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Abstract—The identifiability of a system is concerned with
whether the unknown parameters in the system can be uniquely
determined with all the possible data generated by a certain
experimental setting. A test of quantum Hamiltonian iden-
tifiability is an important tool to save time and cost when
exploring the identification capability of quantum probes and
experimentally implementing quantum identification schemes.
In this paper, we generalize the identifiability test based on the
Similarity Transformation Approach (STA) in classical control
theory and extend it to the domain of quantum Hamiltonian
identification. We employ STA to prove the identifiability of
spin-1/2 chain systems with arbitrary dimension assisted by
single-qubit probes. We further extend the traditional STA
method by proposing a Structure Preserving Transformation
(SPT) method for non-minimal systems. We use the SPT
method to introduce an indicator for the existence of eco-
nomic quantum Hamiltonian identification algorithms, whose
computational complexity directly depends on the number of
unknown parameters (which could be much smaller than the
system dimension). Finally, we give an example of such an
economic Hamiltonian identification algorithm and perform
simulations to demonstrate its effectiveness.

Index Terms—Quantum system; Hamiltonian identifiability;
quantum Hamiltonian identification; similarity transformation
approach.
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THERE is growing interest in quantum system re-
search, aiming to develop advanced technology in-

cluding quantum computation, quantum communication
[1] and quantum sensing [2]. Before exploiting a quantum
system as a quantum device, it is usually necessary to
estimate the state and identify key variables of the system
[3]-[7]. The Hamiltonian is a fundamental quantity that
governs the evolution of a quantum system. Hamiltonian
identification is thus critical for tasks such as calibrating
quantum devices [8] and characterizing quantum channels
[9], [10].

Before performing identification experiments, a natural
question arises: is the available data from a given exper-
imental setting enough to identify (or determine) all the
desired parameters in the Hamiltonian? In this paper, we
refer to such a problem as Hamiltonian identifiability. The
solution to this problem is fundamental and necessary
for designing efficient experiments and investigating the
capability of quantum sensors [2], and also gives us insights
on information extraction of certain probe systems.

There are several existing approaches to investigating
the problem of quantum system identification [11]-[14].
For example, Ref. [15] proved that controllable quantum
systems are indistinguishable if and only if they are
related through a unitary transformation, which can be
developed as an identifiability method for controllable
systems. The identifiability problem for a Hamiltonian
corresponding to a dipole moment was investigated in
[16]. The identification problem of spin chains has been
extensively investigated in e.g., [17]-[22]. For example,
Refs. [17], [18] proposed a spin chain Hamiltonian iden-
tification scheme requiring no state initialization but
only time-resolved measurements on one terminal qubit.
By employing measurement on a terminal qubit of the
chain, Ref. [19] designed a coupling strength identification
algorithm for one class of spin chain models. Zeeman
effect was employed in [20] to reconstruct Hamiltonian,
which requires no time-resolved dynamics of the system.
Ref. [21] proposed a sufficient condition for a many-body
Hamiltonian to be identifiable through a limited access
to a small subsystem using prior topology knowledge
about the system (extended to combinatorially symmetric
Hidden Markov Models in [22]). Moreover, Ref. [23]
presented identifiable conditions for parameters in passive
linear quantum systems, and further disposed of the
requirement of “passive” in [24]. Control signals to enhance
the observability of the quantum dipole moment matrix
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were introduced in [25]. Zhang and Sarovar [26] proposed a
Hamiltonian identification method based on measurement
time traces. Sone and Cappellaro [27] employed Gröbner
basis to test the Hamiltonian identifiability of spin-1/2
systems, and their method is also applicable to general
finite-dimension systems.

We assume the dimension [28] and structure (e.g., the
coupling types) [29] of the Hamiltonian is already deter-
mined, and the task is to identify unknown parameters in
the Hamiltonian. It is natural to resort to identifiability
test methods in classical (non-quantum) control field to
tackle the quantum Hamiltonian identifiability problem.
Common classical methods include the Laplace transform
approach [30], the Taylor series expansion approach [31]
and the Similarity Transformation Approach (STA) [32]-
[34]. For a review, see [35]-[38]. The main idea of the
Laplace transform approach is to determine the number
of solutions of the multivariate equations composed by
coefficients of the transfer function. In contrast, the STA
method transforms the identifiability problem into finding
the existence of unequal solutions of similarity equations
generated by a minimal system’s equivalent realizations,
thus providing a chance to avoid directly solving multivari-
ate polynomial equations, a considerable advantage in the
case of high-dimension or incomplete prior information.
In this paper, we extend the STA method to quantum
Hamiltonian identifiability. We generalize and improve
STA-based identifiability criteria, which are applicable to
both classical control and quantum identification domains.
We employ the STA method to analyze all physical cases
in [27] and present proofs for the associated identifiability
conclusions. Although the identification problem of similar
systems has been investigated, existing results mainly
focus on either designing identification algorithms [17]-
[20], or presenting sufficient conditions for a system to be
identifiable [21], [22].

We further propose a Structure Preserving Transfor-
mation (SPT) method for the STA-based identifiability
analysis in non-minimal systems. In classical control, when
faced with non-minimal systems, one usually prefers to
change the system settings such that it becomes minimal.
In other words, the original settings are abandoned. This
indirect solution is not applicable when the experimental
settings are difficult to change or when we only expect
to explore the information extraction capability of some
particular physical probe systems. Such situations are
often confronted in the quantum domain since only some
well-chosen measurement operations may be easy to realize
and measurement operations usually destroy the quantum
states themselves. Here, the SPT method provides a
chance to preserve most of the system key properties
after transformations while still performing identifiability
analysis on its minimal subsystem. Hence, we employ the
SPT method to prove that it is always possible to estimate
one unknown parameter in the system matrix using a
specifically designed experimental setting. This conclusion
serves as an indicator for the existence of “economic”
quantum Hamiltonian identification algorithms, whose

computational complexity directly depends on the number
of unknown parameters.

As an example, we provide a specific economic identifi-
cation algorithm. The computational complexity O(M2 +
qMN ) only depends on the number of unknown param-
eters M and data length N (q is a variable not larger
than N ). Therefore, for physical systems with a small
number of unknown parameters in the Hamiltonian, this
identification algorithm can be efficient.

The main contributions of this paper are summarized
as follows.

• The identifiability test method based on the Simi-
larity Transformation Approach (STA) is generalized
and extended to the quantum Hamiltonian identifi-
ability problem. Improved identifiability test criteria
are provided, and the analysis method based on Struc-
ture Preserving Transformation (SPT) is developed
for non-minimal systems when the system settings
are difficult to change.

• Based on the STA method, Hamiltonian identifia-
bility problem of the three physical cases in [27]
are analyzed in detail and concrete identifiability
conclusions are proved. These results as illustrative
examples show the effectiveness of the STA method
for analyzing Hamiltonian identifiability of closed
quantum systems with arbitrary dimension.

• To analyze general non-minimal systems, an SPT
application is developed to present an indicator for the
existence of economic Hamiltonian identification algo-
rithms, which have computational complexity directly
depending on the number of unknown parameters.
One example of such identification algorithms is then
presented.

The structure of this paper is as follows. In Sec. II
we present some preliminaries, formulate the identifiabil-
ity problem and briefly introduce the classical Laplace
transform approach. Sec. III presents the identifiability
test method employing STA. Based on the STA method,
we present the identifiability proof for two spin models,
the exchange model without and with transverse field in
Sec. IV and V, respectively. In Sec. VI we employ the
SPT method to present an indicator for the existence of
economic quantum Hamiltonian identification algorithms
and also give a concrete example of developing such an
algorithm. Sec. VII concludes the paper.

Notation: Let ∗ denote an indeterminate variable or
matrix. For a matrix A, Aσ i and A jσ denote its i-th column
and j-th row, respectively. Real and complex domains
are denoted by R and C, respectively. Let ⊗ denote
the tensor product. Define the vectorization function as
vec(Am×n) = [AT

σ1,A
T
σ2, ...,A

T
σn]

T . Let λi(A) denote the ith
eigenvalue of A and Λ(A) is the set of all the eigenvalues
of A (repeated eigenvalues appear multiple times in Λ(A)).
Let || · || denote the Frobenius norm. Define δ as the
Dirac delta function or the Kronecker delta function, in
the continuous or discrete sense, respectively. Denote the
estimation value of the true value x as x̂. Define ⌊x⌋ the
largest integer that is not larger than x.
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II. PRELIMINARIES AND PROBLEM
FORMULATION

A. Quantum state and measurement
The state of a quantum system is represented by a

complex Hermitian matrix ρ in a Hilbert space and its
dynamics are described by the Liouville-von Neumann
equation

ρ̇ =−i[H,ρ], (1)

where i=
√
−1, H is the system Hamiltonian, [A,B] =AB−

BA is the commutator and we set h̄ = 1 using atomic units
in this paper. Matrix ρ is positive semidefinite, satisfying
Tr(ρ) = 1.

