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Abstract— We study stability of interacting nonlinear systems controllers may create stability problems for simple cedpl
with time-delayed communications, using contraction theyy second-order systems, which in turn motivated approaches
and a simplified wave variable design inspired by robotic pa5eq on passivity and wave variables [2], [18]. The apgroac
teleoperation. We show that contraction is preserved throgh . . . \ .
specific time-delayed feedback communications, and that ith is then aPp“ed to derlve_z the paper’s main re_SUI'FS on theggrou
property is independent of the values of the delays. The Cooperation problem with delayed communications. We show
approach is then applied to group cooperation with linear that synchronization with linear protocols [19], [15] isbrest
protocols, where it is shown that synchronization can be mael to time delays and network connectivity without requiring
robust to arbitrary delays. the delays to be known or equal in all links. In a leaderless
network, all the coupled elements reach a common state which
depends on the initial conditions and the time delays, while
in a leader-followers network the group agreement point is
fixed by the leader. The approach is suitable to study both
continuous-time and discrete-time models.

In many engineering applications, communications delays
between subsystems cannot be neglected. Such an example
is bilateral teleoperation, where signals can experienge s
nificant transmission delays between local and remote. sites T Nis introductory section shows that a simplified form of
Throughout the last decade, both internet and wireless teéfe transmitted wave variables in [14] can be applied to
nologies have vastly extended practical communication d@nalyze time-delayed feedback communications. The eesult
tances. Information exchange and cooperation can now oc#{ifich follow could be obtained using a variety of alternativ
in very widely distributed systems, making the effect ofdimtechniques. For instance, they could be easily derivedhaise
delays even more central. input-output analysis [31], although in dif sense rather than

In the context of telerobotics, [2] proposed a control |a\ﬁxpo_nentially. The use of m_odified wave_variables_prqvides a
for force-reflecting teleoperators which preserves pigsiv unifying framevx_/ork wh|ch_ will b(_a central in the derivatioffi 0
and thus overcomes the instability caused by time delay@® Paper's main results in section IIl. _ _ _
The idea was reformulated in [18] in terms of scattering Cor_15|der two interacting systems of possibly different di-
or “wave” variables [6], [3]. Transmission of wave vari-Me€NSIoNs,
ables across communication channels ensures stabilityutit { %X = fi(x1,t) + Gor17o1
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I. INTRODUCTION

II. CONTRACTION ANALYSIS OF TIME-DELAYED
COMMUNICATIONS

knowledge of the time delay. Further extensions to internet % = f2(xa,) + GraT1a (1)

based applications were developed [16], [17], [4], in which ’

communication delays are variable. wherex; € R™, x5 € R"2, 712,791 € R", and G12 €
Recently, [14], [23] extended the application of wave varR™*", G21 € R"™*" are two constant matrices. Inputs

ables to a more general context by performing a nonlingar; are computed by transmitting between the two systems

contraction analysis [13], [14], [1], [7] of the effect ofrie- simplified “wave” variables, defined as

delayed communications between contracting systems. This, = GLx; + kool vis = GTx;
paper modifies the design of the wave variables proposed T T
2 = Gioxo + kiaTi2 va1 = GipXa

in [14], [23]. Specifically, a simplified form provides an
effective analysis tool for interacting nonlinear systewith wherek;> andk,; are two strictly positive constants. Because
time-delayed feedback communications. For appropriate cof time delays, one has

pling terms, contraction as a generalized stability propir

preserved regardless of the delay values. This also sheels a nt2(t) = via(t — Tho) Uz () = var (t = Ton)
light on the well-known fact in bilateral teleoperationtlesen where 77, and T>; are two positive constants. Note that
small time-delays in feedback Proportional-Derivativéd)P subscripts containing two numbers indicate the commuioicat



direction, e.g., subscriptl2” refers to communication from exponentially regardless of initial conditions, which reakhe
nodel to 2. This notation will be helpful in Section Ill, where origin a stable equilibrium point. 12,75, > 0, a simple
results will be extended to groups of interacting subsystemcoordinate transformation yields

