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Quantum error correction is expected to be essential in large-scale quantum technologies. However, the
substantial overhead of qubits it requires is thought to greatly limit its utility in smaller, near-term devices.
Here we introduce a new family of special-purpose quantum error-correcting codes that offer an
exponential reduction in overhead compared to the usual repetition code. They are tailored for a common
and important source of decoherence in current experiments, whereby a register of qubits is subject to phase
noise through coupling to a common fluctuator, such as a resonator or a spin defect. The smallest instance
encodes one logical qubit into two physical qubits, and corrects decoherence to leading-order using a
constant number of one- and two-qubit operations. More generally, while the repetition code on n qubits
corrects errors to order tOðnÞ, with t the time between recoveries, our codes correct to order tOð2nÞ. Moreover,
they are robust to model imperfections in small- and intermediate-scale devices, where they already provide
substantial gains in error suppression. As a result, these hardware-efficient codes open a potential avenue
for useful quantum error correction in near-term, pre-fault tolerant devices.
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Decoherence, the uncontrolled decay of coherence in
open quantum systems, is a central obstacle to developing
coherent quantum technologies such as quantum sensors,
networks, and computers. This obstacle is compounded by
the destructive nature of quantum measurement: straight-
forward attempts to identify—and ultimately reverse—
decoherence destroy the quantum coherence they seek to
protect. Quantum error correction (QEC) is a technique for
taming decoherence, which sidesteps this issue. It encodes
lower-dimensional quantum states into a higher-dimen-
sional quantum system such that decoherence can be
detected and approximately reversed without collapsing
the encoded state. Specifically, the most common approach
encodes k logical qubits into an n-qubit register (k < n)
whose Hilbert space H is decomposed into orthogonal
subspaces C0; C1; C2;… of dimension 2k [1]. These sub-
spaces are chosen by specifying operators E1; E2;… and
demanding that the logical states, which reside in C0, be
mapped to Ci by Ei without distortion [2]. By performing a
partial measurement that reveals only which subspace
contains the state, and feeding back appropriately, one
can reverse the occurrence of any Ei—and, more generally,
any error in E ¼ spanfI; E1; E2;…g. The conventional
strategy is to pick Eis so that E encompasses a broad
family of operators on H. Using Pauli operators of weight
up to w, for instance, produces a QEC code that corrects
arbitrary errors on w qubits. This is a powerful approach,
especially in large devices (n ≫ 1), since it can reverse
decoherence with little regard to its physical origins [3,4].
For smaller devices, however, casting such a wide net

requires an overhead of qubits (n − k) that is often
prohibitive for near-term applications. A more economical
strategy for small- and intermediate-scale devices is
instead to use a QEC code with E tailored to include only
the dominant, well-characterized decoherence modes.
However, while this strategy is well-known (see [3]
§ 10.6.4), few explicit such codes have been discovered
(see, e.g., Refs. [5–7]).
In order to systematically find noise-tailored QEC codes,

here we focus on dephasing, since it is the dominant type of
decoherence in various experiments. In particular, we
consider the common scenario where dephasing in a
register of qubits arises primarily due to eigenstate-
preserving coupling of each qubit to a common fluctuator,
which in turn exchanges energy with an external environ-
ment. That is, we consider a Hamiltonian

H ¼ H0
f þ

1

2

Xn
j¼1

ωjZj þHint
f ⊗

Xn
j¼1

gjZj; ð1Þ

where ½H0
f; H

int
f � ¼ 0, and a fluctuator that jumps incoher-

ently between energy eigenstates fjlifg (reflected by a
dissipative term in the overall master equation). Moving to
the interaction picture, the Hamiltonian (1) becomes

H̃ ¼
X
l

λljlihljf ⊗ HE; ð2Þ

where Hint
f ¼ P

l λljlihljf and HE ≔
P

n
j¼1 gjZj. When

the fluctuator is in state jlif, qubit j has an effective
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Hamiltonian λlgjZj in the rotating frame. Jumps of the
fluctuator therefore induce spatially correlated random
telegraph noise in the register, which causes dephasing
[8,9]. This model, which we call common-fluctuator
dephasing (CFD), often describes the main decoherence
mechanism in nuclear spins near spin defects (e.g., nitro-
gen-vacancy centers in diamond [10]) or quantum dots, and
can also be significant in superconducting qubits disper-
sively coupled to a common resonator with nonzero
effective temperature [10–24]. Often the register is read
out and/or initialized via the fluctuator, imposing a lower
limit on the desirable coupling strengths gj, and making
CFD a significant decoherence mode. Note that CFD does
not generally produce a decoherence-free subspace (DFS).
The standard QEC approach to correct dephasing uses

Eis comprising Pauli Z operators on at most w qubits (and I
on the rest). There are

P
w
m¼0ðnmÞ such matrices; a simple

counting argument (the quantum Hamming bound applied
to phase noise) therefore suggests that n ≥ 2wþ 1 physical
qubits are required to protect k ¼ 1 logical qubit from
arbitrary phase errors of weight ≤ w [3]. Indeed, the
repetition code saturates this bound: the smallest instance
uses n ¼ 3 for w ¼ 1, has logical states j0Li ¼ jþþþi and
j1Li ¼ j−−−i where j�i ≔ ð1= ffiffiffi

2
p Þðj0i � j1iÞ, and cor-

rects for E ¼ spanfI; Z1; Z2; Z3g. It can correct CFD as
follows: in any run of the experiment, the register evolves
over time t as UðθÞ ¼ e−iθHE for some random variable
θ ∈ ½tλmin; tλmax� that depends on the fluctuator’s trajectory.
For short t (understood in units of 1=maxjljgjλlj, and
often reducible through dynamical decoupling [10,25–27]),
UðθÞ can be approximated as UðθÞ ¼ I − iθHE þOðt2Þ.
Since θHE ∈ E regardless of θ, this three-qubit code
corrects dephasing at order OðtÞ. More generally, Hq

E
contains Paulis of weight ≤ q, so correcting to order
OðtqÞ with the repetition code requires n ¼ 2qþ 1 qubits
(for k ¼ 1).
While the value of θ is unknown and varies from one run

to the next, the coupling strengths gj are often fixed and
well characterized. This suggests designing a code that
corrects expressly for E ¼ spanfI; HE;H2

E;…; Hq
Eg, and

depends on the fgjg in a particular device. A similar
counting argument as above suggests that such a code
would require qþ 1 subspaces to protect a logical qubit to
order OðtqÞ, and would therefore require

n ¼ ⌈1þ log2ðqþ 1Þ⌉ ð3Þ

qubits—an exponentially smaller overhead. We give a
family of such codes here for general q and arbitrary
coupling strengths fgjg. We focus in particular on the
q ¼ 1 case, where one logical qubit is encoded in two
physical qubits rather than three. We construct recovery and
logical operations for this code, which can be implemented
using a constant number of one- and two-qubit operations.