To extract information from a quantum state, it is
normally necessary to perform a positive-operator valued
measure (POVM), which is a set {Mi}, where all the
elements are Hermitian positive semidefinite matrices and
∑i Mi = I. When a set {Mi} of POVM is performed, the
probability of outcome i occurring is determined by the
Born Rule, pi = Tr(ρMi). The data in actual experiments
are the approximation values of pi.

B. Problem formulation of Hamiltonian identifiability and
identification

We first rephrase the framework in [26] to recast
the problem of Hamiltonian identification as a linear
system identification problem. Let H be the d-dimensional
Hamiltonian to be identified, which can be parametrized
as

H =
M

∑
m=1

am(θ)Hm, (2)

where θ = (θ1, ...,θM)T is a vector consisting of all the
unknown parameters, M is the number of unknown
parameters, am are known functions of θ and Hm are
known Hermitian matrices (also called basis matrices).
Let su(d) denote the Lie algebra consisting of all d × d
skew-Hermitian traceless matrices. Then {iHm} can be
chosen as an orthonormal basis of su(d), where the inner
product is defined as ⟨iHm, iHn⟩= Tr(H†

mHn). The traceless
assumption is reasonable because H has an intrinsic degree
of freedom (see [39] for details).

Let S jkl be the real structure constants of su(d), which
satisfy

[iH j, iHk] =
d2−1

∑
l=1

S jkl(iHl), (3)

where j,k = 1, ...,d2 −1. If Hk is the observable, then the
experimental data is obtained from Born’s rule

xk = Tr(Hkρ). (4)

The identifiability is determined by the system structure.
Hence, it is usually assumed that there are no imper-
fections in the available experimental data, which is the
reason we identify theoretical values with practical data
in (4).

From (1)-(4) we have

ẋk =
d2−1

∑
l=1

(
M

∑
m=1

Smklam(θ))xl . (5)

If we directly rewrite (5) into a matrix form, the dimen-
sion of the system matrix would be d2 −1, which is large
for multi-qubit systems. To reduce the dimension, first
consider the operators Oi that we can directly measure in
practice. We expand Oi as Oi = ∑ j o jH j, and collect all the
H j that appear in the expansion of Oi as M= {Hv1 , ...,Hvp}.
Also, we collect all the H j that appear in the expansion
of H as L= {Hm}Mm=1. Define an iterative procedure as

G0 =M, Gi = {Gi−1,L}∪Gi−1,

where {Gi−1,L} , {H j|Tr(H†
j [g,h]) ̸= 0, for some g ∈

Gi−1,h ∈ L}. This iteration will terminate at a maximal
set Ḡ (called the accessible set) because su(d) is finite
dimensional. We collect all the xi with Hi ∈ Ḡ in a vector
x of dimension n, and its dynamics satisfy the linear system
equation

ẋ = Ax. (6)

The elements in A are the coefficients in (5), which are
linear combinations of am(θ). For some types of physical
systems, the dimension n can be much smaller than d2−1.
Real matrix A is antisymmetric due to the antisymmetry of
the structure constants. The output data can be denoted
as

y =Cx, (7)

where C is a known matrix that selects the entries in x
corresponding to the expectation values of the elements
in M. Therefore, the quantum Hamiltonian identification
problem can be established as follows:

Problem 1: Given the system matrix A = A(θ), initial
state x(0) = x0 and observation matrix C, design an
algorithm to obtain an estimate θ̂ of θ from measurement
data ŷ.

Before designing specific identification algorithms, a
natural question arises: for a system A, can we uniquely
determine the unknown parameters, based on a given
experimental setup (i.e., x0 and C)? If not, then it may be
required to redesign the experimental setup before starting
the experiment. This is especially significant for quantum
system identification, since implementing quantum exper-
iments is usually expensive. This induces the problem of
identifiability. Denote θ the true value of the unknown
parameter vector to be identified. Assume that the system
under consideration has some parametric model structure
with output data S(θ), for a given experimental setup.
The equation

S(θ) = S(θ ′) (8)

means that the model with parameter set θ ′ outputs
exactly the same data as the model with parameter set θ .
Identifiability then depends on the number of solutions to
(8) for θ ′. We use the following definition from [38]:

Definition 1: [38] The model S is structurally globally
identifiable (abbreviated as identifiable in the rest of this
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paper), if for almost any value of θ , (8) has only one
solution θ ′ = θ .

Definition 1 is in essence the same as the definition of
identifiability in [27]. It is necessary to ensure identifiabil-
ity holds for almost any value of the parameters because
the number of solutions to (8) might change for some
particular values of θ , which are called atypical cases (to
be illustrated later). Also, identifiability is determined by
the system structure. Hence, we do not consider noise or
uncertainty in the experimental data. A trivial necessary
condition for a parameter to be identifiable is that it
should appear in the system model S, and in the following
we only focus on this class of parameters.

C. The Laplace transform approach and atypical cases
One of the most intuitive ways to solve identifiability

problems is through the Laplace transform, which is
also helpful in understanding concepts like atypical cases.
Hence, we first briefly introduce the Laplace transform
approach [38]. Consider the following standard MIMO
linear system with zero initial condition:{

ẋ = A(θ)x+B(θ)u, x(0) = 0,
y =C(θ)x+D(θ)u. (9)

Throughout this paper we use 4-tuples Σ = (A,B,C,D) to
denote linear systems with the form of (9). The Laplace
transform solution to (9) is

Y(s,θ) = T(s,θ)U(s),

where the transfer function matrix is T(s,θ) = C(θ)[sI −
A(θ)]−1B(θ)+D(θ).

Remark 1: Now we know that the system (6) and
(7) with initial state x(0) = x0 is equivalent to the system
ẋ = Ax+Bu and y =Cx with a zero-initial state x(0) = 0,
where B = x0 and u = δ (t). The reason is that these
two systems share the same Laplace domain solution
Y(s) = C[sI − A]−1x0. In this way, we can transform a
system without control to a controlled zero-initial-state
system. Kalman decomposition to be introduced later will
be more natural in a system with a control term. Hence,
we introduce Laplace transform approach and STA based
on the standard form (9).

In the frequency domain, (8) is now

T(s,θ)U(s) = T(s,θ ′)U(s).

By cancelling U(s), (8) is equivalent to

T(s,θ) = T(s,θ ′), ∀s. (10)

Hence, the transfer function is exactly a tool to charac-
terize identifiability. By writing (10) in a canonical form
(e.g., transforming the numerators and denominators into
monic polynomials) and equating coefficients on both sides
of (10), one obtain a series of algebraic equations in θ
and θ ′. If for almost any value of θ , the solutions always
satisfy θ ′ = θ , then the system is identifiable. In order
to investigate identifiability, Sone and Cappellaro [27]
employed Gröbner basis to determine the conditions of

identifiability. By directly solving (10) where the RHS is
replaced by a specific transfer function reconstructed from
experimental data, one can develop algorithms like that
in [26] to identify the Hamiltonian.

The following property of the transfer function will be
frequently used in the sequel:

Property 1: When a system undergoes a similarity
transformation x′ = Px where P is a nonsingular matrix,
the transfer function remains the same, and thus the
identifiability does not change.

We specifically illustrate atypical cases and hypersur-
faces. Assume that the number of unknown parameters
is M and we have no prior knowledge of the true values,
which indicates the candidate space for the parameters is
RM. A hypersurface is a manifold or an algebraic variety
with dimension M− 1, and it is usually obtained by
adding an extra polynomial equation about the unknown
parameters. Hypersurface sets have Lebesgue measure zero
and they can thus be neglected in practice. Atypical
cases are subsets of hypersurfaces. Hence, analysis on
atypical cases can also be omitted. When the complement
of a hypersurface is open and dense in RM and has full
measure, it is often called a generic set [40]. For strictness,
the phrase “almost always” is usually employed to indicate
that atypical cases have already been neglected. We give
an example of atypical cases from the point of view of
transfer functions like Example 3.1 in [38]. Consider a
system with unknown parameters θ1 and θ2 and the
transfer function

T(s,θ) =
θ1

s+θ1 +θ2
. (11)

The algebraic equations from (10) are thus θ1 = θ ′
1 and

θ1 +θ2 = θ ′
1 +θ ′

2. Therefore, the system (11) is generally
identifiable, except the case of θ1 = 0 which leads to a
zero transfer function and erases all the information about
θ2. Since θ1 = 0 is an atypical case, we can omit it and
conclude that this system is (almost always) identifiable.
In the rest of this paper we omit “almost always” if there
is no ambiguity.