Consider, similarly to [14], [23], the differential length .
V = % oxToxy + % 5xToxy + % Vis (3 —wy y2(t — To1) (1
|:I2:| _ |:wy2—bI2:|+K(|:I1(t—T12):|_|:SC2 :|)
where t t 1o —wxa y1(t — Th2) Yo
‘/1,2 = / §V{26V12 de + / §V%16V21 de wy1 — by wyYg — bxo
Ty Ty where f; = oy andf, = s are
This yields both (semi-)contracting with identity metric [29]. Howeythe
kqa O
. of of. - e d . . )
- k215X1T8—1 5x1 + k125xga—2 %2 transformed coupling gailk % 0 is neither sym
2 X1 2 x2 metric nor positive semi-definite for arly, # 0. Contraction
2 5l oy — 22 67507 cannot be preserved in this case, and the coupled systems tur
2 2 out to be unstable for large enough delays as the simulation

|gff1 and(g% are both contracting with identity metrics (i.e., ifresult in Figure 1(a) illustrates. While in Figure 1(b), enge
5 and 5.2 are both uniformly negative definite), theW <  setk, = 0, the overall system is therefore contracting.0]

0, andV is bounded and tends to a limit. Applying Barbalat's
lemma [22] in turn shows that i’ is bounded, the¥’ tends 0@ PO conol . © contror
to zero asymptotically, which implies thék,, dx2, 712 and :
0721 all tend to zero. Regardless of the values of the delays,
all solutions of system (1) converge to a single trajectory,
independent of the initial conditions. In the sequel we Ishal off
assume that’ can indeed be bounded as a consequence of o}
the boundedness df.

This result has a useful interpretation. Expanding system
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dynamics (1) yle|dS —%% 20 40 60 (o) 20 40 60
oo 1 T _ el Fig. 1. Simulation results of two coupled mass-spring-damgystems with
X = i (%1, t) + ka1 G21(GioX2(t = To1) — Goy (1)) (a) PD control and (b) D control. Parameters &re 0.5, w? = 5, T = 2s,
X9 = f5(x2,t) + %Glg(G%}xl (t —T12) — GL,xs (1)) To1 = 4s, kg = 1, kp = 5in (a) andk, = 0in (b). Initial conditions, chosen

) ~ randomly, are identical for the two plots.
If we assume further that; andxs have the same dimension,

and choosdGi, = Go; = G, the whole system is actually

equivalent to two diffusively coupled subsystems The instability mechanism in the above example is actually

very similar to that of the classical Smale model [26], [29]

x; = fi(x1,t) + % GGT (xo(t — To1) —x1(t) ) of spontaneous oscillation, in which two or more identical
Xy = fy(xa,t) + ﬁ GGT (x)(t — Tha) — x2(t) ) biological cells, inert by themselves, tend to self-extite

oscillations through diffusion interactions. In both casthe
) s i instability is caused by a non-identity metric, which makes
as a generalized stability property will be preserved réi@as ¢ transformed coupling gains lose positive semi-defieiss.
of the time delays and the delay values. _Note that the relative simplicity with which both phenomena

This result does not contradict the well-known fact iRan pe interpreted makes fundamental use of the notion of a
teleoperation that even small time delays in bilateral PRatric central to contraction theory.

controllers may create stability problems for coupled seleo
order systems [2], [18], [17], [4], which motivates apprbas
based on passivity and wave variables. In fact, a key camditi

This implies that, for appropriate coupling terms, corticat

Finally, it is straightforward to show that the results here
apply recursively to feedback hierarchies of such systems.

for contraction to be preserved is that the coupling gains be |Il. GRourP COOPERATION WITHTIME-DELAYED
symmetric positive semi-definiten the same metrias the COMMUNICATIONS
subsystems.

We now present the paper’s main results. Recently, synchro-

zation or group agreement has been the object of extensive

literature [11], [12], [19], [20], [21], [27], [28]. Undetanding

{h1 = ka(da(t — Tar) — i1 (t)) + kp(2a(t — Tar) — 21(1)) naf[urall r:ng:gjregate n;lofions r?s in (tj)irq ﬂgcksiI fish sct:]or?ls,. or
_ o . _ _ animal herds may help achieve desired collective behaviors

ha = Kal@1(t = Ti2) = &2(8)) + kp(22(t = Th2) = 22 (1)) in artificial multi-agent systems. In our previous work [24]
whereh, = &1 + biy + w?xy, hy = &9 + by + w?xe, and [29], a synchronization condition was obtained for a grofip o
b>0,w>0.If T1o =Ty =0, z; andz, converge together coupled nonlinear systems, where the number of the elements