The decomposition H into subspaces Ci for QEC is
equivalent to the Knill-Laflamme conditions [28,29]. For
k ¼ 1 and E ¼ spanfHj

Egqj¼0, these take the form

h0LjHm
E j0Li ¼ h1LjHm

E j1Li; ð4Þ

h0LjHm
E j1Li ¼ 0; ð5Þ

for 0 ≤ m ≤ 2q, where we consider values of q that saturate
the ceiling in Eq. (3) (that is, q ¼ 2n−1 − 1). Finding a QEC
code that corrects this E therefore requires finding logical
states j0Li and j1Li that satisfy Eqs. (4) and (5). We begin
with the ansatz

j0Li ¼
X2n−1
j¼0

rjeiθj jji j1Li ¼
X2n−1
j¼0

rð2n−1−jÞeiϕj jji; ð6Þ

for rj, θj, ϕj ∈ R, where we use jji to denote the n-bit
binary representation of the integer j. That is, we fix the
amplitudes of j1Li to be those of j0Li in reverse order.
Notice that Eq. (6) always satisfies (4) for even m ≥ 0,
since X⊗nHm

EX
⊗n ¼ ð−1ÞmHm

E . For odd m:

h0LjHm
E j0Li ¼ −h1LjHm

E j1Li ¼ z⃗ · v⃗m; ð7Þ

where z⃗, v⃗m ∈ Rqþ1 are defined as zi ¼ hijZLjii, with
ZL ≔ j0Lih0Lj − j1Lih1Lj, and ðv⃗mÞi ¼ hijHm

E jii for i ∈
½0; q� and oddm ∈ ½0; 2q�. Therefore, Eq. (4) is satisfied for
all relevant m if z⃗⊥spanfv⃗mg. We can always find such a
z⃗ (≠ 0⃗) since the v⃗ms have dimension qþ 1 but there are
only q of them, so they cannot form a complete basis. One
approach is to construct a matrix V with v⃗ms as columns;
then, I − VVþ projects onto spanfv⃗mg⊥ (where þ and ⊥
denote the pseudoinverse and orthogonal complement,
respectively) and therefore has at least one real eigenvector
u⃗ with unit eigenvalue [30]. Taking z⃗ ¼ u⃗=jju⃗jj1 satisfies
Eq. (4) since u⃗ · v⃗m ¼ 0 automatically. Finally, building
upon a technique developed in Ref. [7] for optimization, we
pick rjs as

ðrj; rð2n−1−jÞÞ ¼
� ð0; ffiffiffiffizjp Þ; if zj ≥ 0;

ð ffiffiffiffiffiffiffi−zj
p ; 0Þ; if zj < 0:

ð8Þ

This choice ensures that hjj0Li or hjj1Li vanishes for every
j, thus satisfying Eq. (5). We now have normalized logical
states that form a valid QEC code for all q ≥ 1. Notice that
the components of j0Li and j1Li generically have unequal
amplitudes rj by necessity, in marked contrast with
classical error-correcting codes and most known QEC
codes. The phases θj and ϕj can be chosen arbitrarily—
we demonstrate a convenient choice below. The perfor-
mance of these codes on n ≤ 5 qubits is shown in Fig. 1
using an illustrative model of a normally distributed θ. In
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addition, we give the pseudothresholds for n ¼ 2 and 3
under the same model in the Supplemental Material [31].
To illustrate this QEC code, we consider explicitly the

smallest case of n ¼ 2 qubits coupled to a two-level
fluctuator with λ�1 ¼ �1 [cf. Eq. (2)], at high temperature.
We will label the register qubits 1 and 2 such that
jg1j ≥ jg2j. Note that here—and in general—HE ¼ g1Z1þ
g2Z2 is a combination of weight-1 Pauli operators, not a
weight-2 Pauli. This HE gives v⃗1 ¼ ðg1 þ g2; g1 − g2Þ⊤.
The matrix I − VVþ has only a one-dimensional eigen-
space with unit eigenvalue, spanned by u⃗ ¼ ð−g1 þ g2;
g1 þ g2Þ⊤, where u⃗ · v⃗1 ¼ 0. If g1 > 0 we find r1 ¼ r3 ¼ 0
and

r0 ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 − g2

p
; r2 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 þ g2

p
; ð9Þ

where c ¼ 1=
ffiffiffiffiffiffiffiffiffiffijju⃗jj1

p
. This gives logical states

j0Li ¼ jχ0ij0i; j1Li ¼ jχ1ij1i; ð10Þ

with

jχ0i ¼ cð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg1 − g2j

p
eiθ0 j0i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg1 þ g2j

p
eiθ2 j1iÞ;

jχ1i ¼ cð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg1 þ g2j

p
eiϕ1 j0i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg1 − g2j

p
eiϕ3 j1iÞ; ð11Þ

where j0i and j1i refer to the states of a qubit. The g1 < 0
case gives the same result up to a relabelling of
j0Li ↔ j1Li. This code corrects for E ¼ spanfI; HEg; by
design, however, it does not correct for Z1Z2, nor Z1 or Z2

individually, none of which belong to E. Rather, it corrects
CFD with fewer qubits than the smallest repetition code
precisely because we have chosen not to correct individual
Pauli operators.
Observe that Eqs. (10) and (11) reduce to a DFS in the

limit where one exists (jg1j ¼ jg2j), but this is in practice
rare. More generally, notice that the choice θ0 ¼ ϕ1 þ π ¼
−θ2 ¼ −ϕ3 ¼ ϑ for arbitrary ϑ proves convenient: first, it
gives hχ0jχ1i ¼ 0, and a simple action of HE on logical
states:

HEj0Li ∝ jχ1ij0i≕ j0Ei
HEj1Li ∝ jχ0ij1i≕ j1Ei: ð12Þ

Both lines have the same proportionality constant, and we
have defined the error states j0Ei and j1Ei. We emphasize
that sinceHE cannot generically be decomposed as a tensor
product, it maps most separable states to entangled states;
Eq. (12)—wherein the first qubit is “flipped” by HE—is
due to our choice of j0Li and j1Li. Second, consider the
orthogonal projectors PL ¼ j0Lih0Lj þ j1Lih1Lj and PE ¼
j0Eih0Ej þ j1Eih1Ej onto C0 ¼ spanfj0Li; j1Lig and C1 ¼
spanfj0Ei; j1Eig respectively (H ¼ C0 ⊕ C1). One can
detect an error nondestructively by measuring parity in
the jχiijji basis, which can be done by performing phase
estimation (i.e., “phase kickback”) on

S ¼ PL − PE ¼ Uz ⊗ Z2 ð13Þ

with an ancilla [33]. Crucially, the choice of phases in j0Li
and j1Li makes S separable here, where Uz ≔ jχ0ihχ0j −
jχ1ihχ1j is a π rotation about some axis determined by g1,
g2, and ϑ. This means that the controlled-S (cS) operation
used to measure the error syndrome can be implemented
through a pair of two-qubit operations (cUz and cZ), rather
than a more challenging three-qubit operation. If an error is
detected, it can be corrected by applying Ux ≔ jχ0ihχ1j þ
jχ1ihχ0j to qubit 1—a π rotation about a different axis.
(Both Ux and Uz could be synthesized out of a constant
number of Pauli rotations, or implemented directly, e.g., by
driving qubit 1 off resonance [34].) The full recovery
procedure, which corrects CFD to leading order, is shown
in Fig. 2. Note that S behaves like a stabilizer, in the sense
of its action on C0 and C1. It does not, however, fit in the
usual QEC stabilizer formalism since fHE; Sg ≠ 0 generi-
cally, because fHE; Sgjψi ¼ 0 for jψi ∈ C0 but not for
jψi ∈ C1 [35]. This is because HE maps C0 to C1 without
distortion, but not vice versa, asHE is not generically in the
Pauli group. (Neither is S.) In spite of these unusual
features, the procedure for feeding back on S in Fig. 2
is largely the same as that of the usual stabilizer formalism.

FIG. 1. Comparison of QEC codes performance. We assume
that the effect of the quantum fluctuator is to impart a random
phase, θ, which follows a Gaussian distribution θ ∼N ð0; σÞ with
standard deviation σ. By normalizing the gjs to lie in ½0; 1�n, σ
describes the noise strength. CFD followed by a QEC recovery (if
applicable) results in an effective phase- or bit-flip channel
ρ ↦ ð1 − pÞρþ pAρA, where A ¼ Z for the physical qubits,
XL for the repetition codes, and ZL for hardware-efficient codes.
The average infidelity, average trace distance and diamond
distance to I are all ∝ p. As the performance of all strategies
shown depends on fgjg, we plot the average of p over
fgjg ∈ ½0; 1�n. The error bands for the hardware-efficient codes
denote the standard error of the mean from Monte Carlo
integration. More details on the numerical implementation are
given in [31].
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Finally, (i) the encoding can be realized by applying a
c2ðUxÞ1 gate to an initial state jχ0ijψi, and (ii) there is a
simple way to implement any logical unitary UL in this
code: apply the corresponding physical U to qubit 2
followed by a recovery.
The logical states derived above are also valid for all

q > 1 (i.e., n > 2 qubits), but the corresponding recovery
and logical operations are generally more involved.
Generically, the analogs of S in (13) are not separable
for any choice of θj and ϕj [36]. One might still synthesize
them with one- and two-qubit operations, perform phase
kickback through optimal control, or implement a QEC
recovery via more general channel-engineering techniques
[37–40]. More efficient solutions could even be found by
analyzing specific experimental scenarios. One approach
could be for example to use devices with fgjg chosen so
that the recovery and logical operations can be conveniently
implemented. One could also correct to a slightly lower
order q [i.e., maintaining n ¼ Oðlog qÞ but not saturating
the ceiling in Eq. (3)]; this would yield a continuous family
of possible z⃗ s [cf. Eq. (8)], among which one might find
codes with convenient QEC operations. Note finally that
for n > 2 it is not the bare Hm

E s that map the codespace to
the orthogonal subspaces fCigi≥1, but rather linear combi-
nations of them.
These noise-adapted QEC codes involve a trade-off: they

correct CFD very efficiently at the cost of leaving most
other errors uncorrected. For instance, errors during
gates, due to miscalibration of gjs, or from decoherence
beyond CFD will generally affect the logical state [31].
Accordingly, these codes are manifestly not fault-tolerant in
their current form [41]. Crucially though, they offer such a
large error budget under strong CFD—as evidenced by the
gaps between QEC codes and physical qubits in Fig. 1—
that this trade-off can easily be worthwhile, much like the
targeted correction of photon loss in [42]. Indeed, as we
show in [31], the gap survives even in the presence of large
miscalibration of the gjs. Fault-tolerance could still be
achieved using implementation-specific methods as in
Ref. [43]. In the long-term, concatenation could potentially
reach fault tolerance, using our noise-adapted codes at the
lowest level of encoding to protect against the dominant
error source, and more conventional codes at higher levels.