III. HAMILTONIAN IDENTIFIABILITY VIA THE
SIMILARITY TRANSFORMATION APPROACH

A. General procedures for minimal systems
Strictly speaking, the word “minimal” is used to de-

scribe system realizations that are both controllable and
observable. In this paper, we call a system “minimal” if
it is both controllable and observable.

Let θ be the true value generating the system (9).
Suppose that there is an alternative value θ ′ generating
the same output data. Then θ ′ gives an alternative
realization:{

ẋ′ = A(θ ′)x′+B(θ ′)u, x′(0) = 0,
y =C(θ ′)x′+D(θ ′)u. (12)

Suppose that the system realization (9) is minimal. Then
(12) is also minimal since they have the same dimension.
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Fig. 1. Relationships between identifiability criteria.

From Kalman’s algebraic equivalence theorem [41], mini-
mal realizations of a transfer function are equivalent; i.e.,
they are related by a similarity transformation:

A(θ) = S−1A(θ ′)S,
B(θ) = S−1B(θ ′),
C(θ) =C(θ ′)S,
D(θ) = D(θ ′),

(13)

where S is an invertible matrix. We call equations (13) the
STA equations. We take S, θ and θ ′ as unknown variables
and search for their solution. The solvability of (13) can be
guaranteed because it always has a trivial solution S = I
and θ = θ ′. If all the solutions satisfy θ = θ ′, then the
system (9) is identifiable. Otherwise it is unidentifiable. In
cases when the signs of θ are not considered, one can check
whether all the solutions to the STA equations satisfy
|θ |= |θ ′| to determine the identifiability.

B. Non-minimal systems
If the system is not minimal, Kalman’s algebraic equiv-

alence theorem (and hence the STA equations) can only
be applied to the controllable and observable part of the
system. If one ignores whether the system is minimal
or not and directly employs the solution to the STA
equations to test the identifiability, an incorrect conclusion
might be obtained. For example, consider the following 2-
dimensional system:

Example 1: ẋ =

(
θ1 0
0 θ2

)
x+
(

1
0

)
u, x(0) = 0,

y = (1 0)x.
(14)

This system (14) is uncontrollable and unobservable. If one
directly solves the STA equations, the conclusion is that it
is identifiable. However, since the output y never contains
any information about x2, which evolves independently as
ẋ2 = θ2x2, θ2 is in fact unidentifiable.

The fact that (10) is equivalent to (8) in Sec. II-C
means a linear system’s identifiability is uniquely and
completely determined by its transfer function. Therefore,

unlike in the situation using STA, non-minimal systems do
not introduce extra requirements in the Laplace transform
approach.

Regardless of controllability or observability, the trans-
fer function of a system remains the same under similarity
transformation. Therefore, for uncontrollable or unobserv-
able systems, the solution using STA is [33]: (i) perform
Kalman decomposition and obtain the controllable and
observable (minimal) subsystem; (ii) write down the STA
equations for the minimal subsystem; (iii) the original
system is identifiable if and only if the solutions to the
STA equations in (ii) all satisfy θ = θ ′.

For Example 1, (14) is already in the Kalman canonical
form and the minimal subsystem is ẋ1 = θ1x1 +u, y = x1.
Hence, θ1 is identifiable and θ2 is unidentifiable. This
example also implies the following identifiability Crite-
rion 1, which corresponds to the fact in [27] that the
parameters that do not appear in the transfer function
are unidentifiable.

Criterion 1: Suppose a system is non-minimal. Per-
form Kalman decomposition to obtain its minimal subsys-
tem and non-minimal subsystem. The unknown parame-
ters that do not appear in the minimal subsystem are
unidentifiable.

For a non-minimal system, even if all the unknown
parameters appear in the minimal subsystem and the
STA equations for the original system (rather than the
minimal subsystem) exclude the solutions θ ̸= θ ′, it is not
sufficient for guaranteeing the identifiability of the original
system. A straightforward example can be obtained by
substituting θ1 and θ2 in Example 1 with θ1 + θ2 and
θ1 −θ2, respectively.

Although it is necessary to analyze the minimality
before solving the STA equations in most situations, we
find a shortcut for some special cases.

Criterion 2: If the STA equations for a system
have a (non-atypical) solution θ0 ̸= θ0

′, the system is
unidentifiable regardless of whether it is minimal or not.

For the proof of Criterion 2, we consider two
specific realizations (A(θ0),B(θ0),C(θ0),D(θ0)) and
(A(θ0

′),B(θ0
′),C(θ0

′),D(θ0
′)) for the system. According

to the form of STA equations (13), these two different
(possibly non-minimal) realizations are related by a
similarity transformation. Using Property 1 they result
in the same transfer function. Therefore, different system
parameters are generating the same system model. This
means the system must be unidentifiable, which proves
Criterion 2.

As pointed out in [42], the controllability and observ-
ability properties are neither sufficient nor necessary for
identifiability. Example 1 has shown that non-minimal
systems may be unidentifiable. If one replaces θ2 in the
system matrix of (14) with θ1, then the system becomes
identifiable, which indicates non-minimal systems can also
be identifiable.

In Fig. 1, we summarize all the results of Sec. III-A
and III-B. Note that for non-minimal systems Criterion 2
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is necessary but not sufficient, different from the case for
minimal systems.

C. Structure Preserving Transformation method
Structure Preserving Transformation (SPT) method is

an idea we develop for identifiability analysis in non-
minimal systems. Suppose there is a non-minimal system
Σ = (A,B,C,D) with state vector x. If Criterion 2 fails, tra-
ditionally we have to perform Kalman decomposition. We
let x̄ = Px such that the equivalent system Σ̄ = (Ā, B̄,C̄, D̄)
has the Kalman canonical form. Then, we employ the STA
equations for its minimal subsystem Σ̄1 = (Ā1, B̄1,C̄1, D̄1),
with the corresponding state vector x̄1 having a dimension
smaller than x.

Quantum systems usually generate clear structure prop-
erties in A. These structure properties may be completely
disguised in the system Σ̄, making the STA equations
difficult to solve. This problem is seldom investigated in
classical control theory, because classically one prefers to
change the system structure (A,B,C,D) so that the system
becomes minimal when faced with such problems. On the
contrary, quantum research sometimes investigates the
physical capability of a certain fixed system setting and
the initial quantum system states or the observables may
be difficult to change. Therefore, changing (A,B,C,D) may
not be practical. How can we keep (some of) the structure
properties of the original system Σ and meanwhile perform
STA analysis?

The idea of SPT is to further perform a similarity
transformation on Σ̄ to recover (some of) the structure
properties of Σ, meanwhile preserving the canonically
decomposed form. To do this, we let x̃ = (P̃−1 ⊕ I)x̄ and
obtain a system Σ̃=(Ã, B̃,C̃, D̃), where P̃−1 acts only on the
minimal subsystem Σ̄1. Since the second transformation
P̃−1⊕I is block-diagonal, Σ̃ is still in the Kalman canonical
form, and the matrices (Ã1, B̃1,C̃1, D̃1) are submatrices
of those in Σ̃, respectively. If P̃ is close to P (in the
form/appearance, not in norm), or P̃−1 is close to P−1,
then we are likely to regain an Ã1 similar to A, thus
recovering key structure properties. Then we solve the
STA equations for the minimal subsystem Σ̃1 to determine
the identifiability.

In the SPT method, P̃ can never be exactly equal to
P, because their dimensions are different. The choice of
P̃ is not unique and should depend on specific problems.
One common choice is to let P̃ be a submatrix of P. An
example using the SPT method is provided in Sec. VI-A.

D. Quantum Hamiltonian identifiability via STA
We clarify several points when using STA for analyzing

Hamiltonian identifiability. For simplicity we only consider
single input systems (i.e., the matrix B has only one col-
umn), while the result can be straightforwardly extended
to multi-input systems. From Remark 1, a quantum
system of (6) and (7) with the initial state x(0) = x0 is
equivalent to the following zero-initial-state system:{

ẋ = Ax+Bu, x(0) = 0,
y =Cx,

where B = x0 and u = δ (t).
For a quantum Hamiltonian, x0 and C are usually

determined and A is antisymmetric. We rewrite (13) as:

SA(θ) = A(θ ′)S, (15)

Sx0 = x0, (16)

C =CS, (17)

together with the requirement that S is nonsingular and
other possible constraints on θ and θ ′. Eqs. (15)-(17) are
the starting point for STA analysis for the rest of this
paper.

