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Abstract
Quantum error correction (QEC) codes are usually designed to correct errors regardless of their
physical origins. In large-scale devices, this is an essential feature. In smaller-scale devices, however,
themain error sources are often understood, and this knowledge could be exploited formore efficient
error correction. Optimizing theQECprotocol is therefore a promising strategy in smaller devices.
Typically, this involves tailoring the protocol to a given decoherence channel by solving an appropriate
optimization problem.Herewe introduce a newoptimization-based approach, whichmaximizes the
robustness to faults in the recovery. Our approach is inspired by recent experiments, where such faults
have been a significant source of logical errors.We illustrate this approachwith a three-qubitmodel,
and showhownear-term experiments could benefit frommore robustQECprotocols.

1. Introduction

Thebuildupof errors inquantumdevices is a central impediment to thedevelopmentof quantumtechnologies, such
asquantumsensors, networks, andcomputers. These errors canhave anumberof different sources, including
unwanted coupling to anoisy environment, imperfect controls, and faultymeasurements.Quantumerror correction
(QEC) is a powerful technique for suppressing these various errors. It promises to scalewell to largedevices inpart
because it can correct errorswithoutprecise knowledgeof their physical origins [1]. This feature is essential in the long-
term, since itwouldbeunfeasible to fully andprecisely characterize errormechanisms in large-scale quantumdevices.
The situation is different innear-termdevices, however,where the errormechanisms areoftenwell understood. In
these smaller, noisy systems, it couldbe advantageous to trade thewidenet of conventionalQEC for amore tailored
approach,which exploits knowledgeof thedominant errormechanisms to achievebetter error suppression [2–6].

Optimization-basedQEC takes this latter approach [7–21] (see also [1], Chapter 13, for a review). It works by
mapping the search for goodQECprotocols (i.e. codes and recoveries) to an optimization problem,whose
solution gives a protocol tailored for a particular type of noise. There are several ways to perform thismapping,
some ofwhich enable efficient optimization, as well as a degree of robustness to uncertainties in the errormodel
[1, 22, 23].While the resulting protocols often lack an intuitive structure, they hold promise for near-term
devices, and perhaps as afirst level of encoding in larger devices [11].

Todate, optimization-basedQEChasbeen largely synonymouswith channel-adaptedQEC; that is, the focushas
beenonadaptingQECprotocols to thequantumchannels describing intrinsic decoherence in idlingdevices.
However, new insights have come fromsignificant experimental advances in implementingQECsince the
groundwork foroptimization-basedQECwas laid.Anotable feature in some recent, pre-fault-tolerant experiments is
that errors due to imperfectQECrecoveries (i.e.measurement and feedbackoperations) comprise a significant—if not
a limiting—shareof the logical errors [24, 25]. Inotherwords, there is ample roomto improveQECperformance in
near-termexperiments byminimizing the impact of such recovery errors, in the spirit of [26, 27]. This suggests anew
typeof optimization-basedQEC,orthogonal to channel-adaptedQEC: rather than tailoringQECprotocols to the
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intrinsic decoherencebetween recoveries, one could insteadfindprotocolswhich areoptimally robust against
imperfections in the recoveries themselves.This is a fundamentallydifferent task; insteadoffinding anoptimalway to
suppress errors inherent to adevice, it involves devisingprotocols that performoptimally under imperfect
implementation.Wedemonstrate this latter approach,whichwecall robustness-optimizedQEC, bymaximizing the
robustness of an experimentally-relevantQECprotocol to syndromemeasurement errors in the associated recovery.

