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Abstract

We derive an exact deterministic nonlinear observer to compute the continuous state
of an inertial navigation system based on partial discrete measurements, the so-called
strap-down problem. Nonlinear contraction is used as the main analysis tool, and the
hierarchical structure of the system physics is systematically exploited. The paper also
discusses the use of nonlinear measurements, such as distances to time-varying reference
points.

1 Introduction

This paper derives an exact deterministic nonlinear observer to compute the continuous state
of an inertial navigation system based on partial discrete measurements. The main analysis
tool is nonlinear contraction theory [9, 10, 12, 11, 14]. Recent work on nonlinear observer
design for mechanical systems based on nonlinear contraction theory can be found in [1, 3, 8,
7].

Specifically, we consider the classical strap-down problem in inertial navigation [4, 17],
where angular position (Euler angles) x = (ψ, θ, φ)T and inertial position r are computed
from the body turn rate ω and inertial acceleration γ, measured continuously in intrinsic (body-
fixed) coordinates, 


ẋ = H−1 ω
v̇ = A γ
ṙ = v

(1)
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with

H =


 1 0 − sin θ

0 cosψ cos θ sinψ
0 − sinψ cos θ cosψ




and

A =


 cos θ cos φ sinψ sin θ cos φ− cosψ sinφ cosψ sin θ cosφ + sinψ sinφ

cos θ sinφ sinψ sin θ sin φ + cosψ cos φ cosψ sin θ sinφ− sinψ cosφ
− sin θ cos θ sinψ cos θ cosψ




As made precise in [12] such a system lies at the boundary between convergence and diver-
gence, much like a triple integrator.

In this paper, the continuous measurements of ω and γ are augmented by discrete measure-
ments of x and r, leading to a globally exponentially convergent nonlinear observer design.
Such combinations of measurements are typical in inertial navigation, whether for vehicles or
robots (see e.g. [16] for a recent discussion). The human vestibular system also features a
similar structure, with otolithic organs measuring linear acceleration and semi-circular canals
estimating angular velocity through heavily damped angular acceleration signals, an informa-
tion then combined with visual data at much slower update rate.

After a brief review of contraction theory, Section 2 introduces the basic observer design.
We build simple observers to compute (x,v, r) based on partial discrete measurements xi

and ri. In Section 3 we discuss extensions, such as the use of nonlinear measurements, and
the effects of system disturbance and measurement disturbance [14]. We also study the case
where the inertial navigation system is expressed in quaternion form [4, 5, 6]. Section 4
presents simulation results on a 3-dimensional system. Brief concluding remarks are offered
in Section 5.

2 Basic Algorithm

In this section, we first briefly review basic results in contraction theory. We then construct a
discrete observer for system (1), which consists of a hierarchy of three sub-systems, mirroring
the hierarchical nature of systems physics (1).

2



2.1 Contraction Theory

The basic theorem of contraction analysis [9] can be stated as

Theorem 1 Consider the deterministic system ẋ = f(x, t) , where f is a smooth nonlinear
function. If there exist a uniformly positive definite metric

M(x, t) = Θ(x, t)T Θ(x, t)

such that the associated generalized Jacobian

F =
(
Θ̇ + Θ ∂f

∂x

)
Θ−1

is uniformly negative definite, then all system trajectories then converge exponentially to a
single trajectory, with convergence rate |λmax|, where λmax is the largest eigenvalue of the
symmetric part of F. The system is said to be contracting.

It can be shown conversely that the existence of a uniformly positive definite metric with
respect to which the system is contracting is also a necessary condition for global exponential
convergence of trajectories. In the linear time-invariant case, a system is globally contracting
if and only if it is strictly stable, with F simply being a normal Jordan form of the system and
Θ the coordinate transformation to that form. Furthermore, since

Θ−1 Fs Θ =
1
2

M−1 (Ṁ + M
∂f
∂x

+
∂f
∂x

T

M)

where is Fs the symmetric part of F, all transformations Θ corresponding to the same M lead
to the same eigenvalues for Fs , and therefore to the same contraction rate |λmax|.