Next we use STA to test the identifiability for single-
probe-assisted spin-1/2 chain systems in [27], which have
the form of a one-dimensional chain, composed of multi
qubits with their interaction governed by the system
Hamiltonian. It is usually assumed that only the first
qubit (the probe qubit) can be initialized and measured,
while the rest qubits are all inaccessible (and thus they
are assumed to be in the maximally mixed state initially).
The probe qubit can be used as a quantum sensor and
the identifiability problem is also relevant to the capability
evaluation of the quantum sensor. As in [27], we identify
only the magnitude of the unknown parameters in the
Hamiltonian; i.e., a system is identifiable if and only if all
the solutions to the STA equations for the minimal sub-
system satisfy |θi| = |θ ′

i |. There are four physical models
in [27], where the transfer function on the Ising model
without transverse field can be directly calculated and we
omit the STA analysis for this model. The Ising model
with the transverse field can also be skipped, because
the system matrix has the same structure as that in the
exchange model without transverse field. Hence, we only
analyze two exchange models, with and without transverse
field. Let θ = (θ1,θ2, ...,θn)

T be the unknown parameters.
We choose {Hm} = {σα1 ⊗σα2 ⊗ ...⊗σαn}αi∈{0,1,2,3} as the
same as those in [26], where σ0 = I2×2, and Pauli matrices
σ1 = X , σ2 = Y , and σ3 = Z. Then the accessible sets are
the same as those in [27] for each of the following cases. For
the exchange model without transverse field, n+1 is the
total qubit number and the Hamiltonian can be written
as

H =
n

∑
i=1

(−1)i+1θi

2
(XiXi+1 +YiYi+1), (18)

where the subscript i denotes the ith qubit, X and Y are
the single-qubit Pauli matrices

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
.

The observable is X1 with the initial state being an
eigenstate of X1 (i.e., the system state is |X+⟩⟨X+|⊗ I/2n

where |X+⟩ = (1,1)T/
√

2). For the exchange model with
transverse field, n must be odd and n+1

2 is the total qubit
number. The Hamiltonian can be written as

H =

n+1
2

∑
i=1

θ2i−1

2
Zi +

n−1
2

∑
i=1

θ2i

2
(XiXi+1 +YiYi+1), (19)
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where Z = diag(1,−1). With the initial state being the
eigenstate of X1, the observable can be X1 or Y1. Therefore
there are altogether three situations to be analyzed, which
are summarized as Theorems 1-3. These three situations
were first investigated in [27] and only verified numerically
for several specific cases. Here, we provide a mathematical
proof for arbitrary dimension. Also, Theorems 1-3 contain
various situations to showcase the power of STA: Theorem
1 and Theorem 3 characterize identifiable minimal sys-
tems, while Theorem 2 corresponds to an unidentifiable
minimal system. An example of dealing with identifiable
non-minimal systems will be presented in Theorem 4.

IV. EXCHANGE MODEL WITHOUT TRANSVERSE
FIELD

The Hamiltonian for this spin system is described in
[27], which also derives the system model (18). Therefore
we start from the linear system form (9). In the system
matrix A only the elements directly above or below the
main diagonal are non-zero:

A =



0 θ1 0 0 · · ·
−θ1 0 θ2 0 · · ·

0 −θ2 0
. . .

0 0
. . . θn

...
... −θn 0


(n+1)×(n+1)

. (20)

The initial state of the probe is an eigenstate of X1. Hence,
B = x0 = (1,0, ...,0)T . We measure X1, and C = (1,0, ...,0).
We have the following theorem:

Theorem 1: The exchange model without transverse
field is identifiable when measuring X1 on the single qubit
probe, with the initial state of the probe in an eigenstate
of X1.

Proof: We first prove this system is minimal for almost
any value of the unknown parameters, and then test the
identifiability.

1) Proof for minimality:
Lemma 1: With (20) and B = (1,0, ...,0)T , the con-

trollability matrix CM = (B,AB, · · · ,AnB) has full rank for
almost any value of θ .

The proof of Lemma 1 is provided in Appendix A. Then,
given the observability matrix OM = (C,CA, . . . ,CAn)T =
diag(1,−1,1,−1, ...,(−1)n) ·CMT , the system is also almost
always observable. Therefore, it is almost always minimal.

2) Identifiability test: We now employ the STA equa-
tions to test the identifiability. Using (16) and (17) we
know S is of the form

S =


1 0 · · · 0
0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗


(n+1)×(n+1)

, (21)

and (15) is now
1 0 · · · 0
0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗




0 θ1 0 · · · 0

−θ1 0
. . .

0
. . .

...



=


0 θ ′

1 0 · · · 0

−θ ′
1 0

. . .

0
. . .

...




1 0 · · · 0
0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗

 .

(22)
Denote the partitioned S and A as

S =

(
11×1 (0n×1)

T

0n×1 S̃n×n

)
, A =

(
01×1 (En×1)

T

−En×1 Ãn×n

)
,

and then (22) is equivalent to

ET = E′T S̃, (23)

−S̃E =−E′, (24)

S̃Ã = Ã′S̃. (25)

From the first elements in (23) and (24), we have θ1 = θ ′
1S̃11

and −S̃11θ1 =−θ ′
1. Since the atypical case of θ1 = 0 is not

considered, we have θ ′
1 ̸= 0 and |S̃11|= 1, which indicates

|θ1|= |θ ′
1|. Then from the remaining elements in (23) and

(24), we have S̃12 = S̃13 = ...= S̃1n = 0 and S̃21 = S̃31 = ...=
S̃n1 = 0.

If S̃11 = 1, (25) now is of the same form as (22) but
with dimension decreased by 1; otherwise if S̃11 = −1,
(25) is equivalent to (−S̃)Ã = Ã′(−S̃), which is also of the
same form as (22) with the dimension decreased by 1.
Therefore these procedures can be performed inductively
and finally we know all the solutions to (22) satisfy
S = diag(1,±1, ...,±1) and |θi|= |θ ′

i | for all 1 ≤ i ≤ n.

Remark 2: The relevant result in Theorem 1 was also
presented in [18], where a specific Hamiltonian identifica-
tion algorithm for the same system setting was proposed.
Here we use it as an example to illustrate the effectiveness
of STA.

V. EXCHANGE MODEL WITH TRANSVERSE
FIELD

The Hamiltonian for this system is as in (19) and we
start from the linear system form (9). In A, each θ2k+1
appears twice and each θ2k appears four times, which is
different from (20):

A =



0 θ1 0 −θ2 · · ·
−θ1 0 θ2 0 · · ·

0 −θ2 0
. . .

θ2 0
. . . θn

...
... −θn 0


(n+1)×(n+1)

, (26)
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where n must be odd. The initial state of the probe is
an eigenstate of X1. Hence, B = x0 = (1,0, ...,0)T . With
Property 1, we can first rearrange A as follows: we take its
odd rows in ascending sequence and then take its even rows
in ascending sequence, and we apply the same procedures
to its columns. We may rewrite A into

A =

(
0 Ā
−Ā 0

)
, (27)

where

Ā =



θ1 −θ2 0 · · · 0

−θ2 θ3 −θ4
...

0 −θ4 θ5
. . . 0

... . . . . . . −θn−1
0 · · · 0 −θn−1 θn


(28)

is symmetric. After this transformation, we have B =
(1,0, ...,0)T unchanged.

A. Measuring X1

First we consider measuring X1. Then C = (1,0, ...,0).
We have the following conclusion:

Theorem 2: The exchange model with transverse field
is unidentifiable when measuring X1 on the single qubit
probe, with the initial state of the probe in an eigenstate
of X1.

Proof: We employ Criterion 2 to prove the conclusion,
and thus do not need to analyze its minimality. When A
in (26) is transformed to (27), C is unchanged and we
assume S is transformed to S̄. Now (16) and (17) imply
S̄ is of the same form as (21). We do not need to find
all the solutions to (15). Instead, we only need to find a
special solution to (15) which gives |θi| ̸= |θ ′

i | for some i.
We assume

S̄ = 11×1 ⊕N n−1
2 × n−1

2
⊕M n+1

2 × n+1
2
,

which satisfies the form (21). Eq. (15) now is1
N

M

( Ā
−Ā

)
=

(
Ā′

−Ā′

)1
N

M

 .

(29)
We further assume N and M are orthogonal, which
guarantees that S̄ is nonsingular and now (29) is in essence
only one equation: (

1
N

)
ĀMT = Ā′. (30)

We perform spectral decomposition on Ā to have Ā =
PEPT where P is orthogonal and E is diagonal. We have
the following lemma (the proof is given in Appendix B)
to exclude the atypical cases:

Lemma 2: Given arbitrary λ0 ∈ C, it is atypical that
λ0 ∈ Λ(Ā).