2. Setting

Weconsider, for illustration, the task of preserving a logical qubit using three physical qubits subject to phase
noise, which is the dominant kind of decoherence inmany types of quantumdevices [28–33]. For simplicity, we
will not let theQEC code itself vary in the optimization; rather, wewill use the phase-flip code, with codewords

∣ ∣ ∣ ∣ ( )ñ = +++ñ ñ = ---ñ0 1 , 1l l

where ∣ (∣ ∣ )ñ = ñ  ñ0 11

2
[34–37] (see also [1]Ch. 21 and references therein). The decoherence can be

understood as causingσz errors on the qubits, which can be detected non-destructively bymeasuring {P0,P1,P2,
P3}, where ∣ ∣ ∣ ∣= ñá + ñáP 0 0 1 10 l l l l andPj=ZjP0Zj are rank-2 orthogonal projectors. (Zj denotes the Pauli
matrixσz on qubit j.)AZj errorwill transform the logical state ∣ ∣ ∣y a bñ = ñ + ñ0 1l l l into range(Pj) in away that
can be reversed by applyingZj. The quantum channel describing this ideal recovery procedure is

( ) ( )†år r=
=

 U P P U , 2
j

j j j jideal
0

3

whereU0=I,Uj=Zj for j�1 [38]. Note that throughout this workwe consider the conceptually-simpleQEC
strategy inwhich errors are physically corrected upon detection, as opposed tomore sophisticated strategies
using Pauli/Clifford frames [39, 40].

Suppose, however, that themeasurement process is imperfect, and reports thewrong result uniformlywith
someprobability pmeas, e.g. due to an error onanuncorrected ancilla. That is, a general statemay beprojected into
range (Pj) in theusualway, but themeasurement device sometimes reports it to be in range (Pk) for ¹k j. Feeding
back on this faulty syndromewould cause a logical error. The channel describing this imperfect recovery is4:

( ) ( ) ( ) ( )†år r r= - +
=
¹

 p
p

U P P U1
3

. 3
i j
i j

j i i jfaulty meas ideal
meas

, 0

3

Note that pmeas is the totalmeasurement error probability, whichmay encompass the individual error
probabilities frommeasurements on several ancilla qubits.

How can the phase-flip code bemademore robust to such imperfections in the recovery?One can imagine
two extreme strategies whichworkwell in different regimes:

StrategyA—Conventional QEC:If pmeas is sufficiently small, a good strategy is to periodically performfaulty ,
and simply accept the performance degradation due to non-zero pmeas.

Strategy B—QuantumZenoEffect:If pmeas is sufficiently large, itmay be better not to actively correct phase
errors at all. Instead, one could suppress them—independent of pmeas—through the quantumZeno effect
by repeatedlymeasuring {Pj}without feedback [41–44].

Which of these represents the better approachwill depend both on pmeas and on the total amount of time,Δt, for
which onewants to preserve the logical state.

Moregenerally, however, one could interpolate betweenStrategiesAandBas follows:withprobabilitypfb perform
faulty , andwithprobability 1− pfbmeasure theparity{Pj}butdonot feedback.This corresponds to the channel

( ) ( ) ( ) ( )år r r= + -
=

 p p P P1 . 4
j

j jopt fb faulty fb
0

3

Strategies A andB then correspond to pfb=1 and 0 respectively. Instead of adopting either strategy entirely, we
will treat pfb as a free parameter, and find the optimal value whichmaximizes robustness to recovery
imperfections. For certain values of pmeas andΔt, we find that intermediate values of pfb outperformboth
extreme strategies.

4
Note that a syndromemeasurement error is not equivalent to aZj error on a data qubit, since it has no effect in the absence of feedback.
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3.Decoherencemodel and objective function

Acommonand simplemodel for thephasenoise is a Lindblad equationwithZj jumps.Thiswouldbe equivalent to
the qubits’ energy gapsbeing subject to a zero-meanGaussianwhite noise process, andwould suppress single-qubit
coherence as ∣ ∣ ∣ ∣ ( )rá ñ µ -t T0 1 expj 2* for some characteristic dephasing timeT2* [45, 46].While this is a common
idealizationof realistic decoherence, it is unsuitable here. ThequantumZeno effect—whichhasbeenobserved in
several experiments, including somewhichpreserve subspaces of dimension�1, see e.g. [47–51]—doesnot occur in
thepathological limitwhere thephasenoise has infinite power at high frequencies. This is precisely the limit described
by the aforementionedLindbladmodel, and so repeatedmeasurements of{Pj}, nomatter how frequent,wouldnot
preserve a logical state in thismodel. Adopting such amodelwouldmake it largely pointless to optimize pfb.

