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Abstract— We study stability of interacting nonlinear systems
with time-delayed communications, using contraction theory
and a simplified wave variable design inspired by robotic
teleoperation. We show that contraction is preserved through
specific time-delayed feedback communications, and that this
property is independent of the values of the delays. The
approach is then applied to group cooperation with linear
protocols, where it is shown that synchronization can be made
robust to arbitrary delays.
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I. I NTRODUCTION

In many engineering applications, communications delays
between subsystems cannot be neglected. Such an example
is bilateral teleoperation, where signals can experience sig-
nificant transmission delays between local and remote sites.
Throughout the last decade, both internet and wireless tech-
nologies have vastly extended practical communication dis-
tances. Information exchange and cooperation can now occur
in very widely distributed systems, making the effect of time
delays even more central.

In the context of telerobotics, [2] proposed a control law
for force-reflecting teleoperators which preserves passivity,
and thus overcomes the instability caused by time delays.
The idea was reformulated in [18] in terms of scattering
or “wave” variables [6], [3]. Transmission of wave vari-
ables across communication channels ensures stability without
knowledge of the time delay. Further extensions to internet-
based applications were developed [16], [17], [4], in which
communication delays are variable.

Recently, [14], [23] extended the application of wave vari-
ables to a more general context by performing a nonlinear
contraction analysis [13], [14], [1], [7] of the effect of time-
delayed communications between contracting systems. This
paper modifies the design of the wave variables proposed
in [14], [23]. Specifically, a simplified form provides an
effective analysis tool for interacting nonlinear systemswith
time-delayed feedback communications. For appropriate cou-
pling terms, contraction as a generalized stability property is
preserved regardless of the delay values. This also sheds a new
light on the well-known fact in bilateral teleoperation that even
small time-delays in feedback Proportional-Derivative (PD)

controllers may create stability problems for simple coupled
second-order systems, which in turn motivated approaches
based on passivity and wave variables [2], [18]. The approach
is then applied to derive the paper’s main results on the group
cooperation problem with delayed communications. We show
that synchronization with linear protocols [19], [15] is robust
to time delays and network connectivity without requiring
the delays to be known or equal in all links. In a leaderless
network, all the coupled elements reach a common state which
depends on the initial conditions and the time delays, while
in a leader-followers network the group agreement point is
fixed by the leader. The approach is suitable to study both
continuous-time and discrete-time models.

II. CONTRACTION ANALYSIS OF TIME-DELAYED

COMMUNICATIONS

This introductory section shows that a simplified form of
the transmitted wave variables in [14] can be applied to
analyze time-delayed feedback communications. The results
which follow could be obtained using a variety of alternative
techniques. For instance, they could be easily derived based on
input-output analysis [31], although in anL2 sense rather than
exponentially. The use of modified wave variables provides a
unifying framework which will be central in the derivation of
the paper’s main results in section III.

Consider two interacting systems of possibly different di-
mensions,

{

ẋ1 = f1(x1, t) + G21τ 21

ẋ2 = f2(x2, t) + G12τ 12

(1)

where x1 ∈ R
n1 , x2 ∈ R

n2 , τ 12, τ 21 ∈ R
n, and G12 ∈

R
n1×n, G21 ∈ R

n2×n are two constant matrices. Inputs
τ ij are computed by transmitting between the two systems
simplified “wave” variables, defined as

u21 = G
T
21x1 + k21τ 21 v12 = G

T
21x1

u12 = G
T
12x2 + k12τ 12 v21 = G

T
12x2

wherek12 andk21 are two strictly positive constants. Because
of time delays, one has

u12(t) = v12(t − T12) u21(t) = v21(t − T21)

where T12 and T21 are two positive constants. Note that
subscripts containing two numbers indicate the communication



direction, e.g., subscript “12” refers to communication from
node1 to 2. This notation will be helpful in Section III, where
results will be extended to groups of interacting subsystems.