Consider now a hybrid case [11], consisting of a continuous system

ẋ = f(x, t)

which is switched to a discrete system

xi+1 = fi(xi, i)

every ∆ti for one discrete step. Letting, in the same coordinate system Θ, λ̄ be the largest
eigenvalue of the symmetric matrix FT +F, and λ̄i be the largest eigenvalue of FT

i Fi (the cor-
responding discrete-time quantity, where Fi = Θi+1

∂fi
∂xi

Θ−1
i , see [11]), a sufficient condition

for the overall system to be contracting is

∃ α < 1, ∀i, 0 ≤ λ̄ie
λ̄∆ti ≤ α (2)
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Contraction theory proofs and this paper make extensive use of virtual displacements,
which are differential displacements at fixed time borrowed from mathematical physics and
optimization theory. Formally, if we view the position of the system at time t as a smooth
function of the initial condition xo and of time, x = x(xo, t) , then δx = ∂x

∂xo
dxo .

2.2 A Basic Algorithm

The observer is based on the partial measurements of the state x and r at a series of instants
{ti}.

First, based on the discrete measurement xi, compute x with the observer


˙̂x = H−1(x̂) ω

x̂+
i = k1i x̂−

i + (1 − k1i) xi

(3)

where the first equation describes a continuous update between measurements, and the second
equation a discrete measurement incorporation.

Computing virtual displacements in (3) leads to


δ ˙̂x = ∂(H−1ω)
∂x̂

δx̂

δx̂+
i = k1i δx̂

−
i

(4)

Based on [12], define δẑ = Θ δx̂ with Θ(x̂, t) = AH . This implies that

{
δẑ+

i = Θ+
i δx̂+

i

δẑ−i = Θ−
i δx̂−

i

From (4), we have 


δ ˙̂z = (Θ̇ + Θ ∂(H−1ω)
∂x̂

)Θ−1 δẑ = 0

δẑ+
i = k1i (Θ+

i )(Θ−
i )−1 δẑ−i

where δ ˙̂z = 0 stems from the indifference property of the system [12].

Note that this indifference property can be understood intuitively from the physical mean-
ing of the transformation Θ used to define δẑ. Indeed, Θ = AH , where H is the transfor-
mation matrix from Euler angles to body-fixed coordinates and A is the transformation matrix
from body-fixed coordinates to inertial coordinates. Thus, δ ẑ simply describes the virtual sys-
tem in inertial coordinates. Also note that the indifference property is actually immediate in a
quaternion representation, as we shall discuss in Section 3.4.
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From hybrid contraction condition (2) in Section 2.1, if

λ̄1i e
0·∆ti = λ̄1i < 1 uniformly (5)

where λ̄1i = λmax(F
T
1iF1i) and F1i = k1i (Θ+

i )(Θ−
i )−1, then both δẑ and δx̂ tend to zero

exponentially. So x̂ tends to x exponentially.

Second, based on the discrete measurement of r, compute v with the observer


˙̂v = A(x̂) γ

v̂+
i+1 = v̂−

i+1 − 1
∆ti

∫ ti+1

ti
v̂dt + 1

∆ti
(ri+1 − ri)

(6)

From (6) and the first step, we get


d
dt

(δv̂) = ∂(Aγ)
∂x̂

δx̂ → 0

δv̂+
i+1 = δv̂−

i+1 − 1
∆ti

∫ ti+1

ti
δv̂ dt

(7)

Since δv̂ tends exponentially to a constant, we have

1

∆ti

∫ ti+1

ti

δv̂ dt → 1

∆ti
(δv̂−

i+1 ∆ti) = δv̂−
i+1

Using (7), this implies that δv̂+
i+1 → 0 , which by continuity implies that the constant which

δv̂ tends to must be zero. We thus have, exponentially,{
δv̂ → 0
δv̂+

i+1 → 0

Since by design v̂ = v is a particular solution of (6), this implies that v̂ tends to v exponen-
tially.

Third, based on the discrete measurement ri, use the observer


˙̂r = v̂

r̂+
i = F3i r̂−i + (I − F3i) ri

(8)

Since we know δv̂ tends to zero exponentially, we have


d
dt

(δr̂) = δv̂ → 0

δr̂+
i = F3i δr̂

−
i
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If λ̄3i < 1, i.e.
λ̄3i e

0·∆ti < 1 uniformly (9)

where λ̄3i is the largest eigenvalue of FT
3iF3i. So r̂ tends to r exponentially.

Extension 1: When we compute v and r, we only use the discrete-time measurement ri with-
out xi. This allows xi and ri to be measured at different instants, with the same computation.