Amore realisticmodel for some experiments, which displays a Zeno effect and in turn a rich landscape in pfb,
is dephasing due to low-frequency noise in the qubits’ energy gaps. Such noise suppresses single-qubit coherence
as [ ( ) ]- t Texp 2

2* , which ismore typical inmany experiments with slowly-evolving environments5 [52, 53].
Concretely, we assume that in a suitable frame the qubits evolve as

( ) ( ) ( )å w=
=

H t t Z
1

2
, 5

j
j j

1

3

where theωjʼs are independent quasi-static noise processes that are approximately constant over [0,Δt] but vary
between runs of the experiment.More precisely, we takeωj to be a zero-mean, stationaryGaussian stochastic
process with a constant autocorrelation function

( ) ( )
( )

( )w wá ñ =t
T

0
2

, 6j j
2

2*

where ·á ñdenotes a (classical) average over realizations ofωj. That is, the power spectrumofωj goes as
Sωj(ν)∝δ(ν).While the dynamics in each run of the experiment is unitary, the average dynamics is not, which
leads to dephasing. Note that dynamical decouplingwould be useful in refocusing this noise, althoughwewill
not consider it here in order to isolate the effects ofQEC [54–56]. In practice, however, it could be beneficial to
use dynamical decoupling in conjunctionwith the presentQEC scheme.

We suppose that one can performopt n�1 times, equally spaced, during the interval [0,Δt] (with the
firstopt occurring at timeΔt/n and the last atΔt). To describe the effect of this procedure, we first define the
superoperator ( ) ≔ †r r V Vt t t , where ⎡

⎣⎢
⎤
⎦⎥≔ ( ) ( )ò- ¢ ¢V H t texp i d . 7t

t

0

Then, if the system is prepared in the initial logical state ∣ ∣r y y= ñál l l , its final state after performing n
repetitions ofopt in the interval [0,Δt] is

( ) ( ) ( )r r= á ñD  . 8f t n
n

opt l

Wewill use the quantum fidelity ∣ ∣y r y= á ñF fl l as ameasure of performance.More precisely, we use thefidelity

averaged over all initial logical states, F , as afigure ofmerit/objective functionwhen optimizing the robustness.
For n=1 recovery (at afinal timeΔt), we have

[ ( )] ( ) [ ( )]

[ ( )] ( )

( ) ( )

( )

= + - + - + + -

+ + -
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- D
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1

12
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t T

1 fb meas
2
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3
fb meas

2
2

2
2

2
2

* *

*

Wewere able tofind analytic expressions for Fn with 1�n�10, although forn�2 the expressions quickly
become lengthy and sohavebeen relegated to the supplementarymaterialwhich is available atstacks.iop.org/QST/
5/025004/mmedia6.Averagefidelities forn� 11 are not onlydifficult to compute, but they are of limited relevance
tonear-termexperimentswhere control limitations andother sources of error impose a limit onn.Moreover, even
in the longer term, thenumber of recoverieswithin an interval [0,Δt]must be limited if there is to be time left over
to perform logical operations on the encoded state (since recoverieswill not be instantaneous inpractice).

4. Results

Wewill treatΔt and pmeas asfixed in any given experiment, which leaves the parameters n and pfb to be
optimized. The dependence of Fn on these parameters, for a particularΔt and pmeas, is illustrated infigure 1. For

5
This is the sameRamsey decay as produced by f1 -type noise, wheremost of the noise power is at low frequencies.

6
The expression for F10, for instance, contains 4588 terms. It, alongwith the other Fnʼs, can be found in theMathematica notebook included

in the supplementarymaterial.