Consider, similarly to [14], [23], the differential length

V =
k21

2
δxT

1 δx1 +
k12

2
δxT

2 δx2 +
1

2
V1,2

where

V1,2 =

∫ t

t−T12

δvT
12δv12 dǫ +

∫ t

t−T21

δvT
21δv21 dǫ

This yields

V̇ = k21δx
T
1

∂f1

∂x1
δx1 + k12δx

T
2

∂f2

∂x2
δx2

−
k2
21

2
δτT

21δτ 21 −
k2
12

2
δτT

12δτ 12

If f1 and f2 are both contracting with identity metrics (i.e., if
∂f1

∂x1

and ∂f2

∂x2

are both uniformly negative definite), theṅV ≤
0, andV is bounded and tends to a limit. Applying Barbalat’s
lemma [22] in turn shows that if̈V is bounded, theṅV tends
to zero asymptotically, which implies thatδx1, δx2, δτ 12 and
δτ 21 all tend to zero. Regardless of the values of the delays,
all solutions of system (1) converge to a single trajectory,
independent of the initial conditions. In the sequel we shall
assume thaẗV can indeed be bounded as a consequence of
the boundedness ofV .

This result has a useful interpretation. Expanding system
dynamics (1) yields
{

ẋ1 = f1(x1, t) + 1
k21

G21(G
T
12x2(t − T21) − G

T
21x1(t))

ẋ2 = f2(x2, t) + 1
k12

G12(G
T
21x1(t − T12) − G

T
12x2(t))

If we assume further thatx1 andx2 have the same dimension,
and chooseG12 = G21 = G, the whole system is actually
equivalent to two diffusively coupled subsystems
{

ẋ1 = f1(x1, t) + 1
k21

GG
T ( x2(t − T21) − x1(t) )

ẋ2 = f2(x2, t) + 1
k12

GG
T ( x1(t − T12) − x2(t) )

This implies that, for appropriate coupling terms, contraction
as a generalized stability property will be preserved regardless
of the time delays and the delay values.

This result does not contradict the well-known fact in
teleoperation that even small time delays in bilateral PD
controllers may create stability problems for coupled second-
order systems [2], [18], [17], [4], which motivates approaches
based on passivity and wave variables. In fact, a key condition
for contraction to be preserved is that the coupling gains be
symmetric positive semi-definitein the same metricas the
subsystems.

Example 2.1Consider two identical second-order systems
coupled through time-delayed feedback PD controllers
{

h1 = kd(ẋ2(t − T21) − ẋ1(t)) + kp(x2(t − T21) − x1(t))

h2 = kd(ẋ1(t − T12) − ẋ2(t)) + kp(x1(t − T12) − x2(t))

whereh1 = ẍ1 + bẋ1 + ω2x1, h2 = ẍ2 + bẋ2 + ω2x2, and
b > 0, ω > 0. If T12 = T21 = 0, x1 andx2 converge together

exponentially regardless of initial conditions, which makes the
origin a stable equilibrium point. IfT12, T21 > 0, a simple
coordinate transformation yields
[

ẋ1

ẏ1

]

=

[

ωy1 − bx1

−ωx1

]

+ K(

[

x2(t − T21)
y2(t − T21)

]

−

[

x1

y1

]

)

[

ẋ2

ẏ2

]

=

[

ωy2 − bx2

−ωx2

]

+ K(

[

x1(t − T12)
y1(t − T12)

]

−

[

x2

y2

]

)

where f1 =

[

ωy1 − bx1

−ωx1

]

and f2 =

[

ωy2 − bx2

−ωx2

]

are

both (semi-)contracting with identity metric [29]. However, the

transformed coupling gainK =

[

kd 0
kp

ω
0

]

is neither sym-

metric nor positive semi-definite for anykp 6= 0. Contraction
cannot be preserved in this case, and the coupled systems turn
out to be unstable for large enough delays as the simulation
result in Figure 1(a) illustrates. While in Figure 1(b), once we
setkp = 0, the overall system is therefore contracting.2
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Fig. 1. Simulation results of two coupled mass-spring-damper systems with
(a) PD control and (b) D control. Parameters areb = 0.5, ω2

= 5, T12 = 2s,
T21 = 4s, kd = 1, kp = 5 in (a) andkp = 0 in (b). Initial conditions, chosen
randomly, are identical for the two plots.