Even more importantly, our codes could have a near-term
impact in applications such as quantum sensing and
communication, where long-lived quantum memories are
useful even when they are not fault tolerant. We emphasize,
however, that these codes are designed expressly for small-
and medium-scale qubit registers, and that the exponential
reduction in overhead should be understood to apply only
in such devices. For one, there is typically a maximum n
above which CFD no longer dominates. Also, while the
error budget always increases with n in principle, so too do
the effects of gate errors, miscalibration of gjs and
decoherence beyond CFD, as more qubits introduce more
error channels. Conversely, this growing sensitivity sug-
gests an unconventional quantum sensing scheme to
measure fgjg for large n, by variationally adjusting one’s
estimates to maximize code performance. In the nearer
term, however, these imperfections will likely set a maxi-
mum n in any particular device beyond which one achieves
no further gains, depending on their relative importance
compared to CFD [31].
The QEC codes presented could be generalized in

several ways. First, they can readily be made to correct
dephasing due to multiple common fluctuators given
enough qubits, at the cost of correcting to lower order in
t. Similarly, they can correct spatially correlated phase
noise beyond that arising from common fluctuators. For
instance, classical white noise in the energy gaps of
register qubits leads to Lindblad error operators Lj ¼ffiffiffiffi
λj

p
c⃗j · ðZ1;…; ZnÞ, where f

ffiffiffiffi
λj

p
c⃗jg describes the noise’s

normal modes [44]. In the limit of spatially uncorrelated
noise the Ljs become Pauli Z operators; however, corre-
lated noise produces Ljs with unequal amplitudes

ffiffiffiffi
λj

p
.

When the noise correlations are appreciable, it could be
advantageous to use a QEC code that corrects the stronger
noise modes (those with large λjs) to higher order in t than
the weaker ones (smaller λjs) through an appropriate choice
of V. It may also be possible to extend the codes presented
here for the setting where a fluctuator’s state affects not
only the energy gap of each qubit, but also the direction of
its Hamiltonian (i.e., its quantization axis) [45]. Eigenstate-
preserving coupling arises frequently in practice because a
large detuning between a weakly-coupled qubit and fluc-
tuator suppresses noncommuting parts of their interaction
Hamiltonian. However, when the coupling to the fluctuator
is comparable to the internal Hamiltonian, such as for
nuclear spins near defects in diamond, there can remain
significant noncommuting terms leading to HE ∼

P
j g⃗j ·

σ⃗j in Eq. (2). We analyze this effect’s impact on code
performance in [31]. Extending the codes introduced here
to this more general setting would make them even more
widely applicable to near-term experiments, but at the cost
of larger overheads, since they would need to contend
with a substantially larger space of possible errors. It may
be more practical instead to suppress noncommuting

FIG. 2. A recovery procedure for n ¼ 2 qubits where jψLi ¼
αj0Li þ βj1Li for arbitrary α and β, H denotes a Hadamard gate,
and θ is a random variable. The unitaries Ux and Uz are both π
rotations about orthogonal axes on the Bloch sphere which are
determined by g1, g2, and ϑ.
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interaction terms at the hardware level by increasing the
energy gaps ωj of the register qubits, or at the “software"
level through concatenation [31]. Another interesting
generalization would be to efficiently encode k > 1 logical
qubits, which seems plausible based on the counting
argument used throughout involving the dimension of H
vs E. Finally, it would be interesting to use the tools
presented here to design codes for other common error
sources, such as other types of decoherence, or control and/
or measurement errors.
Our results demonstrate that it is possible to find noise-

adapted QEC codes with a well-defined advantage (here
exponential) over known, general codes. It is commonly
argued that QEC will be of little use in noisy intermediate-
scale quantum (NISQ) devices due to its prohibitive over-
head [46]. Noise-adapted QEC codes are a promising way
to reduce this overhead, although to date they have mostly
relied on numerical and variational techniques that lack
transparency in terms of what advantage the codes can
offer, and when [47–51] (see also [4] Ch. 13 and [52]). In
contrast, the codes introduced here exhibit a clear reduction
in overhead under a well-characterized and common type
of noise. New QEC codes of this type could provide a
middle ground between small-scale uncorrected devices
and large-scale fault-tolerant ones, where the dominant
decoherence mechanisms are tamed through specialized
codes with only modest overheads. This view of near-term
QEC as quantum “firmware” rather than “software” sug-
gests a possible interplay between theory and experiment,
whereby NISQ hardware and efficient QEC codes both
guide each other’s development.
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Appendix A: Probability distribution of θ and effective channel form

We consider in the main text a register of n qubits coupled to a common fluctuator. In the interaction picture, the
register evolves by U(θ) = e−iθHe in any run of the experiment, where θ is a random variable that depends on the
fluctuator’s dynamics, its coupling to the register, and the elapsed time. The fluctuator can behave differently in
each run of the experiment, producing a different value of θ in each realization, and thus causing decoherence in the
register.

As far as the register is concerned, the fluctuator’s behavior can be fully captured by specifying a (classical) probability
distribution for θ. Generically, this distribution will depend on the underlying physics of the fluctuator. For instance,
a fluctuator consisting of a Nitrogen-vacancy center electronic spin at room temperature under dynamical decoupling
can produce a somewhat different distribution for θ than a fluctuator consisting of a microwave resonator at cryogenic
temperature. This variation between different systems precludes a fully general performance analysis not just of
the QEC codes introduced here, but also of existing codes under CFD. Instead we consider a simple probability
distribution for θ for the sake of illustration, both here and in Fig. 1 of the main text.

In Fig. 1 we choose θ ∼ N (0, σ) to be normally distributed with zero mean and standard deviation σ. (A non-zero
mean of θ could always be absorbed into the rotating frame to give the aforementioned distribution.) This choice has
two main motivations:

1. It depends only on a single parameter σ that can straightforwardly be interpreted as the noise strength, since
we normalize the coupling strengths to lie in [0, 1].

