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Abstract

In this paper, we revisit standard results on singular plestions and multiple time-scales using convergence
analysis tools based on nonlinear contraction theory. iSpalty, assuming that the fast and slow subsystems
are each partially contracting, we obtain explicit boundsttee convergence rate of the trajectories to the slow
manifold and on the asymptotic error between the trajeesoof the singularly perturbed system and those of

the reduced system. As an application example, we illestiad design of a biomolecular insulation device.

. INTRODUCTION

Multiple time-scales have been viewed as a key ingrediethe@fmodular architecture of complex
systems ever since [27]. In recent years, this perspectigebleen strengthened in the context of the
flurry of research in systems biology, most notably by [13, ¥5 mathematical treatment has been
recently proposed [11, 12], in which the difference of tincales between interconnected components is
shown to be responsible for functional modularity. Mathgoadly, the standard description of dynamical
systems with multiple time-scales is based on singularuggation theory, whose main results were
established more than 40 years ago [14,17,29]. The stamdswits on the finite time interval require
local exponential stability of the slow manifold to show ttheajectories starting sufficiently close
to the slow manifold approach anneighbor of it, in whiche is a small parameter quantifying the
time scale separation. Results on the infinite time inteadditionally require that the origin of the
reduced system is locally exponentially stable. Singuktysbation arguments have been extensively
employed in biochemical systems to investigate the validit the quasi-steady state approximation
for enzyme kinetics [4, 26, 30]. More recently, singulartpdsation theory has been employed for

guantifying impedance-like effects, called retroactivih biomolecular networks [6] and for designing
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biomolecular insulation devices that attenuate retroggtio enforce modular composition [11,12]. In
these works, time scale separation is due to differencelseirotder of magnitude of the reaction rates

of the processes considered (Section V).

In this paper, we use comparatively recent convergencgsindbols, based on nonlinear contraction
theory and virtual dynamical systems, to revisit some keylis on singular perturbations. Nonlinear
contraction theory [20, 31], a viewpoint on incrementabgity which we briefly review in Section I,
has emerged as a powerful tool in applications ranging fr@amrangian mechanics to network control.
Historically, ideas closely related to contraction can faeed back to [9] and even to [18] (see also [3,
23], and e.g. [19] for a more exhaustive list of related mfiees). In addition, contraction is preserved
through a large variety of systems combinations, which mayanit particularly suitable in the context
of biological systems [13], subject to evolution and depedent mechanisms. Here, we assume that the
fast and slow subsystems are each partially contractingleretage robustness results in contraction
theory to obtain explicit bounds on the difference betwdsn ttajectories of the original system and
those of the reduced system. Similarly, we provide expbatinds on the rate of convergence of the
trajectories to the slow manifold. Our bounds hold indegeniy of the value ok and they approach,

ase tends to zero, those found in standard singular pertunbaésults [14].

As an illustration of our result, we derive explicit boundsmtroactivity between two interconnected
biomolecular systems [12]. When the time scale of the upstrgystem is faster than that of its input, the
retroactivity at the interconnection with a downstreamtesysis attenuated. Hence, the interconnection
is functionally modular, that is, loading effects due to ttmvnstream system only minimally perturb
the dynamics of the upstream system. In [12], employing dargperturbation theory, the order of
convergence and attenuation were determined as function ldére, we provide explicit bounds on
both the attenuation and rate of convergence. This resapied to a one-step reaction model of a
phosphorylation system to show how it can be tuned so thaintieeconnection to any downstream

system is functionally modular.

This paper is organized as follows. In Section Il, tools froontraction theory are reviewed. In
Section Ill, we give the main result of the paper for systenth wvo time scales, while in Section 1V,
we illustrate the extension to multiple time scales. In BecV, we specialize the system structure to

those of biomolecular interconnections and then considmrarete example in Section VI.
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[I. CONTRACTION THEORY TOOLS

Recall that, given a norm-| on the state space, and its induced matrix ndyA||, for an ar-
bitrary square matrixA, the associatednatrix measurey is defined as (see [5], [22]}(A) :=
limy, 0+ 7 (|[T+ hA| —1). The basic result of nonlinear contraction analysis [20} tha shall use

in this paper can be stated as follows.

Theorem 1 (Contraction) Consider them-dimensional deterministic systein= f(x,¢) wheref is a

smooth nonlinear function. The system is said to be contrgét any two trajectories, starting from

different initial conditions, converge exponentially tach other. A sufficient condition for a system to be
of (x,t)

contracting is the existence of some matrix measuyesuch thatg\ > 0, vx, V¢ >0, u (T) <

—\. The scalar)\ defines the contraction rate of the system.