The instability mechanism in the above example is actually
very similar to that of the classical Smale model [26], [29]
of spontaneous oscillation, in which two or more identical
biological cells, inert by themselves, tend to self-excited
oscillations through diffusion interactions. In both cases, the
instability is caused by a non-identity metric, which makes
the transformed coupling gains lose positive semi-definiteness.
Note that the relative simplicity with which both phenomena
can be interpreted makes fundamental use of the notion of a
metric, central to contraction theory.

Finally, it is straightforward to show that the results here
apply recursively to feedback hierarchies of such systems.

III. G ROUPCOOPERATION WITHTIME-DELAYED

COMMUNICATIONS

We now present the paper’s main results. Recently, synchro-
nization or group agreement has been the object of extensive
literature [11], [12], [19], [20], [21], [27], [28]. Understanding
natural aggregate motions as in bird flocks, fish schools, or
animal herds may help achieve desired collective behaviors
in artificial multi-agent systems. In our previous work [24],
[29], a synchronization condition was obtained for a group of
coupled nonlinear systems, where the number of the elements



can be arbitrary and the network structure can be very general.
In this section, we study a simplified continuous-time model
of schooling or flocking with time-delayed communications,
and generalize recent results in the literature [19], [15].In
particular, we show that synchronization is robust to time
delays both for the leaderless case and for the leader-followers
case, without requiring the delays to be known or equal in all
links. Similar results are then derived for discrete-time models.

A. Leaderless Group

We first investigate a flocking model without group leader.
The dynamics of theith element is given as

ẋi =
∑

j∈Ni

Kji (xj − xi) (2)

where i = 1, . . . , n and xi ∈ R
m. Ni denotes the set of

the active neighbors of elementi, which for instance can be
defined as the set of the nearest neighbors within a certain
distance aroundi; and Kji is the coupling gain, which is
assumed to be symmetric and positive definite.

Theorem 1:Considern coupled elements with linear proto-
col (2). The whole system will tend to reach a group agreement
x1(t) = · · · = xn(t) = 1

n
(x1(0) + · · ·+ xn(0)) exponentially

if the network is connected, and the coupling links are either
bidirectional withKji = Kij , or unidirectional but formed in
closed rings with identical gains.

Theorem 1 is derived in [24], [29] based on partial con-
traction analysis, and the result can be extended further to
time-varying couplings (Kji = Kji(t)), switching networks
(Ni = Ni(t)) and looser connectivity conditions.

Assume now that time delays are non-negligible in commu-
nications. The dynamics of theith element turns out to be

ẋi =
∑

j∈Ni

Kji ( xj(t − Tji) − xi(t) ) (3)

Theorem 2:Considern coupled elements (3) with time-
delayed communications. Regardless of the explicit values
of the delays, the whole system will tend to reach a group
agreementx1(t) = · · · = xn(t) asymptotically if the network
is connected, and the coupling links are either bidirectional
with Kji = Kij , or unidirectional but formed in closed rings
with identical gains.
Proof: For notational simplicity, we first assume that all the
links are bidirectional withKji = Kij , but the time delays
could be different along opposite directions, i.e.,Tji 6= Tij .
Thus, Equation (3) can be transformed to

ẋi =
∑

j∈Ni

Gjiτ ji

whereτ ji and correspondinglyτ ij are defined through

uji = G
T
jixi + τ ji vij = G

T
jixi (4)

uij = G
T
ijxj + τ ij vji = G

T
ijxj

with Gij = Gji > 0 and Kji = Kij = GijG
T
ij . Define

V =
1

2

n
∑

i=1

δxT
i δxi +

1

2

∑

(i,j)∈N

Vi,j (5)

whereN = ∪n
i=1Ni denotes the set of all active links, and

Vi,j is defined as in Section II for each link connecting two
nodesi andj. Therefore

V̇ = −
1

2

∑

(i,j)∈N

(δτT
jiδτ ji + δτ T

ijδτ ij)

Since V̇ (t) is non-positive,V (t) is bounded if initial states
are bounded. One can easily show thatδxi(t) is bounded for
any i. This implies thatδτ ij(t) andδẋi(t) are both bounded,
and so isδτ̇ ij(t) since