Extension 2: The metric can also be written ΘTΘ = (AH)T (AH) = HTH since A is
orthogonal. So we can simply use Θ = H.

Extension 3: Assume that in (3) we replace the discrete update law by the more general

x̂+
i = F1i x̂−

i + (I − F1i) xi

where Θi and F1i commute. Then


δ ˙̂z = (Θ̇ + Θ ∂(H−1ω)
∂x̂

)Θ−1 δẑ = 0

δẑ+
i = (Θ+

i )F1i(Θ
−
i )−1 δẑ−i

The hybrid contraction condition (5) becomes

λ̄1i e
0·∆ti = λ̄1i < 1 uniformly

where λ̄1i is the largest eigenvalue of [(Θ+
i )F1i(Θ

−
i )−1]T [(Θ+

i )F1i(Θ
−
i )−1].

Note that because the generalized Jacobians are zero at each step of the hierarchy, the
hybrid contraction conditions simply define the metrics in which the discrete measurement
incorporation steps should be contracting. As we shall see later, the flexibility offered within
this constraint will allow us to trade-off model error vs measurement error, similarly in spirit
to a standard Kalman filter.

3 Extensions of the Basic Algorithm

Discussions about full discrete measurements, disturbance effects, nonlinear measurements,
and quaternion representation are offered in this section. An observer based on full measure-
ment is described in Section 3.1. Effects of system disturbance and measurement disturbance
are discussed in Section 3.2. Section 3.3 we develop a more general discrete observer appli-
cable to nonlinear measurements. Use of quaternions is studied in Section 3.4.
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3.1 Computation with Full Discrete Measurement

Assume that all states x, v, and r are actually measured, at a series of discrete instants {ti}.
Then steps 1 and 3 are unchanged, but we can replace step 2 (the estimation of v) by the
observer 


˙̂v = A(x̂) γ

v̂+
i = F2i v̂−

i + (I − F2i) vi

Since we know δx̂ tends to zero exponentially, we have



d
dt

(δv̂) = ∂(Aγ)
∂x̂

δx̂ → 0

δv̂+
i = F2i δv̂

−
i

With λ̄2i < 1, we have
λ̄2i e

0·∆ti < 1 uniformly

where λ̄2i is the largest eigenvalue of FT
2iF2i. So v̂ tends to v exponentially.

Note that in some cases one only needs to estimate orientation x and velocity v, and that
the discrete measurement of v may be obtained from optical flow, which can be computation-
ally ”expensive” and thus infrequent.

3.2 Disturbance Effects

Effects of bounded inputs and measurement disturbances can be quantified and observer gains
chosen accordingly.

Consider input disturbance d and measurement disturbance n, with ‖d‖ ≤ D and ‖n‖ ≤
N , leading to the modified system

{
ẋ = f(x) + d
xmeasure

i = xi + n

Using the basic robustness result in [9, 14], we can quantify the corresponding quadratic
bounds R on the estimation error

Rnew =| kj | eλ̄ ∆ti Rold+ | kj | D
λ̄

(eλ̄ ∆ti − 1)+ | kj − 1 | N
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where λ̄ is the largest eigenvalue of the symmetric part of
∫ 1

0
∂f
∂x

(x̂ + c(x − x̂)) dc.

Define the objective function (0 ≤ kj < 1)

F (kj) =| kj | eλ̄ ∆ti Rold+ | kj | D
λ̄

(eλ̄ ∆ti − 1)+ | kj − 1 | N

= kj e
λ̄ ∆ti Rold + kj

D

λ̄
(eλ̄ ∆ti − 1) + (1 − kj)N

Then, F (kj) = (A + B −N)kj + N , where A = eλ̄ ∆ti Rold and B = (eλ̄ ∆ti − 1)D/λ̄.

We know kj should also satisfy

kje
λ̄∆ti < 1 uniformly

Define kmax as an upper bound of kj. Therefore,

0 ≤ kj ≤ km

where km = min(kmax, 1). Finally, we obtain the minimum of F (kj)

Fmin =




N, when kj = 0
(A + B −N)km + N, when kj = km

N, when 0 ≤ kj ≤ km

if A + B −N > 0
if A + B −N < 0
if A + B −N = 0

where A = eλ̄ ∆ti Rold and B = (eλ̄ ∆ti − 1)D/λ̄.