3

QuantumSci. Technol. 5 (2020) 025004 DLayden et al

http://stacks.iop.org/QST/5/025004/mmedia
http://stacks.iop.org/QST/5/025004/mmedia


thisΔt and pmeas, themost robust strategy is a hybrid of Strategies A andB, which outperforms the two extremes.
Perhaps counter-intuitively, thismeans that the average fidelity is increased here by introducing extra
randomness intoopt through the choice of 0<pfb<1.

More generally, for each (Δt,pmeas), we optimize Fn over bothn and pfb. Theoptimalpfb, shown infigure 2, has
three distinct ‘phases’ in the parameter range considered. As anticipated above,when pmeas is sufficiently small the
optimal strategy is to performconventional recoveries (pfb=1) and simply accept the occasional faults that these
introduce.Conversely,when pmeas is sufficiently large (and/orΔt is sufficiently small), it is better to avoid feedback
entirely and simply preserve the logical state using aZeno effect fromrepeatedparitymeasurements.Weobserve a
sharp transitionbetween these twooptimal strategies inmuchof theparameter space.Mathematically, this is due to
themaximaof Fn often occurring on the boundary of {pfbä[0, 1]} rather than in the interior. Remarkably,
however, there is afinite regionwhere the transition is not sharp,which exhibits a third ‘phase’ corresponding to
optimalpfbʼs near 0.5 (thoughnot always exactly equal to 0.5, see e.g.figure 1). TheΔt andpmeas fromfigure 1 are
from this region.

Themaximumvalues of Fn and the optimal nʼs resulting from this same optimization are shown in the left
and center panels offigure 3. As onemight expect, thefidelity decays gradually with increasingΔt and pmeas. The
choice of n ismore complex, as the same optimal n can represent different strategies depending on the
corresponding pfb. For instance, using a large n is optimal bothwhen pmeas is small andwhen it is large
(compared toΔt). In the former regime one has pfb=1, so a large n reduces the buildup of uncorrectable errors
of weight 2 and 3 due to phase noise. In the latter regime pfb=0, so a large nmeans frequentmeasurements and
therefore a stronger Zeno effect. Between these two regimes,moderate values of n are optimal, as they provide

Figure 1.The average fidelity versus pfb and n forD =t T2 2* and pmeas=0.22. The solid lines denote Fn for n�4; the curves for
n�3 are not visible as they are too low. The dashed line is thefidelity of single physical qubit under the same noise. The optimal
strategy of those considered, that is, the nä[1, 10] and pfbä[0, 1] combination producing the highestfidelity, uses n=10 (bold red
line) and pfb=0.488 to achieve afidelity of =F 0.674max .

Figure 2.The optimal pfb for different values ofΔt and pmeas, after encoding. The best
( )p n
fb for each Fn was found separately; thisfigure

shows the one giving the highest value of Fn. pfb=1 gives the conventional QEC strategy ofmeasurement and feedback, whereas
pmeas=0 uses no feedback, relying instead on a quantumZeno effect from repeated paritymeasurements.
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some correctionwithout toomany recovery faults. Finally, for largeΔt and large pmeas wefind small n to be
optimal. This is likely an artifact of considering only n�10: =¥Flim 1n n for allΔt and pmeas, so if we allowed
unbounded n the Zeno strategywould always be optimal in principle. However, for largeΔt, n�10
measurements are insufficient to produce a strong Zeno effect, so the next-best strategy is to use faulty recoveries
sparingly. Notefinally that for largeΔt and/or pmeas, including some values where a hybrid strategy is shown to
be optimal infigure 2, itmay be better not to perform encoding at all (see appendix).

5. Conclusions and outlook

Wehave shown that one canoptimize the robustness of small, pre-fault-tolerantQECprotocols to recovery errors, in
analogy tohowsuchprotocols havepreviously beenoptimized for specific decoherence channels.Whereas the latter
approach is often called channel-adaptedQEC,we termours robustness-optimizedQEC.Errors fromQEC
recoveries have formeda significant fractionof the total logical errors in recent experiments [24, 25]. This suggests
that there ismuch tobe gainedbyoptimizing for robustness against such errors insteadof—or aswell as—optimizing
for thedecoherence inherent inparticular devices.While fault-tolerantmethods couldhandle such errors in the
longer term, thepresent strategy is specifically intended for nearer-term, pre-fault-tolerant experiments [57, 58].