2. It induces a generally monotonic loss of coherence in the register with the noise strength σ. In contrast, more
complicated distributions, such as those arising from random telegraph noise in certain regimes, can induce an
oscillating loss of coherence. Such oscillations would becloud some of the analyses below. (For instance, there is
some ambiguity in defining pseudothresholds when the physical and logical infidelities, or the like, display small
oscillations and intersect several times.)

For the sake of comparison, however, we plot in Fig. A1 quantities analogous to those in Fig. 1 of the main text, but
with a different underlying distribution of θ. Notice that the curves are deformed slightly from those in Fig. 1, but
are qualitatively similar.

Returning to θ ∼ N (0, σ), we now show that the effective logical channel describing CFD followed by a recovery has
the form ρl 7→ (1 − p)ρl + pZlρlZl, where p depends on σ, n and {gj}. The average effect of U(θ) can be readily
calculated for θ ∼ N (0, σ). First, we define the superoperators He and Uθ by their action on a generic matrix X as
He(X) := [He, X] and Uθ(X) := U(θ)XU(θ)† = e−iθHe(X). To find 〈U〉 :=

∫
R Uθ p(θ) dθ, the superoperator describing

the register’s average evolution, we begin by diagonalizing He. Notice that if He|j〉 = Ej |j〉, then {|j〉〈k|}2n−1
j,k=0 is a

complete eigenbasis for He. In particular:

He

(
|j〉〈k|

)
= (Ej − Ek)|j〉〈k|, (A1)

and so the spectral decomposition of He reads

He(X) =

2n−1∑
j,k=0

(Ej − Ek)〈j|X|k〉 |j〉〈k|. (A2)
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FIG. A1: We assume that the effect of the quantum fluctuator is to impart a random phase, θ. In contrast with
Fig. 1 of the main text, we consider here a uniformly distributed θ ∼ unif(−θmax, θmax) for some maximum rotation

angle θmax ≥ 0. To simplify the comparison with Fig. 1, we plot 〈p〉 versus the standard deviation σ = θmax/
√

3,
rather than versus θmax directly. By normalizing the gj ’s to lie in [0, 1]n, σ describes the noise strength. CFD

followed by a QEC recovery (if applicable) results in an effective phase- or bit-flip channel ρ 7→ (1− p)ρ+ pAρA,
where A = Z for the physical qubits, Xl for the repetition codes, and Zl for hardware-efficient codes. The average
infidelity, average trace distance and diamond distance to I are all ∝ p. As the performance of all strategies shown

depends on {gj}, we plot the average of p over {gj} ∈ [0, 1]n. The error bands for the hardware-efficient codes
denote the standard error of the mean from Monte Carlo integration.

Therefore,

〈U〉(X) =

2n−1∑
j,k=0

〈e−iθ(Ej−Ek)〉 〈j|X|k〉 |j〉〈k|. (A3)

Finally, we use that the characteristic function of θ ∼ N (0, θ) is 〈eiθx〉 = e−
σ2x2

2 for any x ∈ R to arrive at

〈U〉(X) =

2n−1∑
j,k=0

e−σ
2(Ej−Ek)2/2 〈j|X|k〉 |j〉〈k|, (A4)

or more compactly: 〈U〉 = exp(−σ2H2
e/2). This last expression is convenient for numerical analyses, as it removes

the need to average over many realizations of θ numerically. For θ ∼ unif(−θmax, θmax), a similar calculation gives
〈U〉 = sinc(He θmax).

We consider throughout the usual (i.e., transpose) recovery channel R(ρ) =
∑
j = U†j PjρPjUj , where Uj and Pj are

defined as in §10.3 of [1]. A straightforward calculation allows one to express R directly in terms of Pl and He as

R(ρ) =

p∑
j,k=0

(M+)jkPlH
j
eρH

k
ePl, (A5)

where M = (mjk)pj,k=0 is the matrix of Knill-Laflamme coefficients PlH
j
eH

k
ePl =: mjkPl and M+ is the Moore-

Penrose pseudoinverse of M (which reduces to M−1 when M is invertible). By construction, mjk = 0 when j + k
is odd, i.e., when j and k have different parities. Furthermore, the mjk’s are equal along anti-diagonal bands of M
with j + k = const. It follows that every eigenvector ~u of M can be chosen such that ui = 0 either for all even i or
for all odd i. This implies that (M+)jk = 0 when j and k have different parities, so the only non-vanishing terms in
Eq. (A5) will have j and k both even or both odd1.

1 One can also use this observation to separate M into two submatrices with (j, k) = (even, even) or (odd, odd), for which the pseudoin-
verses can be computed separately and then combined to give M+. This is not only faster, tends to be more numerically stable for
larger n.
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Notice that (RUθ)(ρl) will comprise a weighted sum of terms with the form R(H`
e ρlH

m
e ). Using that

PlH
m
e Pl =

1

2
tr(Zml H

m
e )Zml (A6)

from Eqs. (6)–(8) of the main text, and that ρl = PlρlPl for encoded states, we find

R(H`
e ρlH

m
e ) =

1

4

p∑
j,k=0

(M+)jk tr(Zj+`l Hj+`
e ) tr(Zk+m

l Hk+m
e )Zj+`l ρlZ

k+m
l . (A7)

It follows immediately that R〈U〉 = 〈RUθ〉 must have the form

〈RUθ〉(ρl) = a0ρl + a1Zlρl + a2ρlZl + a3ZlρlZl (A8)

for appropriate aj ’s. In particular,

〈RUθ〉(ρl) =

∞∑
`,m=0

(−1)` i`+m 〈θ`+m〉
`!m!

R(H`
e ρlH

m
e ). (A9)

For θ ∼ N (0, σ), 〈θ`+m〉 = 0 if `+m is odd, i.e., if ` and m have different parities. Therefore, the only non-vanishing
terms in Eq. (A9) have ` and m both even or both odd. Comparing with Eq. (A7), one immediately sees that the
a1 and a2 cross-terms vanish. Finally, since 〈RUθ〉 is completely positive and trace-preserving (CPTP), we can write
a0 = 1− p and a3 = p for some p ∈ [0, 1], as claimed2. For n = 2 the resulting function p is

p =
1

4g2
1

e−2(g1+g2)2σ2
[
2g2

1e
2(g1+g2)2σ2

+ (g1 − g2)g2 − 2(g2
1 − g2

2)e2g1(g1+2g2)σ2 − e8g1g2σ
2

g2(g1 + g2)
]
, (A10)

where we have assumed |g1| ≥ |g2| ≥ 0 without loss of generality. The expressions for p quickly become complicated
for larger n.