A proof of this theorem for non-Euclidean norms is shown i0][Section 3.7(iii) (see also [25]). The
standard matrix measures used in this paper are listed ile Tabhe condition number of an invertible
square matrixA is defined by|A| |[A~!|, which, for the Euclidean norm, is given by the ratio between
the largest and smallest singular valuesA\ofMore generally, contraction may be shown by using matrix
measures induced by the weighted vector ngxig, ; = |©x|;, with © a constant invertible matrix and
i = 1,2,00. Such measures, denoted witl, ;, are linked to the standard measures pg.;(A) =
wi (@AO~Y) | Vi =1,2 00. In this paper, we leave the matrix measure and the corresppnector
norm unspecified as the results hold as stated independsntitye norm employed.

TABLE |

STANDARD MATRIX MEASURES FOR A REAL7T X 1 MATRIX, A = [a;;]. THE i-TH EIGENVALUE OF A IS DENOTED WITHA;(A).

vector norm,|-| induced matrix norm|A | induced matrix measure, (A)
x|, =225 |2l |Al1 = max; >, ai;] p1 (A) = max; (ajj + iz Iaij|)
1
pely = (S5 25%)” | JAL = Vs M(ATA) | g (A) = maxi (X {452 })
x|, =maxicj<n |25 | [Aloo =maxi Y [aij| | Hoo (A) =max; (aii + 3, | aij |

For convenience, we will also say thatfanction f(x, ¢) is contracting if the systemx = f(x,t)
satisfies the sufficient condition of Theorem 1. Similarlg will then say that the corresponding Jacobian

matrix %(x, t) is contracting. We shall also use the following property @fittacting systems [20, 28].

Lemma 1. (Robustnes$ Assume that the systein= f (x, ¢) is contracting, with an associated metric
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transformation® and contraction rate\, and consider the “perturbed” systes), = f (x,,t)+d(x,, t)
whered(x,,t) is bounded, that is3 d > 0,Vx,,¥t > 0, |d(x,,t)| < d. Then, any trajectory of the
perturbed system satisfigs, (1) — x(t)] < xe *|x,(0) —x(0)| + de’ in which x is an upper bound
on the condition number a® [20, 21].

Proof: With R(t) = |® (x,(t) — x(t))| , one has (see [20l, R+ AR < |©d(x,,t)|. Similarly,
using thel-norm or theco-norm, and proceeding as in [7] (Chapter 4) one ﬁa\BJr)\R < |Od(x,,1)|
Where% denotes the right-hand derivative with respect to timeegrdating the above yields the result.

This lemma is valid for all norms and matrix measures fromldab (employed to compute the

contraction rate) as long as they are chosen consistently.

[1l. BASIC RESULTS

We consider the standard singular perturbation framewbdk [

x =f(x,2,t)
| . (1)
cz=g(x,2,¢), €>0
Definition 1. [31] System (1) is said to bpartially contracting inx if the virtual system
Yo =1 (¥z,2(1),1) (2)

is contracting for any(¢) and for all¢t. Similarly, system (1) is said to bgartially contracting inz if

the virtual system
€y. =g (x(t),y:€) 3)

is contracting for any(¢) and for alle > 0.

Theorem 2. If system (1) is partially contracting in, then equatiog (x,z,¢) = 0 can be equivalently

written asz = v(x, €), i.e., there is a unique, global mapping betweer and z.

Proof: The virtual system y, = g (x,,y.,€) IS contracting by hypothesis, for amy,(t). If we

setx, equal to someonstantvector, this system is also autonomous, and therefore tendsunique
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equilibrium [20]. Thus for any giver,, the algebraic equatiog (x,,y.,¢) = 0 has a unigue solution,

which we can denotg, = v(x,, €). [ ]

Denotey(x) := v(x, 0) and assume it is globally differentiable. Differentiatihg relationg (x, y(x), 0)
= 0 with respect tax then yields the familiar expression

000 (08 g
ox 0z ox

(x,7(x),0), (4)
which is valid globally, as the matrix% is uniformly invertible.

Lemma 2. Assume that system (1) is partially contracting:jrwith an associated metric transformation
©., and let ), /e be the contraction rate of (3). Assume further that, given ¢he can writed d >

0,Vx,Vz,Vt > 0, ag(;‘)f (x,z,t)| < d and thatg(x, z, €) is Lipschitz continuous im with constantk'.