δτ̇ ji(t) = G
T
ijδẋj(t − Tji) − G

T
jiδẋi

Thus we can say thaẗV (t) is bounded. According to Barbalat’s
lemma,V̇ will then tend to zero asymptotically, which implies
that, ∀(i, j) ∈ N , δτ ji and δτ ij tend to zero asymptotically.
Thus we know that∀i, δẋi tends to zero. Now in general, a
vanishingδẋi does not necessarily imply thatδxi is conver-
gent. However it does in this case, because otherwise it would
contradict the fact thatδxi tends to be periodic with constant
periodTji + Tij ,

δuji(t) = G
T
jiδxi(t) + δτ ji(t) = G

T
ijδxj(t − Tji)

δuij(t) = G
T
ijδxj(t) + δτ ij(t) = G

T
jiδxi(t − Tij)

We can also conclude that, if∀i, δxi is convergent, they will
tend to a steady state

δx1(t) = · · · = δxn(t) = c

where c is a constant vector whose value depends on the
specific trajectories we analyze. Moreover, we notice that,in
the state-space, any point inside the regionx1 = · · · = xn is
invariant to (3). By path integration this implies immediately
that regardless of the delay values or the initial conditions, all
solutions of system (3) will tend to reach a group agreement
x1 = · · · = xn asymptotically.

In the case that coupling links are unidirectional but form
closed rings with identical coupling gains in each ring, we set

V =
1

2

n
∑

i=1

δxT
i δxi +

1

2

∑

(j→i)∈N

∫ t

t−Tji

δvT
jiδvjidǫ

and the rest of the proof is the same. The case when both
types of links are involved is similar. 2

Example 3.1 Compared with Theorem 1, the group agree-
ment point in Theorem 2 generally does not equal the average
value of the initial conditions, but depends on the values of
the time delays.

Consider the cooperative group (3) with one-dimensional
xi, n = 6, and a two-way chain structure

1 // 2oo // 3oo // 4oo // 5oo // 6oo

The coupling gains are set to be identical withk = 5. The
delay values are different, and each is chosen randomly around
0.5 second. Simulation results are plotted in Figure 2.2
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Fig. 2. Simulation results for Example 3.1 without delays and with delays.
Initial conditions, chosen randomly, are the same for each simulation. Group
agreement is reached in both cases, although the agreement value is different.

Note that the conditions on coupling gains can be relaxed.
If the links are bidirectional, we do not have to requireKij =
Kji. Instead, the dynamics of theith element could be

ẋi = Ki

∑

j∈Ni

( xj(t − Tji) − xi(t) )

where Ki = 1
ki

GG
T and G is unique through the whole

network. The proof is the same except that we incorporate
ki into the wave variables and the functionV . Such a design
brings more flexibility to cooperation-law design. The discrete-
time model studied in Section III-C is in this spirit. A similar
condition was derived in [5] for a delayless swarm model.

Model (2) with delayed communications was also studied
in [19], but the result is limited by the assumptions that
communication delays are equal in all links and that the self-
response part in each coupling uses the same time delay.
Recently, [15] independently analyzed system (3) in the scalar
case with the assumption that delays are equal in all links.

B. Leader-Followers Group

Similar analysis can be applied to study coupled networks
with group leaders. Consider such a model

ẋi =
∑

j∈Ni

Kji(xj(t − Tji) − xi(t)) + γiK0i(x0 − xi) (6)

where i = 1, . . . , n; x0 is the state of the leader, which we
first assume to be a constant;xi are the states of the followers;
Ni indicate the neighborship among the followers; andγi = 0
or 1 represents the unidirectional links from the leader to the
corresponding followers. For each non-zeroγi, the coupling
gain K0i is positive definite.

Theorem 3:Consider a leader-followers network (6) with
time-delayed communications. Regardless of the explicit val-
ues of the delays, the whole system will tend to reach a group
agreementx1(t) = · · · = xn(t) = x0 asymptotically if the
whole network is connected, and the coupling links among
the followers are either bidirectional withKji = Kij , or
unidirectional but formed in closed rings with identical gains.
Proof: Exponential convergence of the leader-followers net-
work (6) without delays has been shown in [24], [29] using
contraction theory. If the communication delays are non-
negligible, and assuming that all the links among the followers

are bidirectional, we can transform the equation (6) to

ẋi =
∑

j∈Ni

Gjiτ ji + γi K0i (x0 − xi)

where τ ji and τ ij are defined the same as those in (4).
Considering the same Lyapunov functionV as (5), we get