Lemma 2 is non-trivial. For example, if we change the
structure of Ā as

(
θ1 θ2
θ1 θ2

)
, then it is always true that

0 ∈ Λ(Ā).

Denote Ik = diag(1, ...,1,−1,1, ...,1) where only the kth
element is −1. We have the following assertion:

Lemma 3: There is at least one k ∈ {1,2, ...,n} such
that |θ1| ̸= |(PEIkPT )11|.

The proof of Lemma 3 is given in Appendix C. Using
Lemma 3, suppose |θ1| ̸= |(PEImPT )11|. We let

MT = PImPT
(

1
NT

)
.

As long as N is orthogonal, M is orthogonal. We denote
the LHS of (30) as L̄, and have

L̄ =

(
1

N

)
ĀMT

=

(
1

N

)
PEPT PImPT

(
1

NT

)
=

(
1

N

)
PEImPT

(
1

NT

)
.

(31)

We thus know

|L̄11| =

∣∣∣∣I1σ

(
1

N

)
PEImPT

(
1

NT

)
Iσ1

∣∣∣∣
= |I1σ PEImPT Iσ1|= |(PEImPT )11| ̸= |θ1|.

From (31) we know L̄ is always symmetric. Then we only
need to find an appropriate orthogonal N to make L̄ have
the same positions of zeros as Ā. Denote Z = PEImPT ,
which is symmetric. We design a series of orthogonal
matrices N(1)

n−1
2 × n−1

2
,N(2)

n−3
2 × n−3

2
, ...,N

( n−3
2 )

2×2 such that

N =

(
I n−5

2 × n−5
2

N( n−3
2 )

)
· · ·
(

I1×1

N(2)

)
N(1).

We further denote a series of n+1
2 -dimensional matrices

Z(1),Z(2), ...,Z( n−3
2 ) such that

Z(1) =

(
1

N(1)

)
Z
(

1
[N(1)]T

)
(32)

and Z(i+1) = (Ii+1 ⊕N(i+1))Z(i)(Ii+1 ⊕ [N(i+1)]T ) for 1 ≤ i ≤
n−5

2 . Then Z( n−3
2 ) = L̄. We start from the innermost layer

(32).
We partition Z as

Z =

(
Z11 J1× n−1

2
(J1× n−1

2
)T J n−1

2 × n−1
2

)
,

and have

Z(1) =

(
Z11 J[N(1)]T

N(1)JT N(1)J [N(1)]T

)
. (33)

In (33), Z11 is unchanged and we need to make J[N(1)]T

have the form

J[N(1)]T = (∗,0, ...,0). (34)

We perform spectral decomposition to set

JT J =U (1)diag(∗,0, ...,0)[U (1)]T .

Then N(1) = [U (1)]T is orthogonal and (34) holds.
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For the next layer, we partition Z(1) as

Z(1) =

 Z11 ∗ 01× n−3
2

∗ ∗ K1× n−3
2

0 n−3
2 ×1 (K1× n−3

2
)T K n−3

2 × n−3
2

 .

We then have

Z(2) =

1
1

N(2)

Z(1)

1
1

[N(2)]T


=

 Z11 ∗ 01× n−3
2

∗ ∗ K[N(2)]T

0 n−3
2 ×1 N(2)KT N(2)K[N(2)]T

 .

Z11 is unchanged and we need to make K[N(2)]T take the
form

K[N(2)]T = (∗,0, ...,0).

We perform spectral decomposition to make

KT K =U (2)diag(∗,0, ...,0)[U (2)]T ,

and then N(2) = [U (2)]T is what we need. Continuing the
above procedure, we can finally determine an orthogonal
N such that L̄ = Z( n−3

2 ) has the same structure as Ā. Since
Z11 is unchanged and |Z11| ̸= |θ1|, we know |L̄11| ̸= |θ1|,
which implies we have found a special unequal solution to
the STA equations. Thus the system is unidentifiable.

B. Measuring Y1

Now we consider measuring Y1, which sets C =
(0,1,0, ...,0). We have the following theorem to correct
the conclusion in [27].

Theorem 3: The exchange model with transverse field
is identifiable when measuring Y1 on the single qubit probe,
with the initial state of the probe in an eigenstate of X1.

Proof:
1) Proof for minimality: After A in (26) is transformed

to (27), C is transformed to

C = (01× n+1
2
,C̄), C̄ = (1,01× n−1

2
). (35)

Denote

B = (B̄T ,01× n+1
2
)T , B̄ = (1,01× n−1

2
)T . (36)

We have the following lemma (the proof is given in
Appendix D) to show that the system is minimal.

Lemma 4: With (27), (28), (35) and (36), both
the controllability matrix CM = [B,AB, · · · ,AnB] and the
observability matrix OM = [CT ,ATCT , · · · ,AnTCT ]T have
full rank for almost any value of θ .

2) Identifiability test: By Property 1, we use STA to
prove the system (27) and (28) is identifiable with (35)
and (36). We partition S as

S =

(
X n+1

2 × n+1
2

∗ n+1
2 × n+1

2
∗ n+1

2 × n+1
2

Yn+1
2 × n+1

2

)
.

Then (15) is(
X ∗
∗ Y

)(
0 Ā
−Ā 0

)
=

(
0 Ā′

−Ā′ 0

)(
X ∗
∗ Y

)
, (37)

which is
XĀ = Ā′Y, (38)

Y Ā = Ā′X , (39)

where the other two equations on the indeterminate
submatrices are omitted. Using (16) and (17), we have

Xσ1 = (1,0, ...,0)T , Y1σ = (1,0, ...,0). (40)

From (38) and (39), we have

XT XĀ = XT Ā′Y = ĀY TY, (41)

Y TY Ā = Y T Ā′X = ĀXT X . (42)

From (41) and (42), the following relationship holds,

(XT X −Y TY )Ā =−Ā(XT X −Y TY ), (43)

which is a special form of Sylvester equation. We rephrase
the general solving procedures for Sylvester equation [43]
to solve (43). Considering that Ā is a symmetric matrix
as shown in (28), we vectorize (43) to have

(Ā⊗ I n+1
2
+ I n+1

2
⊗ Ā)vec(XT X −Y TY ) = 0.

Using the same idea in Appendices B and D, it is
straightforward to prove that Ā⊗ I+ I⊗ Ā is almost always
nonsingular by considering Ā= I. An equivalent expression
is that we almost always have

λi(Ā)+λ j(Ā) ̸= 0 (44)

for any 1≤ i, j ≤ n+1
2 . Therefore we can almost always have

XT X = Y TY. (45)

Similarly,

(XXT −YY T )Ā′ =−Ā′(XXT −YY T ),

and thus

(Ā′⊗ I n+1
2
+ I n+1

2
⊗ Ā′)vec(XXT −YY T ) = 0. (46)

Lemma 5: With (27), (28) and (37), Ā′⊗ I n+1
2
+ I n+1

2
⊗

Ā′ is almost always nonsingular.
The proof of Lemma 5 is provided in Appendix E. With

Lemma 5, we can almost always solve (46) to have

XXT = YY T . (47)

Considering (40), we partition X and Y as

X =

(
11×1 E1× n−1

2
0 n−1

2 ×1 X̃ n−1
2 × n−1

2

)
, Y =

(
11×1 01× n−1

2
Fn−1

2 ×1 Ỹn−1
2 × n−1

2

)
.
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From (45), (XT X)11 = 1= (Y TY )11 = 1+FT F , which means
F = 0. Similarly from (47) we have E = 0. We partition Ā
as

Ā =

(
θ1 G1× n−1

2
(G1× n−1

2
)T Ã n−1

2 × n−1
2

)
.

