Ternary matrix A of size N
3 N, coupling C amounts to the fraction of nonzero elements:

N1
C(A) 5 zA z (3)O i,j2N i,j51

An N 3 N matrix with B blocks on the diagonal, has at most
C nonzero elements, depending on the distribution of the sizes
of the blocks. In the optimal case, when the blocks are uni-
form in size, C ø N2/B (if B is not a factor of N the formula
is more complex but the order is the same). In the worst case
(one large block and many unit ones), C ø (N 2 B 1 1)2 1
B 2 1. In either case as B increases, C decreases. We con-
firmed this relationship empirically by generating random
matrices whose sparseness is distributed uniformly from
empty matrices to full matrices, and computing their optimal
modular decomposition. Figure 4 confirms a clear inverse
correlation.

Note that there may be occasional cases, such as the single-
column system shown in Figure 5(a), where a matrix cannot
be decomposed into blocks despite having low coupling.
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FIG. 6. Two typical evolutionary runs subject to different environmental change rates: (darker) rapid change: environment changes
every 20 generations, and (lighter) slow change: environment changes every 80 generations. For each of the two cases there are two
curves: the top shows fitness on the scale of 0% to 100%, and the lower shows coupling on the scale of 0% to 100%. Note how under
slow changing environment, solutions have higher average fitness but higher coupling, whereas under faster changing environment
solutions have lower average fitness but decreasing coupling. Also note that when environment changes are introduced, the population
with higher coupling suffers a harder blow and longer recovery time.

However, such matrix compositions are relatively rare; for
example, the probability of N elements arranging into a single
particular column is p 5 N/N2 · (N 2 1)/N2 · (N 2 2)/N2· · ·1/
N2 , 1/NN. Because there are N possible mutually exclusive
column arrangements, the overall likelihood of any single-
column arrangement is less than p 5 1/NN21, which is ex-
ponentially unlikely (for example for N 5 8, p ; 1026). The
bar chart in Figure 5 (b) shows the distribution of the number
of blocks for randomly populated matrices with N elements.
The distribution empirically confirms this result.

METHOD

We simulated a simple evolutionary process where a pop-
ulation of As was evolved for a given pair of F and E. We
observed the dependency of the average coupling C(A) on
the rate of change dE/dt of the environment resources.

A basic evolutionary simulation process consists of a pop-
ulation of candidate individuals, selection criteria, a dupli-
cation and variation process, and replacement criteria. In a
set of experiments, we used a simple genetic algorithm
(Mitchell 1996, and details below) to evolve matrices with
high fitness (low residual zRz) for a given vector of require-
ments F and a vector of resources E. Details of the selection
and replacement processes are described below. We used
matrices of size N 5 8, with elements of both F and E set
randomly to 61, and elements of A restricted to either 11,
0, or 21. The only genetic operators used were mutations,

which switch a single randomly selected element of an in-
dividual among the permissible values. A sample individual
is shown in Figure 2.