Example 2.1Consider two identical second-order systems,
coupled through time-delayed feedback PD controllers



can be arbitrary and the network structure can be very genemhere N' = U, \V; denotes the set of all active links, and
In this section, we study a simplified continuous-time modé; ; is defined as in Section Il for each link connecting two
of schooling or flocking with time-delayed communicationsjodes: andj. Therefore

and generalize recent results in the literature [19], [16]. . 1

particular, we show that synchronization is robust to time VvV = —5 Z (57%67-3-1-4—67-557-“)

delays both for the leaderless case and for the leademfetto (i,5)EN

case, without requiring the delays to be known or equal in all

links. Similar results are then derived for discrete-timedels. Since V(¢) is non-positive,V(¢) is bounded if initial states
are bounded. One can easily show thef(¢) is bounded for

A. Leaderless Group anyi. This implies thatT;;(t) andéx;(t) are both bounded,
We first investigate a flocking model without group leadeand so iss+;(t) since

The dynamics of théth element is given as
675i(t) = Gi;6%;(t —Tj) — G,6%;

% = Y K (x5 —xi) 2 )
JEN; Thus we can say thaf(t) is bounded. According to Barbalat's
wherei = 1,...,n andx; € R™. A; denotes the set of lemma,V will then tend to zero asymptotically, which implies

the active neighbors of elementwhich for instance can be that, V(i,j) € N, é7j; anddr,; tend to zero asymptotically.
defined as the set of the nearest neighbors within a certdinus we know thati, Jx; tends to zero. Now in general, a
distance around; and K;; is the coupling gain, which is vanishingdéx; does not necessarily imply thak; is conver-
assumed to be symmetric and positive definite. gent. However it does in this case, because otherwise itdvoul

Theorem 1:Considem coupled elements with linear proto-contradict the fact thaix; tends to be periodic with constant
col (2). The whole system will tend to reach a group agreemeperiod7;; + 13,

x1(t) =+ =%n(t) = 2(x1(0) + - - - +x,(0)) exponentially "
if the network is connected, and the coupling links are eithe oujit) = Gjoxi(t) +675i(t) = Gyox;(t — Tji)
bidirectional withK;; = K, or unidirectional but formed in =~ du;;(t) = GJox;(t) 4+ 67i;(t) = GJ;0x(t — Ty;)

closed rings with identical gains. _ _ _
Theorem 1 is derived in [24], [29] based on partial conVe can also conclude that, i, dx; is convergent, they will
traction analysis, and the result can be extended further!&hd to a steady state
time-varying couplingsK;; = K;;(1)), switching networks bxa(t) = - = bxo(t) = €
(WV; = N;(t)) and looser connectivity conditions.
~Assume now that time delays are non-negligible in commyhere ¢ is a constant vector whose value depends on the
nications. The dynamics of thih element turns out to be  gpecific trajectories we analyze. Moreover, we notice timat,
X; = Z Kji (x;(t—Tj)—xi(t)) (3) the state-space, any point inside the regign= - - - = x,, is
JEN: invariant to (3). By path integration this implies immedaigt
that regardless of the delay values or the initial condgjcl

delayed communications. Regardless of the explicit Valugglutmns of system (3) will tend to reach a group agreement

of the delays, the whole system will tend to reach a grod — = = Xn asymptoically. o

agreementk, (1) = - -- = x,(¢) asymptotically if the network In the case that coupling links are unidirectional but form
is connected, and the coupling links are either bidirecationdoSeOI rings with identical coupling gains in each ring, \eé s
with K;; = K;;, or unidirectional but formed in closed rings 1 1 t

with identical gains. V= 3 Z(sxiTt;Xi + 3 Z / 5VJ»Ti5Vjid6

Proof: For notational simplicity, we first assume that all the i=1 (j—iyeN = Tii

links are bidirectional withK;; = K;;, but the time delays
could be different along opposite directions, i.€;; # T;;.

Theorem 2:Considern coupled elements (3) with time-

and the rest of the proof is the same. The case when both

Thus, Equation (3) can be transformed to types of links are involved 1S similar
Example 3.1 Compared with Theorem 1, the group agree-
X; = Z GjiTji ment point in Theorem 2 generally does not equal the average
JEN; value of the initial conditions, but depends on the values of
wherer;; and correspondingly;; are defined through the time delays.
Consider the cooperative group (3) with one-dimensional
u; = GIx; + 71y vij = GLx; (4) :
J jit s Y Jite x;, n = 6, and a two-way chain structure
u;; = Gg;—Xj + Tij Vi = Gz;xj

. , 1 2 3 4 5 6
with G = Gj; >0 and K;; = K;; = G;;G/; . Define

1 & 1 The coupling gains are set to be identical with= 5. The
V = = Z oxlox; + = Z Vi (5) delay values are different, and each is chosen randomlyédrou
23 2 (i,5)EN 0.5 second. Simulation results are plotted in Figure 2