When different measurements are available, the above formulas can also be used to select
a priori the most informative measurement. This can be the case for instance for selecting
the direction of gaze of the eyes in hopping robot [15]. This can also be the case when the
measurements are ”expensive”, for instance computationally.

Extension: The discussions above will still work when the bounds of input disturbance and
measurement disturbance are time-varying. If ‖d‖ ≤ Di and ‖n‖ ≤ Ni when t ∈ [ti, ti+1).
Similar to the above, we have

Fmin =




Ni, when kj = 0
(A + Bi −Ni)km + Ni, when kj = km

Ni, when 0 ≤ kj ≤ km

if A + Bi −Ni > 0
if A + Bi −Ni < 0
if A + Bi −Ni = 0

where A = eλ̄ ∆ti Rold and Bi = (eλ̄ ∆ti − 1)Di/λ̄.
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3.3 Nonlinear measurements

For the system ẋ = f(x), consider the observer

{
˙̂x = f(x̂)
x̂+

i = x̂−
i + gi(ŷ

−
i ) − gi(yi)

(10)

where {
yi = yi(xi)
ŷ−

i = yi(x̂
−
i )

We have 


δ ˙̂x = ∂f
∂x̂

δx̂

δx̂+
i = (I + ∂gi

∂ŷi

∂ŷi

∂x̂i
)δx̂−

i

(11)

Defining δẑ = Θ δx̂ , we have

{
δẑ+

i = Θ+
i δx̂+

i

δẑ−i = Θ−
i δx̂−

i

. Using Equation (11) yields

{
δ ˙̂z = F δẑ
δẑ+

i = Fi δẑ
−
i

where F = (Θ̇ + Θ ∂f
∂x̂

)Θ−1 and Fi = (Θ+
i ) (I+ ∂gi

∂ŷi

∂ŷi

∂x̂i
) (Θ−

i )−1. The sufficient contraction
condition on hybrid systems can be written

λ̄i e
λ̄ ∆ti < 1 (12)

where λ̄i = λmax(F
T
i Fi) and λ̄ is the largest eigenvalue of the symmetric matrix FT + F. If

condition (12) is satisfied by an appropriate choice of gi, then x̂ will tend to x exponentially.

A a simple illustration, consider using distance measurements instead of direct carte-
sian position measurements. In the 3-dimensional space, measure the distances from one
point X = (x1, x2, x3)

T to four time-varying reference points A = [a1(t), a2(t), a3(t)]
T ,

B = [b1(t), b2(t), b3(t)]
T , C = [c1(t), c2(t), c3(t)]

T , and D = [d1(t), d2(t), d3(t)]
T , D =

(d1, d2, d3)
T .

y1 =| XA |= √
(x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2

y2 =| XB |= √
(x1 − b1)2 + (x2 − b2)2 + (x3 − b3)2

y3 =| XC |= √
(x1 − c1)2 + (x2 − c2)2 + (x3 − c3)2

y4 =| XD |= √
(x1 − d1)2 + (x2 − d2)2 + (x3 − d3)2

(13)
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The discrete-update part of observer (10) can be built up as below,

 x̂+

1,i

x̂+
2,i

x̂+
3,i


 =


 x̂−

1,i

x̂−
2,i

x̂−
3,i


 − 1

2
Ki


 (ŷ−1,i)

2 − (ŷ−2,i)
2 − (y2

1,i − y2
2,i)

(ŷ−2,i)
2 − (ŷ−3,i)

2 − (y2
2,i − y2

3,i)
(ŷ−3,i)

2 − (ŷ−4,i)
2 − (y2

3,i − y2
4,i)


 (14)

where Ki is a 3 by 3 time-varying gain matrix. Using equation (13) yields

δx̂+
i = (I − Ki Ji)δx̂

−
i (15)

where Ji =


 (b1i − a1i) (b2i − a2i) (b3i − a3i)

(c1i − b1i) (c2i − b2i) (c3i − b3i)
(d1i − c1i) (d2i − c2i) (d3i − c3i)




where subscript i refers to the value at time ti.

Assume Ji is non-singular. Then we can choose

Ki = ki J−1
i (16)

With Equation (15), we have
δx̂+

i = (1 − ki)δx̂
−
i

By choosing ki, we can make λ̄i satisfy the following contraction condition that makes δ ẑ
tends to zero exponentially.