Then (38) is(
1 0
0 X̃

)(
θ1 G
GT Ã

)
=

(
θ ′

1 G′

G′T Ã′

)(
1 0
0 Ỹ

)
,

which implies θ1 = θ ′
1,

G = G′Ỹ , (48)

X̃GT = G′T , (49)

X̃ Ã = Ã′Ỹ . (50)

Eq. (48) is (−θ2,0, ...,0) = (−θ ′
2,0, ...,0)Ỹ , which im-

plies Ỹ1σ = (θ2/θ ′
2,0, ...,0). Similarly (49) gives X̃σ1 =

(θ ′
2/θ2,0, ...,0)T . With similar procedures, (39) gives X̃1σ =

(θ2/θ ′
2,0, ...,0), Ỹσ1 = (θ ′

2/θ2,0, ...,0)T and

Ỹ Ã = Ã′X̃ . (51)

Equating X̃11 (or Ỹ11) we find |θ2| = |θ ′
2|. If θ2 = θ ′

2, we
have

Ỹ1σ = (1,0, ...,0) = (X̃σ1)
T . (52)

Now (50), (51) and (52) have the same structures as
(38), (39) and (40), respectively, while with the dimension
decreased by 1. If θ2 =−θ ′

2, we have −Ỹ1σ = (1,0, ...,0) =
(−X̃σ1)

T and we can rewrite (50) and (51) as (−X̃)Ã =
Ã′(−Ỹ ) and (−Ỹ )Ã= Ã′(−X̃). Therefore, either {X̃ ,Ỹ , Ã, Ã′}
or {−X̃ ,−Ỹ , Ã, Ã′} have the same structure and property
as {X ,Y, Ā, Ā′}, but with the dimension decreased by 1.
This procedure can thus be performed recursively, until
we finally reach X = Y = diag(1,±1, ...,±1) and |θi|= |θ ′

i |
for every 1 ≤ i ≤ n.

Remark 3: Theorem 2 and Theorem 3 indicate that
when the system matrix A has periodically repeated
structure properties, STA analysis can avoid the curse
of dimensionality and provide identifiability results for
arbitrary dimension. It is worth mentioning that the
STA analysis is not limited to spin chain systems, but
is also applicable to general closed quantum systems, as
exemplified in Sec. VI.

VI. ECONOMIC QUANTUM HAMILTONIAN
IDENTIFICATION ALGORITHMS

If a system is identifiable, we may develop an appropri-
ate identification algorithm to identify the parameters. In
this section, we provide another application of STA and
SPT to quantum Hamiltonian identification. Generally
the dimension of a quantum system is exponential in
the number of qubits. Hence, identification algorithms
that have polynomial complexity in the system dimension
will in essence have exponential computational complexity
in the number of qubits, which has been referred to as
the exponential problem, one of the central problems in

quantum research [1]. To avoid this problem, one method
is to design identification algorithms with computational
complexity directly depending on quantities that increase
much slower than the system dimension. Typically such
quantities include the number of qubits in multi-qubit
systems, or the number of unknown parameters for special
physical systems (in which case the corresponding algo-
rithms are referred to as “economic” ones in this paper).
STA can be a useful tool to indicate the existence of such
economic algorithms.

A. An indicator for the existence of economic identifica-
tion algorithms

We aim to design an identification algorithm that
has computational complexity that only depends on the
number of unknown parameters. Suppose we have a d-
dimensional Hamiltonian H with M unknown parameters
θi. In most cases, the ais in (2) are linear functions of θi.
Hence, we can expand H directly using θ , H = ∑M

i=1 θiHi.
Using the procedures in Sec. II-B, we can model the
evolution of the state as an n-dimensional linear system
model

ẋ = Ax, x(0) = x0, (53)

where the elements of A are linear combinations of θi.
Without loss of generality, the identification of all θi is
equivalent to identifying certain M elements of A. We
hope the algorithm can identify one unknown element in
A under one set of B and C, with computational complexity
f (M) that is a function of M but not of d. Then the total
computational complexity to identify the Hamiltonian is
M f (M), which does not directly depend on d.

We start by investigating the identification capability
of the fundamental setting of B = Iσ i and C = I jσ . By
changing indices, we assume that B = Iσ2 and C = I1σ . In
the most general case, there are no special properties for
the structure of A. Assume that this system (A,B,C) is
already minimal. Then from (16) and (17) we know the
transformation matrix S is

S =


1 0 0 · · · 0
∗ 1 ∗ · · · ∗
∗ 0 ∗ · · · ∗
...

...
...

...
∗ 0 ∗ · · · ∗

 ,

and (15) is now
1 0 0 · · · 0
∗ 1 ∗ · · · ∗
∗ 0 ∗ · · · ∗
...

...
...

...
∗ 0 ∗ · · · ∗


A11 A12 · · ·

A21 A22 · · ·
...

...



=

A′
11 A′

12 · · ·
A′

21 A′
22 · · ·

...
...




1 0 0 · · · 0
∗ 1 ∗ · · · ∗
∗ 0 ∗ · · · ∗
...

...
...

...
∗ 0 ∗ · · · ∗

 .

(54)
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By equating the elements on the first row and second
column of both sides of (54), we have A12 = A′

12, which
indicates this fundamental setting of B and C has the ca-
pability of identifying one parameter for minimal systems.
Interestingly, we succeed in extending this conclusion to
non-minimal systems using STA.

Theorem 4: Given a linear system (A,B,C), Ai j is
identifiable (including its sign) if B = Iσ j and C = Iiσ .

Proof: Without loss of generality, we can always as-
sume that we are identifying A12 or A11 after appropriately
changing the element order of x.

For the case of identifying A12, C = (1,0, ...,0) and
B = (0,1,0, ...,0)T . Without loss of generality, we assume
that the system is neither controllable nor observable. We
tentatively calculate the first two rows of the observability
matrix, which are(

1 0 0 · · · 0
∗ A12 ∗ · · · ∗

)
. (55)

Since A12 = 0 is atypical, it is almost always true that (55)
has rank two. Assume that the observable subsystem of
(53) has dimension m. We thus have 2 ≤ m < n.

Let

T =



1
1

−A32/A12 1
−A42/A12 1

... . . .
−An2/A12 1


n×n

,

and perform a similarity transformation x̄ = T x. Using
Property 1, the equivalent system is

Ā = TAT−1 =


∗ A12 ∗ · · · ∗
∗ ∗ ∗ · · · ∗
∗ 0 ∗ · · · ∗
...

...
...

...
∗ 0 ∗ · · · ∗

 ,

B̄ = T B = (0,1,0, ...,0)T and C̄ = CT−1 = (1,0, ...,0).
The former two rows in the observability matrix OM
of the new system (Ā, B̄,C̄) have the same form as
(55). Since OM has rank m, there exists a reorder-
ing ( j3, j4, ..., jn) of (3,4, ...,n) such that the matrix
(OMσ1,OMσ2,OMσ j3 ,OMσ j4 , ...,OMσ jm) is column-full-
ranked. Let the matrix U = (Iσ1, Iσ2, Iσ j3 , Iσ j4 , ..., Iσ jn)

−1

and perform a further similarity transformation x̃ = U x̄.
Then the equivalent system is

Ã =UĀU−1 =


∗ A12 ∗ · · · ∗
∗ ∗ ∗ · · · ∗
∗ 0 ∗ · · · ∗
...

...
...

...
∗ 0 ∗ · · · ∗


n×n

, (56)

B̃ = UB̄ = (0,1,0, ...,0)T and C̃ = C̄U−1 = (1,0, ...,0). Now
the observability matrix of the system Σ̃ = (Ã, B̃,C̃) is

ÕM =


C̃

C̃Ã
...

C̃Ãn−1

=


C̄U−1

C̄ĀU−1

...
C̄Ān−1U−1

= OM ·U−1.

Therefore, the first m columns of ÕM are of full-rank.
We can now employ the SPT method. To perform ob-
servability decomposition for the system Σ̃, firstly we
select the first two rows and other m − 2 rows from
ÕM to form a full-row-rank matrix Ẽm×n such that the
former m columns of Ẽ are also full-rank. We partition
Ẽ as Ẽ = [F̃m×m fm×(n−m)], and then F̃ is invertible. The

transformation matrix
(

F̃ f
0 I

)
can decompose the system

Σ̃ into observable and unobservable parts. We choose
the second transformation matrix as F̃−1 ⊕ I. The total
transformation is

Q =

(
F̃−1 0
0T I

)(
F̃ f
0T I

)
=

(
I F̃−1f

0T I

)
,

and its inversion is

Q−1 =

(
I −F̃−1f

0T I

)
.

Let x́ = Qx̃ generate the system Σ́ = (Á, B́,Ć):{ ˙́x = Áx́+ B́δ (t), x́(0) = 0,
y = Ćx̄.

We partition Ã as

Ã =

(
ŨLm×m ŨRm×(n−m)

D̃L(n−m)×m D̃R(n−m)×(n−m)

)
.

Then we have

Á = QÃQ−1 =

(
I F̃−1f

0T I

)(
ŨL ŨR
D̃L D̃R

)(
I −F̃−1f

0T I

)
=

(
ŨL+ F̃−1fD̃L ∗m×(n−m)

∗(n−m)×m ∗(n−m)×(n−m)

)
,

B́ = QB̃ = (0,1,0, ...,0)T and Ć = C̃Q−1 = (1,0, ...,0︸ ︷︷ ︸
m−1

,∗, ...,∗).