Starting with a randomly initialized population of n 5 200
individual matrices, the steady-state evolutionary process re-
peatedly selected an individual, mutated it and replaced it
into the population by overwriting an existing, inversely se-
lected individual. We used a Boltzmann selection criterion
(see Mitchell 1996), as follows: For individual i, fitness was
computed fi 5 exp(2zRiz/t) where zRiz is the residual of the
individual and the Boltzmann temperature coefficient set at
t 5 1. Thus, a perfect individual would have fitness of 1 and
an individual with a residual error of zRz 5 1 would have a
fitness of 1/e 5 0.36. Similarly, individuals with larger re-
sidual will have exponentially lower fitnesses. Individuals
were selected in a fitness-proportionate selection, and inverse
selection for replacement (same as above but with t 5 21).
The process repeated for 20,000 generations (4,000,000 eval-
uations in total for each experiment). We measured the av-
erage coupling C(A) for various rates of change dE/dt of the
environment resources, ranging from the control experiment
where dE/dt 5 0 (fixed environment vector E), to highest
rate of change dE/dt 5 1 where a randomly selected element
of E switched sign after each evaluation. We first show a
single pair of experiments that highlight some interesting
features, and then show curves averaged over 10 and 100
experiments, each at several different rates of change, where
statistically significant conclusions can be inferred.
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FIG. 7. Four curves for different environmental change rates. (a) No change (control); (b) change every 500 generations, (c) change
every 50 generations, and (d) change every five generations. Each curve shows average over 10 experiments with binary matrices, each
with a population of 500 matrices over 2000 generations. The matrices were all initialized to all-zero state, and so the solutions process
represent a bottom-up composition rather than top-down decomposition. Separation of the four coupling curves according to change
rates is already visible after 1,000 iterations. All populations reach high fitness, but fitness variance is higher for population under higher
change rates (hence scattered points in background). Note also transition from first order pressure for integration for survival versus
second order pressure for decomposition for adaptability.

RESULTS

Figure 6 shows two typical evolutionary runs, each subject
to different environmental changing rates. Here the popula-
tion consisted of 500 individuals. One population (darker) is
subject to change introduced every 20 generations, whereas
another population (lighter) is subjected to change every 80
generations. The top dashed line shows the mutation bias of
66% nonzeros, which is the expected percentage of nonzeros
under the given mutation operator. The lower dashed line
shows the optimal coupling, corresponding to a diagonal ma-
trix or permutations of it. For each of the two cases there are
two curves: the top two curves show fitness of the two pop-
ulations, and the lower curves show coupling of the two
populations over time. Under slow changing environment
solutions have higher average fitness but higher coupling,
whereas under faster changing environment solutions have
lower average fitness but lower coupling. Also note that when
environment changes are introduced, the population with the
higher coupling suffers a harder blow and longer recovery
times.

Figure 7 shows four curves for different environmental
change rates. (a) No change (control); (b) change every 500
generations; (c) change every 50 generations; and (d) change
every five generations. Each curve shows average over 10
experiments with binary matrices, each with population of
500 matrices over 2000 generations. The matrices were all
initialized to all-zero state, and so the solutions process rep-
resent a bottom-up composition rather than top-down decom-

position. Separation of the four coupling curves according to
change rates is already visible after 1000 iterations. All pop-
ulations reach maximum fitness. Note the observed transition
from first order (immediate) pressure for integration for sur-
vival, appearing as a steep curve of increasing coupling, ver-
sus second order (delayed) pressure for decomposition for
adaptability, balancing out the integration pressure and keep-
ing the amount of coupling stable and well below the mu-
tation bias.

Finally, to investigate the hypothesis that internal coupling
decreases as rate of change of the environment increases, we
summarized these results in a plot of internal coupling versus
environment change rate, shown in Figure 8. Each point in
the plot is averaged for 100 experiments, each of 20,000
generations of a population of 200 individuals. The plot
shows a striking linear-log correlation, where higher change
rates produce less coupling in the matrix. The correlation can
be formalized as

dE
C 5 2k log 1 C (4)0dt

where k and C0 are constants that are dependent on the mu-
tation bias, the amount of interaction between the system and
the environment, and other specifics of the substrate. Because
modularity is inversely proportionate to coupling, we con-
clude that modularity is logarithmically correlated to rate of
change.

Note that under very low change rate (and under no change
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FIG. 8. Change driven modularity: Internal coupling versus environment change rate shows a linear-log correlation. Each point in the
plot is averaged for 100 experiments, each of 20,000 generations of a population of 200 matrices. Internal coupling is defined by Eq.
(3).