λ̄i e
λ̄ ∆ti < 1 (17)

where λ̄i = (1− ki)
2 and λ̄ is the largest eigenvalue of the symmetric matrix FT + F. There-

fore, δx̂ will tend to zero, and x̂ will tend to x exponentially.

Remark When Ji is singular, one has
∣∣∣∣∣∣

(b1i − a1i) (b2i − a2i) (b3i − a3i)
(c1i − b1i) (c2i − b2i) (c3i − b3i)
(d1i − c1i) (d2i − c2i) (d3i − c3i)

∣∣∣∣∣∣ = 0 (18)

Equation (18) is equivalent to

[(b1i − a1i)i + (b2i − a2i)j + (b3i − a3i)k] ·
∣∣∣∣∣∣

i j k
(c1i − b1i) (c2i − b2i) (c3i − b3i)
(d1i − c1i) (d2i − c2i) (d3i − c3i)

∣∣∣∣∣∣ = 0 (19)
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which we can write −→
AB · (−−→BC ×−−→

CD) = 0

This means that points A, B, C, and D are in the same plane, and therefore that the geometry
does not contain enough information to infer position.

To compute velocity, one can rewrite observer (6) as
8>>><
>>>:

˙̂v = A(x̂) γ

v̂+
i+1 = v̂−

i+1 − 1
2

1
∆ti

{Ki+1

2
64

(ŷ−
1,i+1)2 − (ŷ−

2,i+1)2 − (y2
1,i+1 − y2

2,i+1)

(ŷ−
2,i+1)2 − (ŷ−

3,i+1)2 − (y2
2,i+1 − y2

3,i+1)

(ŷ−
3,i+1)2 − (ŷ−

4,i+1)2 − (y2
3,i+1 − y2

4,i+1)

3
75 − Ki

2
64

(ŷ+
1,i)

2 − (ŷ+
2,i)

2 − (y2
1,i − y2

2,i)

(ŷ+
2,i)

2 − (ŷ+
3,i)

2 − (y2
2,i − y2

3,i)

(ŷ+
3,i)

2 − (ŷ+
4,i)

2 − (y2
3,i − y2

4,i)

3
75}

(20)

where
y1 =| rA |= √

(r1 − a1)2 + (r2 − a2)2 + (r3 − a3)2

y2 =| rB |= √
(r1 − b1)2 + (r2 − b2)2 + (r3 − b3)2

y3 =| rC |= √
(r1 − c1)2 + (r2 − c2)2 + (r3 − c3)2

y4 =| rD |= √
(r1 − d1)2 + (r2 − d2)2 + (r3 − d3))2

and

Ki =

2
4

(b1i − a1i) (b2i − a2i) (b3i − a3i)
(c1i − b1i) (c2i − b2i) (c3i − b3i)
(d1i − c1i) (d2i − c2i) (d3i − c3i)

3
5
−1

and Ki+1 =

2
4

(b1i+1 − a1i+1) (b2i+1 − a2i+1) (b3i+1 − a3i+1)
(c1i+1 − b1i+1) (c2i+1 − b2i+1) (c3i+1 − b3i+1)
(d1i+1 − c1i+1) (d2i+1 − c2i+1) (d3i+1 − c3i+1)

3
5
−1

(21)

We then have



d
dt

(δv̂) = ∂(Aγ)
∂x̂

δx̂ → 0

δv̂+
i+1 = δv̂−

i+1 − 1
∆ti

(δr̂−i+1 − δr̂+
i ) = δv̂−

i+1 − 1
∆ti

∫ ti+1

ti
δv̂ dt

which is the same as equation (7). Similarly to the second step of Section 2, this shows that v̂
tends to v exponentially.

Note that the geometry problem of going from distances to positions is solved by a dy-
namic system, the observer, rather than explicitly at each instant. In general, one may also use
linear measurements at some instants and nonlinear ones at others.