(2). Without Delays

(b). With Delays

are bidirectional, we can transform the equation (6) to

X; = Z GjiTji + 7 Koi (%0 — x;)
JEN;
where 7;; and 7;; are defined the same as those in (4).
Considering the same Lyapunov functidhas (5), we get
1 I 7 n
L N [10 L " m 15 tzo V = — Z’Yi(SXZTKOi(SXi — 5 Z (57’?1-57'3'1'4—57'5-57'1']')
1=1 (i,9)EN
Fig. 2. Simulation results for Example 3.1 without delaysl avith delays. where N = Ui71j\/z‘ denotes the set of all active links among
Initial conditions, chosen randomly, are the same for eatiulation. Group 7 : ) : :
agreement is reached in both cases, although the agreenieetiy different. the followers. App'y'”g Barbalats I_emma _ShOWS thatwill
tend to zero asymptotically. It implies th&t, if v = 1, 0x;
will tend to zero, as well agr;; and é7;; V(i,j) € N.

. . i Moreover, since
Note that the conditions on coupling gains can be relaxed.

If the links are bidirectional, we do not have to requite; = 5Ty(t) = G 0x;(t = Tyi) — 6x(t) )
K. Instead, the dynamics of théh element could be we conclude that if the whole leader-followers network is
) connected, the virtual dynamics will converge d&; (t) =
X = K Z (x5t = T5i) = xi(t) ) ... = 0x,(t) = 0 regardless of the initial condigigns or
JEN; the delay values, i.e., the whole system is asymptotically
whereK; = ;-GG” and G is unique through the whole contracting. All solutions will converge to a particulareyn
network. The proof is the same except that we incorporasdich in this case is the point; (t) = - -+ = x,(t) = xo. The
k; into the wave variables and the functidh Such a design proof is similar for unidirectional links in closed rings. O
brings more flexibility to cooperation-law design. The dite- ~ Example 3.2Consider a leader-followers network (6) with
time model studied in Section IlI-C is in this spirit. A simil one-dimensionak;, n = 6, and structured by
condition was derived in [5] for a delayless swarm model. 0 1 9 3 4 5 6

Model (2) with delayed communications was also studied ) )

communication delays are equal in all links and that the- seffoUPling gains are set to be identical with= 5. The delays
response part in each coupling uses the same time def# not equal, each of which is chosen randomly ardund
Recently, [15] independently analyzed system (3) in théascasecond. Simulation results are plotted in Fig. 3. O

case with the assumption that delays are equal in all links.

(). Without Delays (b). With Delays

B. Leader-Followers Group il | ] - |
Similar analysis can be applied to study coupled networks s ] 1s
with group leaders. Consider such a model w%—— Bl
. : I
% = > Kji(x;(t = Tj) = x:(t)) +7:Koi(xo — ;) (6) o |
JEN

wherei = 1,...,n; xq is the state of the leader, which we “1Sc—— % 36 15 =20 ¢ 36 36 S5 a0 5o
first assume to be a constart;are the states of the fo”owerS;Fi 3. Simulation results for Example 3.2 without delaysl avith delays

N indicate the neighborship among the followers; ane- 0 Inigzi.al .conditions, chosen randomly, arr)e thé same for eé{dﬁllation. In b())/tH

or 1 represents the unidirectional links from the leader to thases, group agreement to the leader valyds reached.

corresponding followers. For each non-zero the coupling

gain Ko; is positive definite. _ Note that even ifx, is not a constant, i.e., the dynamics of
_ Theorem 3:C0n5|der a _Ieader-followers network (6)_ W'ththeith element is given as

time-delayed communications. Regardless of the explalit v

ues of the delays, the whole system will tend to reach a groip= Y _ Kji (x; (t=Tji) = (t))+7 Koi (x0(t—Toi)—xi(1))
agreement; (t) = --- = x,(t) = xo asymptotically if the JEN:

whole network is connected, and the coupling links amorige whole system is still asymptotically contracting actog
the followers are either bidirectional witlkK;; = K;;, or to exactly the same proof. Regardless of the initial coodi
unidirectional but formed in closed rings with identicaigm all solutions converge to a particular one, which in thisecas
Proof: Exponential convergence of the leader-followers netiepends on the dynamics &fy and the explicit values of
work (6) without delays has been shown in [24], [29] usinthe delays. Moreover, ik, is periodic, as one of the main
contraction theory. If the communication delays are nomroperties of contraction [13], all the followers’ stateswill
negligible, and assuming that all the links among the folosv tend to be periodic with the same periodsas
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