Then, any trajectory of (1) is such that

(d+ K) x.

() — v(x(t))] < xee” /" |2(0) — y(x(0))] + N

e Vt >0, (5)

wherey. is an upper bound on the condition number@®f.

Proof: Note that y, = z(¢) is a solution of the contracting virtual systeny, = g (x(t),y.,€)
while y., = v(x(t)) is a solution of the “perturbed” contracting virtual system., = g (x(t),y.q4, €)+
e TV (x(1), 2(t), 1) + (& (x(1),¥24,0) — & (X(£), ¥za,€)) - Let d(yza,t) = € T (x(t), 2(t), 1) +
(& (x(t), ¥:4,0) — g (x(t), y-a; €))- Then, applying Lemma 1 yields..(t)—y.a(t)| < x. e”*</V"|y.(0)—

y-a(0)] + AX in which d is such thatd(y.q4,t)| < d. By the assumptions of the lemma, in turn, we
can taked = € d + K ¢, which gives the bound (5). |

Theorem 3. Assume, in addition to the hypotheses of the previous Letiaiasystem (1) is partially
contracting inx, with an associated metric transformati@,, and let A\, be the contraction rate of
(2). Assume furthermore thétx, z, t) is Lipschitz continuous im, with Lipschitz constant and that

v(x) is Lipschitz continuous with Lipschitz constant Letx, be a solution of the reduced system

x, = f(xy,7(x,),1) - (6)
Then, any trajectory of (1) satisfies

[x(t) =3, ()] < Xalx(0) = x,(0)]e ! + € (Cr(e™" — ™)) 4 Co(l — ™)), V20, (7)
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and
d+ K) x.
(1) — 06, ()] < w0/ 2(0) — (x()] + LY o o
o X2 [%(0) — %, (0)] e + aye (Cr(e ™! — e~/ L 0y(1 — e M), V>0,

in which €y = Xrax 2Ol - ¢y — xeax= @ and y, is an upper bound on the condition

number of®,.

Proof: Write x = f (x,z,t) = f(x,7(x),t)+(f (x,z,t) —f(x,v(x),t)) and letAy(t) := f (x,2z,t)—
f(x,7v(x),t). Sincef is Lipschitz continuous ire, we have thatA,(t)|] < «|z — v(x)|, in which,
by Lemma 2 we have that — y(x)| < x.|z(0) — y(x(0))[e" =/ 4 LD x= ¢yt > . Letting
R = 10.(x - x,)
this and considering the bound ah,(t) leads to inequality (7). Finally, sinck(t) — v(x,(t))| <

, we have that (see proof of Lemma %}R + AR < |©,A5(t)]. Integrating

|z(t) — v(x(t))| + |v(x(t)) — v(x4(t))| and~y(x) is Lipschitz continuous with Lipschitz constaat,
inequality (8) follows from Lemma 2 and inequality (7). [ ]

Remark. In singular perturbation theory, we have thgt) = x,(0) and thate < 1. Under these
conditions, Theorem 3 implies that for any given> 0, there is ane* > 0 such that for alle < ¢*
we have thatz(t) — v(x,(t))| = O(e) for all t > ¢, and that|x(t) — x,(t)| = O(e) for all ¢ > 0. The
advantage of the approach through contraction theory tsttlaes not need to be small and the bounds
are quantified in terms of known parameters. The conditieqsired by the contraction approach are,

however, stronger than the local exponential stabilityunemments in singular perturbation theory.

V. MULTIPLE TIME SCALES

In this section, we apply Theorem 3 to systems with threeerbfit time scales:

x = f(x,z,w,t)
az = gx,z,w,e), >0 . %)
eew = h(x,z,w,€e), >0

Let vy := €1, 1y = 62/61’ q = (va)’ H(Xv q, V17V1V2) = (g(X, q, V1)7 %h(xa q, Vll/?))’ and re-write
system (9) as
x = f(x,q,t)

(10)
mq = H(X7 q, V1, V1V2)-

December 22, 2011 DRAFT



Assumption 1. System (10) is partially contracting ip with metric transformatior®,. Furthermore,

there isA* > 0 such that the contraction rate is given by/v, in which

1
Ay = A" min (1, —) : (11)
Vo
g
Proposition 1. Consider system (10) and assume thiat:= gq is such that there i3\ > 0 such
dq

that . (Jy) < —X for all x and for all vy, > 0. Then, Assumption 1 is satisfied with = A and
0,=1L