Note that if a measurement is delayed, the algorithms work similarly but the actual infor-
mation is available after the delay (i.e. the measurement is incorporated at some past time and
the forward simulation runs instantly to the current time).
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Consider now, extending section 3.2, the effect of model and measurement errors. For the
modified system, {

ẋ = f(x) + d
xmeasure

i = xi + n

with the following nonlinear observer,

{
˙̂x = f(x̂)
x̂+

i = x̂−
i + gj(ŷ

−
i ) − gj(yi)

where

{
yi = yi(xi)
ŷ−

i = yi(x̂
−
i )

and

{
d− model error ‖d‖ < D
n− measurement error ‖n‖ < N

We know the quadratic bounds R on the estimation error

Rnew =
√

λ̄i e
λ̄∆ti Rold +

√
λ̄i

D

λ̄
(eλ̄∆ti − 1) +

√
λ̄ei N

where λ̄i = λmax((I +
∂gj

∂ŷi

∂ŷi

∂x̂i
)T (I +

∂gj

∂ŷi

∂ŷi

∂x̂i
)), λ̄ei = λmax((

∂gi

∂yi
)T (∂gi

∂yi
)), and λ̄ is the largest

eigenvalue of the symmetric part of
∫ 1

0
∂f
∂x

(x̂ + c(x − x̂)) dc.

We can choose the most relevant discrete update function gj which will best contribute to
improving the estimate x̂ (i.e., to minimize Rnew).

3.4 Quaternion Representation

Angular position can be expressed in quaternion form, avoiding representation singularities [4,
5]. Quaternions express a rotation of angle θ about the unit vector n as q = (cos(θ/2),n sin(θ/2))T .
With q = (q0, q1, q2, q3)

T the quaternion vector, this leads to



q̇ = 1
2
Ω q

v̇ = A γ
ṙ = v

where

Ω =




0 −ω1 −ω2 −ω3

ω1 0 −ω3 ω2

ω2 ω3 0 −ω1

ω3 −ω2 ω1 0
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and

A(q) =


 q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q2

0 − q2
1 − q2

2 + q2
3




In this representation, the fact that the dynamics of q is indifferent is obvious, since Ω is
skew-symmetric.

The observers can be derived as earlier, simply by replacing (3) by


˙̂q = 1
2

Ω q

q̂+
i = F1i q̂−

i + (I− F1i) qi

based on the discrete measurements qi. Computing virtual displacements


δ ˙̂q = 1
2

Ω δq̂

δq̂+
i = F1i δq̂

−
i

and because the dynamics of q is indifferent, we only need

λ̄1i e
0·∆ti = λ̄1i < 1 uniformly (22)

where λ̄1i is the largest eigenvalue of FT
1iF1i. Under Condition (22), δq̂ tends to zero expo-

nentially, and q̂ tends to q exponentially.

The other two steps are unchanged, with A(x̂) being replaced by A(q̂).

All the above variations and extensions can of course be combined.

4 Simulation

In this section, we will do a 3-dimensional simulation about system (1) based on the discrete
measurement xi and the nonlinear distance measurements y1,i, y2,i, y3,i, and y4,i, as in Section
3.3.

Consider System (1) in the 3-dimensional case. Where

ω =




2+sin t
3

3+cos t
5

2+sin 2t
3


 and γ =


 cos(2t)

sin t
1+2 sin t

3
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Four time-varying reference points are chosen as below (all move on circular trajectories),

A(a1, a2, a3)

{
a2

1 + a2
2 = 1

a3 = 0
B(b1, b2, b3)

{
(b1 − 60)2 + b22 = 1

b3 = 0

C(c1, c2, c3)

{
(c2 − 60)2 + c2

3 = 1
c1 = 60

D(d1, d2, d3)

{
(d1 − 60)2 + (d3 − 60)2 = 1

d2 = 60

Observer (3) with λ̄1i = 1/9 is used to compute x. Observer (20) with gain (21) is used to
compute v. Using observer (10,14) and gain (16), we choose ki = 2

3
to satisfy Condition (12),

thus we can compute r. Figure 1 shows (x̂, v̂, r̂)T tends to (x,v, r)T exponentially.
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1

Figure 1: Simulation result of computing x, v, and r with the discrete measurements xi and ri

5 Concluding Remarks

Observers similar to those developed in this paper can in principle be applied to other contin-
uous nonlinear systems besides inertial navigation systems, although much simplification was

14



afforded by exploiting the hierarchical structure of the system physics. An animation of the
basic observer as applied to head stabilization [2] in a simulated robot hopper [15] can also be
found in http://web.mit.edu/nsl/www/hopping robot.htm.

Acknowledgement This paper benefited from stimulating discussions with Dr. Agostino
Martinelli.
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