We partition x́ = (x̀T ,∗)T where x̀ is m-dimensional. Since
the second transformation F̃−1 ⊕ I is block-diagonal, we
know Σ́ is in the observable canonical form. Therefore,
x̀ corresponds to the observable subsystem of Σ́. We
denote this m-dimensional observable subsystem as Σ̀ =
(À, B̀,C̀) where À = ŨL+ F̃−1fD̃L, B̀ = (0,1,0, ...,0)T and
C̀ = (1,0, ...,0). From (56) we know D̃Lσ2 = (0,0, ...,0)T ,
and Àσ2 = ŨLσ2. Therefore, À12 = A12.

Similarly, we can employ the SPT method again to
perform a controllability decomposition on Σ̀ to finally
obtain a t-dimensional (2≤ t ≤m) minimal system (Ǎ, B̌,Č)
where we still have Ǎ12 = A12, B̌ = (0,1,0, ...,0)T and
Č = (1,0, ...,0).



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.2973582, IEEE
Transactions on Automatic Control

FINAL SUBMISSION 12

For (Ǎ, B̌,Č), we can employ the STA method. Using
(16) and (17) we know the transformation matrix S is

S =


1 0 0 · · · 0
∗ 1 ∗ · · · ∗
∗ 0 ∗ · · · ∗
...

...
...

...
∗ 0 ∗ · · · ∗


t×t

,

and (15) is now
1 0 0 · · · 0
∗ 1 ∗ · · · ∗
∗ 0 ∗ · · · ∗
...

...
...

...
∗ 0 ∗ · · · ∗



∗ A12 ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
...

...
∗ ∗ ∗ · · · ∗



=


∗ A′

12 ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
...

...
∗ ∗ ∗ · · · ∗




1 0 0 · · · 0
∗ 1 ∗ · · · ∗
∗ 0 ∗ · · · ∗
...

...
...

...
∗ 0 ∗ · · · ∗


(57)

Equating the elements on the first row and second column
of both sides of (57), we have A12 = A′

12. Thus A12 is
identifiable.

For the case identifying A11, BT = C = (1,0, ...,0). Its
observability matrix is now

OM =

 1 0 · · · 0
A11 ∗ · · · ∗
. . . . . . . . . . . . . . .

 .

If OM2σ has non-zero elements other than A11, then
the former two rows of OM are linearly independent
and we can use similar procedures to the case of iden-
tifying A12 to prove that A11 is identifiable. Otherwise
if OM2σ = (A11,0, ...,0), then A1σ = (A11,0, ...,0), which
means (A,B,C) now is already of the observable canonical
form, where the observable subsystem is 1-dimensional:{

ẋ1 = A11x1 +1 ·δ (t), x1(0) = 0,
y = 1 · x1.

Hence, A11 is certainly identifiable, which completes the
proof.

Remark 4: Note that Theorem 4 provides a sufficient
condition for identifiability. In Theorem 4 we assume that
we have the capability to set B = Iσ j and C = Iiσ . This
assumption on the system setting depends on the specific
requirement. For example, if one is not interested in any
elements in A3σ (even if there are indeed some unknown
parameters in the third row of A), then we do not require
the ability to set C = I3σ .

B. An economic Hamiltonian identification algorithm
Theorem 4 indicates the existence of economic quantum

Hamiltonian identification algorithms. A natural following
question is whether we can develop an economic algorithm.
In fact, the proof of Theorem 4 has already implied how

to prepare the initial state of the system and select the
observable. Here, we present an identification algorithm
based on the Taylor expansion of matrix exponential
function [44].

We start from the system (53) that has a solution
y(t) = CeAtx0. We assume that in actual experiments we
can sample the system output with a fixed period of time
∆t, and the data length is N . Then the data we obtain
is denoted as D = (y(∆t),y(2∆t), ...,y(N∆t))T and its ith
element is Di = y(i∆t). To estimate A jk, we prepare the
system initial value in a state corresponding to B= x0 = Iσk
and measure the observable corresponding to C = I jσ .

We rewrite the data as

Dp =CepA∆tB = ∑∞
r=0

pr∆tr

r! I jσ ArIσk

= δ jk +∑∞
r=1

pr∆tr

r! (Ar) jk ≈ δ jk +∑q
r=1

pr∆tr

r! (Ar) jk,

where we should choose q ≤N .
Denote w = N||A||∆te and z = 1+max(⌊w⌋,q) for sim-

plicity. We bound the truncated terms as

|∑∞
r=q+1

pr∆tr

r! (Ar) jk|
≤ ∑∞

r=q+1 | 1√
2πr

(p∆te)r

rr (Ar) jk|
= ∑∞

r=q+1
1√
2πr

( p∆te
r )r|I jσ ArIσk|

≤ ∑∞
r=q+1

1√
2πr

( p∆te
r )r||I jσ || · ||A||r · ||Iσk||

= ∑∞
r=q+1

1√
2πr

( p||A||∆te
r )r

≤ 1√
2π(q+1)

∑∞
r=q+1(

w
r )

r

≤ 1√
2π(q+1)

∑z−1
r=q+1(

w
r )

r + 1√
2π(q+1)

∑∞
r=z(

w
z )

r

= 1√
2π(q+1)

∑z−1
r=q+1(

w
r )

r +
(w

z )
z

√
2π(q+1)(1−w

z )
,

where the first line comes from Stirling’s approximation.
Hence, the summation of the truncated items is never
divergent.

Denote Ψ(q) = (ψ1,ψ2, ...,ψq)
T where ψi = (Ai) jk. Then

we need to identify A jk = ψ1. Denote

L =


11∆t1

1!
12∆t2

2! · · · 1q∆tq

q!
21∆t1

1!
22∆t2

2! · · · 2q∆tq

q!
. . . . . . . . . . . . . . . . . . . . . . . . .
N 1∆t1

1!
N 2∆t2

2! · · · N q∆tq

q!


N×q

.

We have D ≈ LΨ(q). We use a least-squares method to
obtain an estimate

Ψ̂(q) = (LT L)−1LT D,

and Â jk = ψ̂1. To fully reconstruct any H, this algorithm
has online computational complexity O(M2 + qMN ),
because (LT L)−1LT can be computed off-line in advance.
In the worst case, there is no prior knowledge on H
and the computational complexity becomes O(d4+d2qN ).
As long as N = o(d2), this computational complexity is
lower than the O(d6) of the identification algorithm in
[39]. For another example of such economic Hamiltonian
identification algorithms, please refer to [45].
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Fig. 2. Relative identification error E||Ĥ−H||
||H|| versus data length N .

C. Numerical example
We perform numerical simulations to illustrate the

performance of the identification algorithm. Consider
a 5-qubit exchange model without transverse field
(n = 4 in (18)) and the values of the Hamiltonian
parameters are θ = (0.1,1.5,−0.8,3.1). The accessible
set is Ḡ = {X1,Z1Y2,Z1Z2X3,Z1Z2Z3Y4,Z1Z2Z3Z4X5}. We
set the initial states of the system as the eigen-
states of Z1Y2,Z1Z2X3,Z1Z2Z3Y4,Z1Z2Z3Z4X5 and observe
X1,Z1Y2,Z1Z2X3,Z1Z2Z3Y4, respectively. From Theorem 4
we know all the parameters are identifiable. Then we
identify the Hamiltonian using the Taylor expansion
identification algorithm. The sampling period is ∆t = 0.1s
and the parameter q = ⌊0.3N⌋+ 3. We add zero-mean
Gaussian noise with standard deviation 0.001 into the
sampling data. The identification result is shown in Fig.
2, where each point is repeated 500 times. In Fig. 2, the
horizontal axis is the data length N and the vertical axis is
the relative identification error E||Ĥ−H||

||H|| , where E(·) is the
expectation on all the possible measurement results. The
numerical result shows that the identification algorithm
can effectively identify the Hamiltonian.

VII. CONCLUSION
We have extended the STA method in classical control

theory to the domain of quantum Hamiltonian identifica-
tion, and employed the STA method to study the concept
of identifiability of time-independent Hamiltonians. For a
concrete analysis, we focus on the spin-1/2 chain model
with a single-qubit probe (also partly investigated in [17],
[18], [27]). STA has been demonstrated to be a powerful
tool to analyze the identifiability for quantum systems
with arbitrary dimension, which is also helpful for further
designing identification algorithms. STA can also serve as
a useful method for physicists to investigate the infor-
mation extraction capability of quantum subsystems (like
the single qubit probe in [17]-[19], [27]). An SPT method
was developed to efficiently test the identifiability for non-
minimal systems. We further employed the SPT method

to provide an indicator for the existence of economic
quantum Hamiltonian identification algorithms. The SPT
method is proved to be a strong supplement to STA.
SPT can also be applicable to classical control systems,
especially when the experimental settings are difficult to
change. We proposed an example of economic quantum
Hamiltonian identification algorithms and presented a
numerical example to illustrate the performance of the
identification algorithm.