These results raise anumberof furtherquestions andpossibilities,whichwedivide into technical points andpoints
of strategy. First the technical points.As inpreviousworksonoptimization-basedQEC, there is someambiguityhere in
choosing afigureofmerit.Wehaveused averagefidelity for convenience; however, theoptimizationcould give slightly
different results/strategies ifwehadchosenadifferent objective function, e.g. tracedistance to the identity [59].
Moreover, there is often little reason to favoroneparticularperformancemeasureover anotherapriori (see [1], Chapter
13). Itwouldbeuseful tobetter understandhowsucheffects affect schemesof the sort consideredhere. Similarly, the
robustQECstrategies foundhere are robust against aparticular typeof errorduring recovery,whichwechose as a
generic illustration—they arenot apanacea7.Different typesof recovery errorswill likely requiredifferentmodels and
optimizationmappings than theonesusedhere,whichmayneed tobeworkedout case-by-case. Fortunately, there is
less ambiguitywith this choice, since thedominant error sources in current experiments areoftenwell-understood (see,
e.g. [24, 25]). There is likelymore roomforoptimization inmoredetailed faultmodels, e.g.where theprobability of
measurement errors is outcome-dependent, orwhen sucherrors arepredominantlydue todecoherenceof ancillas
(rather than limitedmeasurementfidelity, for instance) [34, 37]. Indeed,noise that ishighly structured canoftenbe
dealtwithmore efficiently in general [2–4, 6, 56, 60, 61]. Finally, previousworksonchannel-adaptedQEChave
introduced sophisticatedmappingswhich result in convex/bi-convexoptimizationproblems that are efficiently
solvable.Developing analogous tools for robustness-optimizedQECwould enable the analysis ofmore complex codes
andevenmore realistic noisemodels (suchas1/fnoise) than those analyzedhere (see [62] and references therein).

As for the points of strategy:first, rather than optimizing the probability of performing feedback, one could
instead optimize over deterministic strategies of the form ‘feedback, no feedback, feedback, ...’. This wouldmost
likely improve performance, but at the cost of transforming a continuous optimization problem into a
potentiallymore expensive combinatorial one. Second, while we have only optimized the formof the recovery
here, itmay be advantageous to optimize both the code and the recovery, as is common in channel-adaptedQEC
[62].Moreover, one could think of changing the recovery’s structuremore generally, e.g. by using differentUjʼs
in equations (2) and (3). (However, we have had limited success with this approach to date.) Finally, itmay be
possible to build upon the existingmachinery of channel-adaptedQECby incorporating tools from robust or
stochastic optimization, which can find near-optimal solutions to problems that are robust against

Figure 3. Left: Themaximumfidelity achievable by optimizing over pfbä[0, 1] and 1�n�10. Center: The optimal nwhich gives
thismaximumfidelity. Right: For comparison, thefidelity for a single physical qubit subject to the same noise.

7
In particular, our faultmodel is different—and simpler—than the dominant recovery imperfections in [24, 25].
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imperfections in implementation [63] (see also [64] for an introduction). There appears to be ample room for
new approaches to optimization-basedQEC in light of recent experimental progress.
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Appendix. Optimization results for each n

Figures 2 and 3 show the results of an optimization performed first over pfbä[0, 1] for each n, and then over
1�n�10. Infigure A1we show the results from the first step of this optimization separately for each n.

Figure A1.The optimal Fn for each 1�n�10 separately (left panels), and the corresponding ( )p n
fb at which thisfidelity is achieved

(right panels). Note that the color bars in the left panels have a different scale than that infigure 3.
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Figure A1. (Continued.)
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Figure A1. (Continued.)
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