V̇ = −

n
∑

i=1

γiδx
T
i K0iδxi −

1

2

∑

(i,j)∈N

(δτT
jiδτ ji+δτT

ijδτ ij)

whereN = ∪n
i=1Ni denotes the set of all active links among

the followers. Applying Barbalat’s lemma shows thatV̇ will
tend to zero asymptotically. It implies that∀i, if γi = 1, δxi

will tend to zero, as well asδτ ji and δτ ij ∀(i, j) ∈ N .
Moreover, since

δτ ji(t) = G
T
ji( δxj(t − Tji) − δxi(t) )

we conclude that if the whole leader-followers network is
connected, the virtual dynamics will converge toδx1(t) =
· · · = δxn(t) = 0 regardless of the initial conditions or
the delay values, i.e., the whole system is asymptotically
contracting. All solutions will converge to a particular one,
which in this case is the pointx1(t) = · · · = xn(t) = x0. The
proof is similar for unidirectional links in closed rings. 2

Example 3.2Consider a leader-followers network (6) with
one-dimensionalxi, n = 6, and structured by

0 // 1 // 2oo // 3oo // 4oo // 5oo // 6oo

The state of the leader is constant with valuex0 = 10. All the
coupling gains are set to be identical withk = 5. The delays
are not equal, each of which is chosen randomly around0.5
second. Simulation results are plotted in Fig. 3. 2
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Fig. 3. Simulation results for Example 3.2 without delays and with delays.
Initial conditions, chosen randomly, are the same for each simulation. In both
cases, group agreement to the leader valuex0 is reached.

Note that even ifx0 is not a constant, i.e., the dynamics of
the ith element is given as

ẋi =
∑

j∈Ni

Kji (xj(t−Tji)−xi(t))+γi K0i (x0(t−T0i)−xi(t))

the whole system is still asymptotically contracting according
to exactly the same proof. Regardless of the initial conditions,
all solutions converge to a particular one, which in this case
depends on the dynamics ofx0 and the explicit values of
the delays. Moreover, ifx0 is periodic, as one of the main
properties of contraction [13], all the followers’ statesxi will
tend to be periodic with the same period asx0.



C. Discrete-Time Models

Simplified wave variables can also be applied to study time-
delayed communications in discrete-time models. Considerthe
model of flocking or schooling studied in [11], [28]:

xi(t + 1) = xi(t) +
1

1 + ni

∑

j∈Ni

( xj(t) − xi(t) )

wherei = 1, . . . , n, andni equals the number of the neighbors
of elementi. As proved in [11], the whole system will tend
to reach a group agreement if the network is connected in a
very loose sense.

Assume now that time delays are non-negligible in commu-
nications. The update law of theith element changes to

xi(t+1) = xi(t) +
1

1 + ni

∑

j∈Ni

( xj(t−Tji) − xi(t) ) (7)

where the delay valueTji is an integer based on the number of
updating steps. As in previous sections,Tji could be different
for different communication links, or even different along
opposite directions on the same link.

We assume: all elements update their states synchronously;
the time interval between any two updating steps is a constant;
the network structure is connected and fixed, i.e.,ni is a
positive integer∀i; and the value of the neighborhood radius
r is unique throughout the whole network, which leads to the
fact that all interactions are bidirectional.

Theorem 4:Considern coupled elements (7) with time-
delayed communications. Regardless of the explicit values
of the delays, the whole system will tend to reach a group
agreementx1(t) = · · · = xn(t) asymptotically.
Proof: See [30], with xi(t + 1) = xi(t) +

∑

j∈Ni
τji(t)

and wave variablesuji = xi + (1 + ni) τji , vij = xi.

A similar analysis leads to the same result as Theorem 3 for
a discrete-time model with a leader-followers structure, both
of which can be applied to study group cooperation problem
with asynchronous updating instants [8].

IV. CONCLUSION

This paper introduces modified wave variables in the context
of contraction analysis, and shows that they yield effective
and simple tools for analyzing interacting systems and group
synchronization with time-delayed feedback communications.
Future work includes coupled networks with switching topolo-
gies and time-varying time-delays.
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