More straightforwardly, the effect of CFD on the physical qubit j can be shown to have the same form, except

with p = [1 − 〈cos(2gjθ)〉]/2, where 〈cos(2gjθ)〉 = e−2g2jσ
2

for θ ∼ N (0, σ). Similarly, the logical channels for the
n = 3 and n = 5 qubit repetition codes (i.e., phase-flip codes) can be shown to have the form of a bit-flip channel
ρl 7→ (1−p)ρl +pXlρlXl, for different functions p. Alternatively, they could be expressed as phase-flip channels with

the same p’s by using the labeling convention |±l〉 = |±〉⊗n. For n = 3,

p =
1

16

(
8− 4e−2g21σ

2 − 4e−2g22σ
2 − 4e−2g23σ

2

+ e−2(g1+g2+g3)2σ2

+ e8(g1+g2)g3σ
2−2(g1+g2+g3)2σ2

+ e8g2(g1+g3)σ2−2(g1+g2+g3)2σ2

+ e8g1(g2+g3)σ2−2(g1+g2+g3)2σ2
)
. (A11)

The corresponding expression for n = 5 is more complicated. Notice that while the codewords for the repetition code
do not depend on {gj}, Eq. (A11) does, via 〈U〉.
Many common measures of performance, e.g., average infidelity, average trace distance or diamond distance from
the identity channel, have the form p × const. for bit- or phase-flip channels. It is therefore highly convenient that
the channels above have this form, as one can capture all of these performance measures at once (up to constant
pre-factors) simply by considering p. This avoids any ambiguity in choosing one performance measure over others.

Appendix B: Pseudothresholds and non-commuting interaction terms

We now examine the pseudothresholds for our hardware-efficient codes with θ ∼ N (0, σ). That is, for a given n, we
find the largest σ for which p of our codes is smaller than the p’s of all physical qubits. Naturally, this pseudothreshold

2 The same argument holds for symmetric distributions about θ = 0 more generally, such as θ ∼ unif(−θmax, θmax).
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value, which we denote σth, depends on {gj}. As discussed above, the pseudothresholds derived from p are the same
as those from average infidelity, and average trace and diamond distance from the identity.

The left panel of Fig. B1 shows the pseudothresholds for the efficient code with n = 2. Notice that σth diverges
around the region where g1 = g2, as the codespace becomes a decoherence-free subspace (DFS) here. In order to put
these values of σth in perspective, we repeat this analysis for the 3-qubit repetition code. Its pseudothreshold under
CFD will depend on {g1, g2, g3}, making it difficult to visualize. To get around this difficulty, we fix max{gj} = 1
and leave the other coupling strengths free. One could interpret this as expressing σth and {gj} \ {gmax} in units of
gmax. To simplify comparison between two- and three-qubit codes, the right pannel of Fig. B1 shows σth in this way
for the n = 2 efficient code. Fig. B2 then shows the pseudothresholds for the n = 3 repetition code (left) and efficient
code (right) under CFD. We used different color maps to emphasize that these plots depict very different ranges of
σth, since their features would be obscured if they were shown on a single shared color map with the same scale. The
pseudothresholds in Figs. B1 and B2 assume perfect operations, exact knowledge of {gj}, and no other decoherence
besides the CFD.

σth

0.79
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≥5

0 0.2 0.4 0.6 0.8 1
g20
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5
σth

g1=1

FIG. B1: The pseudothresholds for the n = 2 efficient code. Without loss of generality, we consider g1, g2 ≥ 0. Left:
the pseudothreshold vs. the coupling strengths (g1, g2). Right: a slice of the left pannel with g1 fixed to 1, for

comparison with Fig. B2.
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FIG. B2: Left: the pseudothresholds for the n = 3 repetition code. Right: the pseudothresholds for the n = 3
efficient code. In both panels gmax = g1 is fixed to 1. Without loss of generality, we consider g1, g2 ≥ 0.

As discussed in the main text, there are experimental settings in which the fluctuator’s state affects not only the
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energy gaps of the register qubits, but also their quantization axes. This not only dephases the qubits, but more
generally depolarizes them. Our hardware-efficient codes do not correct such decoherence at present; instead, the
underlying interaction terms can be suppressed at the hardware level by increasing the qubits’ free energy gaps. Or,
they could be corrected at the “software” level by concatenating these codes with a more conventional QEC code.
Fig. B3 shows the impact of such terms on the pseudothresholds of the n = 2 efficient code.

We model the effect of these depolarizing terms (here for 2 qubits) by the Hamiltonian,

He = g⊥1 X1 + g
‖
1Z1 + g⊥2 X2 + g

‖
2Z2, (B1)

choosing the non-commuting (⊥) components to lie along X1 and X2, without loss of generality. In the interaction
picture, the total Hamiltonian (cf. Eq. (2) of the main text) takes the form

H̃int(t) =
∑
`

λ`|`〉〈`|f ⊗
(
g⊥1
[

cos(ω1t)X1 − sin(ω1t)Y1

]
+ g
‖
1Z1 + g⊥2

[
cos(ω2t)X2 − sin(ω2t)Y2

]
+ g
‖
2Z2

)
. (B2)

In each run of the experiment, the register’s dynamics is therefore generated by

H̃eff(t) = λ(t)
(
g⊥1
[

cos(ω1t)X1 − sin(ω1t)Y1

]
+ g
‖
1Z1 + g⊥2

[
cos(ω2t)X2 − sin(ω2t)Y2

]
+ g
‖
2Z2

)
, (B3)

where the stochastic process λ(t) is defined such that λ(t) = λ` when the fluctuator is in state ` at time t. When

g⊥j = 0, this reduces to the case from the main text, with gj ↔ g
‖
j and θ =

∫∆t

0
λ(t)dt, where ∆t is the elapsed time

between recoveries. In the more general setting here, however, the U from Eq. (??) can instead be expressed as a
Magnus series, which we truncate to leading order under the assumption that the couplings are weak compared to
∆t−1:

U ≈ exp
[
− i
∫ ∆t

0

H̃eff(t) dt
]
. (B4)

For the sake of illustration, we take ω1 = ω2 =: ω and g⊥1 /g
‖
1 = g⊥2 /g

‖
2 . Moreover, as per the hardware-level approach

described above, we will assume that ω is made large compared to the coupling strengths and ∆t−1. We do not,

however, make any assumptions about the relative strengths of g⊥j and g
‖
j .