Future work includes developing a general framework
using STA to characterize the amount of identifiable
information for an unidentifiable system. It will also be
helpful to propose more sufficient or necessary conditions
for a system to be identifiable. Furthermore, it is useful
to develop other efficient Hamiltonian identification algo-
rithms with good performance.

Appendix A
PROOF OF LEMMA 1

Proof: By induction, for 1 ≤ k ≤ n we have

AkB = [(∗, ...,∗︸ ︷︷ ︸
k

,(−1)k
k

∏
i=1

θi,0, ...,0︸ ︷︷ ︸
n−k

)T ](n+1)×1

where ∗ are polynomials in θi. Therefore, CM is an upper
triangular matrix and its determinant is

det(CM) =
n

∏
k=1

(−1)k
k

∏
i=1

θi,

which is non-zero for almost any value of θ . Hence, CM
is almost always full-ranked.

Appendix B
PROOF OF LEMMA 2

Proof: We consider det(Ā−λ0I), which must equal to
one of the following three possibilities: (a) A non-trivial
polynomial in θis (i = 1,2, ...,n); (b) A non-zero constant;
(c) The constant zero. We let θ2 = θ4 = ...= θn−1 = 0 and
θ1 = θ3 = ...= θn = λ0+1. Then from (28) we know det(Ā−
λ0I) = det(I) = 1. Therefore, (c) is excluded. No matter
which of (a) and (b) is valid, det(Ā−λ0I) ̸= 0 for almost
any value of θ , which implies that it is atypical to assume
λ0 ∈ Λ(Ā).

Appendix C
PROOF OF LEMMA 3

Proof: Since Ā = PEPT = ∑n
i=1 EiiPσ i(PT )iσ , we have

θ1 = I1σ ĀIσ1 = ∑n
i=1 EiiI1σ Pσ i(PT )iσ Iσ1 = ∑n

i=1 EiiP2
1i. Since

∑n
i=1 P2

1i = 1, P1σ can not be all zero. Suppose there are
m non-zero elements in P1σ where 1 ≤ m ≤ n. If m = 1,
we suppose it is P1t ̸= 0. Then P1t = ±1 and P1i = 0 for
every i ̸= t. Since ∑n

j=1 P2
jt = 1, Pjt = 0 for every j ̸= 1. We

calculate
−θ2 = I1σ ĀIσ2 = ∑n

i=1 EiiI1σ Pσ i(PT )iσ Iσ2
= ∑n

i=1 EiiP1iP2i = EttP1tP2t = 0,
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which is atypical and can be ignored. Hence, it is almost
always true that m ≥ 2. We assume that P1i j ̸= 0 for i j =
i1, i2, ..., im and otherwise P1i = 0.

We prove the conclusion of Lemma 3 by contradiction.
Suppose for every 1 ≤ k ≤ n, |θ1|= |(PEIkPT )11|. Since

(PEIkPT )11 = I1σ [PEPT −PE(I − Ik)PT ]Iσ1
= I1σ [∑n

i=1 EiiPσ i(PT )iσ −2EkkPσk(PT )kσ ]Iσ1
= ∑n

i=1 EiiP2
1i −2EkkP2

1k
= θ1 −2EkkP2

1k,

we always have
|θ1|= |θ1 −2EkkP2

1k|. (58)
We let k = i1 in (58). From Lemma 2, we have Ei1i1 ̸= 0.
Since P1i1 ̸= 0, we take the square of both sides of (58) and
obtain θ1 = Ei1i1P2

1i1 . For the same reason, we have θ1 =

Ei2i2P2
1i2 = ...= EimimP2

1im . Then (??) implies θ1 = mEi1i1P2
1i1 ,

which means Ei1i1P2
1i1 = 0 and implies a contradiction.

Appendix D
PROOF OF LEMMA 4

Proof: The controllability matrix is

CM =

(
B̄ 0 −Ā2B̄ 0 ... 0
0 −ĀB̄ 0 Ā3B̄ ... −Ā(−Ā2)

n−1
2 B̄

)
.

From Lemma 2 we know Ā is almost always nonsingular.
Hence, it suffices to prove that Q = (B̄, Ā2B̄, ..., Ān−1B̄)
is almost always nonsingular. Similar to the analysis in
Appendix B, det(Q) has only three possibilities, where the
possibility of det(Q)≡ 0 needs to be excluded. Hence, we
only need to find a special Ā such that det(Q) ̸= 0.

We take

Ā =


0 1
1 0 1

1
. . . . . .
. . . 0 1

1 1

 .

Then

Ā2 =



1 0 1
0 2 0 1

1 0 2 0
. . .

1
. . . 0 1
. . . 0 2 1

1 1 2


.

We can take Q as the controllability matrix of another
system (Ā2, B̄), which should be controllable. Since con-
trollability is unchanged under similarity transformation,
we transform Ā2 into

Ã =


1 1
1 2 1

1
. . . . . .
. . . 2 1

1 1

 . (59)

This similarity transformation works in the following
steps: (i) We take all the odd rows of Ā2 in ascending
order. (ii) Following (i), we take all the even rows of Ā2

in descending order. (iii) We repeat (i) and (ii) on the
columns of Ā2. After steps (i) and (ii), each 2 (except the
2 in the last row) will have a 1 just above it and a 1
just below it, and this property does not change in step
(iii). Also, the transformation is symmetric. Hence, Ã is
symmetric with all the 2s on the diagonal line. Therefore,
Ã has the form of (59). Under this transformation, B̃ = B̄
is unchanged.

For system (Ã, B̃), it can be proven by induction that
the controllability matrix Q̃ is an upper triangular matrix
with all the diagonal elements 1. Therefore det(Q̃) ̸= 0, and
thus det(Q) ̸= 0 and the possibility (c) is excluded. Hence,
CM is almost always full-rank.

For the observability matrix,

OM =


0 C̄

−C̄Ā 0
0 −C̄Ā2

· · · · · ·
−C̄Ā(−Ā2)

n−1
2 0

 .

Hence, it suffices to prove that P =
(C̄T , Ā2TC̄T , ..., Ā(n−1)TC̄T )T is almost always nonsingular.
Since Ā is symmetric and C̄T = B̄, we know P = QT .
Therefore, OM is also almost always full-rank.

Appendix E
PROOF OF LEMMA 5

Proof: First, we investigate the relationship between
Λ(Ā) and Λ(Ā)′. Since A is similar to A′, we know A2 is
similar to A′2, which implies Λ(A2) = Λ(A′2). Therefore,

Λ
(
−Ā2 0

0 −Ā2

)
= Λ

(
−Ā′2 0

0 −Ā′2

)
.

If we arrange the eigenvalues of Ā and Ā′ both in ascending
sequences, we have

λi(Ā′) = piλi(Ā) (60)

for 1 ≤ i ≤ n+1
2 where pi =±1.

Second, we point out that it is atypical for Ā to have
multiple eigenvalues. We consider det(λ I − Ā), which is a
polynomial on λ with the coefficients being polynomials
on θis. Polynomial det(λ I − Ā) has multiple roots if and
only if its discriminant, which is a polynomial function
in the coefficients of det(λ I − Ā), equals to zero [46]. We
can view this discriminant as a polynomial function in
θis. If this discriminant is in fact the constant zero, then
det(λ I − Ā) will always have multiple roots, which can be
excluded by taking Ā = diag(1,2, ..., n+1

2 ). Therefore, the
discriminant does not degenerate to zero, and its solution
set is of zero measure. Hence, the set of θ that can make
det(λ I − Ā) have multiple roots is of zero measure, which
implies that it is atypical when Ā has multiple eigenvalues.
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Third, we prove that we can almost always have λi(Ā′)+
λ j(Ā′) ̸= 0 for any 1 ≤ i, j ≤ n+1

2 . Using (60) we have

λi(Ā′)+λ j(Ā′) = piλi(Ā)+ p jλ j(Ā). (61)

If i = j, then the RHS of (61) is 2piλi(Ā), which is almost
always non-zero according to Lemma 2. If i ̸= j, the RHS of
(61) is pi[λi(Ā)±λ j(Ā)], which is also almost always non-
zero because of (44) and the fact that Ā almost always has
no multiple eigenvalues. Therefore, we can almost always
have λi(Ā′) + λ j(Ā′) ̸= 0 for any 1 ≤ i, j ≤ n+1

2 , which is
equivalent to the statement that Ā′ ⊗ I n+1

2
+ I n+1

2
⊗ Ā′ is

almost always nonsingular.
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