TABLE 1. Statistical significance* of differences in coupling among pairs of populations subject to different variation rates, after 10,000
generations

Population A

Rate Coupling**

Population B

Rate Coupling** Test x̄ Confidence

No change (control)
No change (control)
No change (control)
1024

1024

1023

m 5 0.6391
m 5 0.6391
m 5 0.6391
m 5 0.6302
m 5 0.6302
m 5 0.5727

1024

1023

1022

1023

1022

1022

m 5 0.6302
m 5 0.5727
m 5 0.5328
m 5 0.5727
m 5 0.5328
m 5 0.5328

CA . CB

CA . CB

CA . CB

CA . CB

CA . CB

CA . CB

1.3683
7.6942

10.6287
6.9490

10.4406
5.1433

.91.3%

.99.9%

.99.9%

.99.9%

.99.9%

.99.9%

* Using standard distribution-free Wilcoxon test (Weerahandi, 1994).
** Data based on 100 experiments for each rate value. Note: ‘‘m’’ denotes mean of distribution; Distributions are not necessarily normal, but calculated standard

deviation is approximately 0.05.

at all), the mutation operators pull the matrix coupling density
towards the 66% bias. This ‘‘saturation’’ effect is noticeable
below the 1025 rate in our experiment.

Statistical significance of differences in coupling among
pairs of populations subject to different rates of change was
tested using the standard Wilcoxon-Mann-Whitney test
(Weerahandi 1994) for distribution independent comparison
of populations. This test was used because the populations
in questions cannot be assumed to have a normal distribution,
and so a distribution-free test is required. Table 1 compares
pairs of the four populations against the null hypothesis that
the populations are indistinguishable, and shows that the cor-
relation is significant beyond 99% confidence.

Conclusions

This paper presented a methodology for studying the dy-
namics of modularization in a minimal substrate. In our sim-
ulated experiments on an abstract model of a natural system
subject to a variable problem, a clear correlation was ob-
served between the logarithm of the rate of change of the
system is subject to and the amount of modularity in the
system itself. This result was also observed in other variants
of these experiments that we did not report here (different
matrix sizes, real-valued matrices, different selection/re-
placements schemes, see Lipson et al. 2001). Also, although
we have tested only the dependency between modularity and
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rate of change of E, changing F would also induce modularity
because of the symmetry of the problem statement: In nature,
the resources, the requirements, and the genetic operators are
all subject to variation, and we postulate that any perturbation
in the problem coefficients will lead to modularization. It is
important, however, to recognize the limitations of using a
simple model. Because of the linearity of the model and its
fitness-proportionate selection, it is likely that our model can-
not represent complex modularization dynamics encountered
in coevolutionary and more open-ended environments. Some
directions for expansion are listed in the next section.

The mechanism suggested here produces a ‘‘weak’’ pres-
sure for modularity without relying on a particular represen-
tation or substrate. Thus, we argue that modularity is a fun-
damental consequence of variation and selection. Because
modularity in turn affects the variability and evolvability of
an individual, the proposed process sheds light on the ques-
tion of the origin of variation and the evolution of evolva-
bility. Modularity is a critical characteristic of many complex
systems (Carrol 2001), and the wealth of fields in which
modularity is observable suggests that these results may have
generic applicability reaching beyond the quoted examples.
Although there are several other mechanisms that can give
rise to modularity, it is likely that these mechanisms operate
concurrently, and the ability to study this process in isolation
may shed light on more complex instances for which less
direct data is available.

Future Work

There are several ways in which the minimal substrate
presented here can be extended and confirmed. Further re-
search is needed in four main directions: (1) examination of
modularization dynamics subject to other sources of variation
and in more complex model setups, such as coevolution and
open-ended composition; (2) investigation of other forms of
modularity, such as hierarchical modularization; (3) exten-
sion of the minimal substrate to include more realistic bio-
logical details, such as limited resources and nonlinearities
describing particular biological domains; and (4) confirma-
tion of the predicted effect in reality, for example by com-
paring synexpression groups in genomes sequences of bac-
teria subject to a range of controlled laboratory variation
sources.
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