The integral in Eq. (B4) contains two kinds of terms: (i) those considered in the main text, of the form θ (g
‖
1Z1+g

‖
2Z2),

and (ii) rapidly oscillating terms of the form

g⊥j

∫ ∆t

0

λ(t)
[

cos(ωt)Xj − sin(ωt)Yj
]
dt. (B5)

As with θ, here we want to describe these integrals, ξx =
∫∆t

0
λ(t) cos(ωt)dt and ξy =

∫∆t

0
λ(t) sin(ωt)dt, as stochastic

variables with a given distribution. Defining the Hamiltonian and propagator superoperators, H and U , as done
Sec. (A), we would find that the Xj and Yj components (normalized by ∆t) give quadratures of the power spectral
density of λ at ω, Sλ(ω). As they represent quadratures of the spectrum at a (shifted) frequency ω, we can thus
model ξx,y as independent of θ and of each other, identically distributed, and as both following a normal distribution
with zero mean and variance Sλ(ω)∆t/2 (so that the total power Sλ(ω) is split evenly between both quadratures).
Concretely, we take

U = exp

−i[
2∑
j=1

g⊥j
(
ξxXj + ξyYj

)
+ θ

2∑
j=1

g
‖
jZj

] , (B6)

and average over θ ∼ N (0, σ) and ξx, ξy ∼ N (0,
√

Sλ(ω)∆t
2 ) (all independent). Notice that the non-commuting terms’

importance depends not only on the relative strengths of g⊥j and g
‖
j , but also on Sλ(ω), which is a property of the

fluctuator. In fact, using the scaling property of normal distributions, Eq. (B6) can be re-written as

U = exp

−i
2∑
j=1

g
‖
j

[
ΞxXj + ΞyYj + θZj

] , (B7)



6

where Ξx,Ξy ∼ N
(

0,
√

Sλ(ω)∆t
2

g⊥j

g
‖
j

)
. Therefore, just as σ sets the strength of the commuting noise,

√
Sλ(ω)∆t g⊥j /g

‖
j

(which is independent of j) sets the strength of the non-commuting noise3. Fig B3 shows the resulting pseudothresholds
for different ratios

r =

√
Sλ(ω)∆t g⊥j /g

‖
j

σ
(B8)

of these two quantities. The ratio r describes the relative importance of the two noise types: r � 1 when commuting
(‖) noise dominates, while r � 1 when non-commuting (⊥) noise dominates.

0 0.2 0.4 0.6 0.8 1
g2

∥

1

2

3

4

5
σth

g1
∥=1

⊥ to ∥ noise ratio
r=0

r=10-2

r=10-1

r=1

FIG. B3: The analogous pseudothresholds to Fig. B1, but under non-commuting interaction terms of various
strengths. The r = 0 curve is the same as in Fig. B1. The r > 0 curves were calculated using the average infidelity

(as opposed to 〈p〉), as their logical channels no longer have a simple phase-flip form. These curves appear to diverge

like the r = 0 curve, but at larger values of g
‖
2 . Only when the non-commuting (⊥) terms become dominant (i.e.,

when r > 1, not shown) do the pseudothresholds start to behave erratically and become ill-defined. The
pseudothreshols for r > 0 were computed at discrete intervals; the interpolating curves serve to guide the eye.

Pseudothresholds under CFD become difficult to visualize for n ≥ 4. Moreover, since those of efficient codes diverge
around DFS’s, we cannot average σth over {gj}. Therefore, in order to analyze the sensitivity of efficient codes to
calibration errors (i.e., uncertainty) in {gj} versus n, we will revert to plotting 〈p〉 versus σ, as in Fig. 1 of the main
text. p is always bounded, so the average 〈p〉 over {gj} is always well-defined, in contrast with σth.

Appendix C: Monte Carlo averaging

We use Monte Carlo integration to compute 〈p〉 =
∫ 1

0
dg1 · · ·

∫ 1

0
dgn p in Figs. 1, A1, D1, D2 and D3. Specifically, we

estimate 〈p〉 through

〈p〉 = 〈p(σ)〉 ≈ 1

N

N∑
i=1

p(~g(i), σ) =: µ, (C1)

where ~g = (g1, . . . , gn) is sampled uniformly N times from [0, 1]n. The sample variance of p over ~g ∈ [0, 1]n is

Var(p) =
1

N − 1

N∑
i=1

[
p(~g(i), σ)− µ

]2
, (C2)

so the standard error in approximating 〈p〉 by µ is
√

Var(p)/N , which is shown as error bars/bands in these plots.
To validate this numerical averaging, we compare in Fig. C1 the Monte Carlo estimates of 〈p〉’s with analytical

3 The factor of 1/
√
2 drops out since there are two independent quadratures that contribute.
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expressions [i.e., from integrating Eqs. (A10), (A11) etc.], when the latter can be calculated in Mathematica. The
values of 〈p〉 for physical qubits and repetition codes shown in Figs. 1, A1, D1, D2 and D3 were found analytically to
reduce unnecessary statistical noise in these plots. (That is, they use the yellow lines in Fig. C1 rather than the blue
dots.) Those for efficient codes are Monte Carlo averages.
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FIG. C1: Validation of Monte Carlo averaging. The yellow line is the exact 〈p〉 found analytically, and the blue dots
are the Monte Carlo estimates of the same quantity. Error bars are too small to be seen due to the large number of

samples used.

As further validation, we also plot the average error probability 〈p〉 in the ultra-low-noise regime in Fig. C2, compared
to the corresponding power law in σ.

Appendix D: Sensitivity to calibration errors

We now analyze the effects of calibration error (i.e., uncertainty) in {gj}. Since the encoding and recovery operations
for our codes depend explicitly on {gj}, error in measuring these coupling strengths will generally hurt overall per-
formance. We model such errors through additive Gaussian noise on gj : that is, if gj is the true coupling strength,
we suppose that one instead estimates gj + δgj , where δgj ∼ N (0,∆gj). For the sake of illustration, we assume
furthermore that the errors δgj are independent across qubits, and that the measurement precision ∆gj is the same
for all j. We then estimate 〈p〉 through Monte Carlo averaging both over ~g ∈ [0, 1]n and δgj .

Our goal is to analyze the sensitivity of efficient codes to measurement precision ∆gj as a function of n. To this end,
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FIG. C2: Further validation of Fig. 1 from the main text, in the ultra-low-noise regime. Each code is shown in a
different panel for clarity (along with an unencoded qubit for reference). The blue dots are data points; error bars,
when visible, denote standard error of the mean in Monte Carlo averaging. The yellow lines are the corresponding

power laws whose slopes serve to guide the eye (their offsets, which were determined through fitting, are not of
primary importance here). For clarity, the panels use different ranges of σ (unlike the inset of Fig. 1), chosen to be
as wide as possible, such that (i) they represent a perturbative regime (σ . 1) where 〈p〉 is described by a power
law, and (ii) they do not produce unmanageably small values of 〈p〉 prone to significant numerical errors. The

hardware-efficient code with n = 5 is not shown because it suppressed noise so strongly that it was difficult to find
values of σ satisfying both (i) and (ii).

we begin by computing analogues of Fig. 1 from the main text (which assumes ∆gj = 0) with increasing calibration
error. The results are shown in Fig. D1. Notice that at ∆gj = 0.01 our efficient codes all perform only slightly worse
than in Fig. 1. As ∆gj increases further, however, we begin to see saturation: that is, there is an nmax (decreasing
with ∆gj) above which there is no further improvement. Finally, when one has almost no knowledge of the coupling
strengths at ∆gj = 0.5, the efficient codes are no longer effective for any n. This behavior is expected: our codes
achieve a high level of protection by exploiting knowledge of the noise. In the limit where we lose this knowledge,
we necessarily also lose the protection. Note that the measurement precision reported in [2] for nuclear spins near a
Nitrogen vacancy center corresponds to ∆gj ∼ 0.01.

Fig. D2 presents similar information in a different way. It shows explicitly the behavior of 〈p〉 vs n at different
representative noise strengths and levels of calibration error. In each panel, we fix n and examine the dependence
of 〈p〉 on ∆gj . In the low- and intermediate-noise regimes, this dependence is well-described by 〈p〉 = An ∆g2

j + Bn,

whereas at high noise 〈p〉 = An ∆gj + Bn gives a better fit. The coefficients An (which correspond to d〈p〉/d(∆g2
j )

and d〈p〉/d(∆gj) respectively, and were found using smaller steps of ∆gj than shown in Figs. D1 and D2) are plotted
versus n in Fig. D3. Notice that the sensitivity to calibration uncertainty always increases with n. This is expected,
since adding more qubits with ∆gj > 0 introduces more uncertainty to the system. The asymptotic behavior of the
sensitivity versus n is less clear. In the high-noise regime, for instance, it is consistent with an exponential increase. In
the low- and intermediate-noise regimes, however, the scaling appears sub-exponential (and perhaps even sub-linear
in the latter regime).

The upper limit of n = 5 in these plots is due to numerical instabilities during Monte Carlo averaging. When the
coupling strengths {gj} admit a DFS, the matrix M pertaining to Eq. (A5) becomes trivial, as does the recovery R.
Physically, this is a very fortunate situation, as it gives a good quantum memory without the need for active error
correction. The same is true when {gj} give only an approximate DFS. However, while physically convenient, this
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FIG. D1: The quantities analogous to those in Fig. 1 of the main text, but where with increasing measurement
uncertainty ∆gj in the coupling strengths between register qubits and the common resonator. Error bands denote

standard error of the mean from Monte Carlo integration.

latter case is problematic for the Monte-Carlo averaging we perform here, as it gives an ill-conditioned matrix M .
This, in turn, can produce large numerical errors in p when performed automatically as a subroutine of Monte Carlo
integration. Such approximate DFS’s become more frequent as n increases (since it becomes more likely that two
elements of a random ~g ∈ [0, 1]n be nearly equal), thus making it difficult to compute average p’s for n & 6.
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FIG. D2: Average performance of efficient QEC codes by ∆gj in three illustrative noise strength regimes. Error bars
denote standard error of the mean from Monte Carlo integration, and lines are to guide the eye.

2 3 4 5

# of qubits n

0.015

0.020

0.025

0.030

0.035

d〈p〉
d(∆g 2

j )

α = 5.31× 10−3

a = 2.06× 10−1

σ = 0.1 (low noise)

Linear fit: αn + β

Exponential fit: 2an+b + c

2 3 4 5

# of qubits n

1

2

3

d〈p〉
d(∆g 2

j )

α = 7.85× 10−1

a = 4.99× 10−4

σ = 1 (intermediate noise)

Linear fit: αn + β

Exponential fit: 2an+b + c

2 3 4 5

# of qubits n

1

2

3

d〈p〉
d(∆gj )

α = 5.47× 10−1

a = 5.46× 10−1

σ = 5 (high noise)

Linear fit: αn + β

Exponential fit: 2an+b + c

FIG. D3: Sensitivity of efficient codes to calibration errors versus n in three illustrative noise strength regime. The
blue and yellow curves are the best linear and exponential fits, respectively.