JCL
Proof: Let J := %—’; = [J;;] be the Jacobian off and re-write it as/ = . with J¢ =
=J
[JE] = g—fl and J* = [J}] = G By the assumption of the Lemma, we have thatx,(J; +

D [T < =X and max(J; + 30, 1J5) < —A. Hence, we have that.(J/) = max;(J; +
> [ T1) = max (maxi(JZ% 3 8D, £ maxi (Jh + 5, |Jg.|)) < max (—A, —%) . It thus fol-

lows that /i (J) < —Amin (1, 712) which implies that system (10) is partially contractingqrwith

metric 1., metric transformatior®, = I, and contraction rat@, /v, in which A\, = Amin(1,1/1,). &

Assumption 2. The equatiorH(x, q,0,0) = 0 has a unique global differentiable solutign= v,(x) =

(72(%); 7w (%))-

Lemma 3. Assume that one can writé d > 0,Vx, ¥z, ¥w,Vt > 0, |24Xf (x 7, w,t)| < d and that
H(x, q, v, 111%) is Lipschitz continuous with respect t9 with constant/. Then, any trajectory of (9)

is such that for allt > 0

), w(0) (1)), ()] < g™ O/ 2(0), wi0)) (1 (x(0)), v 0))) + LT X

(12)

where x, is an upper bound on the condition number@f and A, = A* min(1, 1/1»).

Proof: Apply Lemma 2 to system (10). This system is partially coctireg in q by the assumptions

of the Lemma with contraction ratg, /v, and )\, satisfying equation (11). [ |

Theorem 4. Assume, in addition to the hypotheses of Lemma 3, that syd@ms partially con-
tracting in x, with an associated metric transformati@,, and let \, be the contraction rate. As-

sume furthermore thaf (x,z, w,t) is Lipschitz continuous irfz, w), with Lipschitz constantx and
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that ~,(x) is Lipschitz continuous with constant,. Let x, be the solution of the reduced system
given byx, = f(x,,7.(x,),%(x,),t), with x,(0) = x(0). Then, any trajectory of (9) satisfies
x(t) — %, (t)] < e (Cr(et — e~ Pa/Dl) 4 Cy(1 — e7*!)) ¥Vt >0, and

[(2(1), W(t) = (720, (1)), Y, O] < xge™ M/ |(2(0), w(0) — (:(x(0)), 7 (x(0)))]

d+ K
_|_7( +)\ ) Xo €1+ aye (C’l(e_)‘zt — e~ Ma/e)ty L Oy(1 — e‘“t)) ,
q
in which Cl — Xe OtXq|(Z(O)vw(()(\)z)_—e(l“;\zz(;‘(o))7’Yw(X(O)))|7 C2 — %}TK)’ and X is an upper bound on

the condition number 08,. Furthermore, as;,e2 — 0 the trajectories of system (9) are such that
|x(t) —x,(t)| = O(e1) + O(e2) and for all ¢, > 0 there aree; >, €5 > 0 such thate; < € ande; < ¢}
imply [(z(t), w(t)) = (7:(x4(t)), yu(x,(£)))] = O(e1) + O(e2), Vi = 1.

Proof: Apply Theorem 3 to system (10). By equation (11), whegrn> 1 ande;, e, — 0 we have
that C, Cy = O(ea/€1), while whenwv, < 1 we have that”;,Cy; = O(1) ase, e — 0. This leads to

the desired result. [ ]

V. ATTAINING MODULARITY IN BIOMOLECULAR SYSTEMS THROUGH TIME SCALE SEPARATION

Here, we illustrate how the tools developed in the previaeisns can be applied to obtain explicit
bounds on retroactivity attenuation as studied in earlierkjl1, 12]. Letu € D, C R%,y € D, C R,
andv € D, C R% be vectors whose components denote concentrations of cakesgecies, such as
proteins, enzymes, DNA sites, etc. We consider the follgwiodel for an isolated biomolecular system

(similar to that of metabolic networks [16]):
us =  h(us, t) + G1A r(yis, Wis)
vis = Gi1B r(}’is; U-is) + Gll(}’i57 uiS)7

(13)

in which h(u,¢) € R? is a reaction rate vector modeling the dynamics of spegies(y,u) € R" is
a reaction rate vector modeling the interaction of speciethe vectoru with species in the vectoy,
l(y,u) € R" is a reaction rate vector driving the dynamicsyofA € R"™ 9, B € R™", andG; is a

positive constant. Consider next the interconnection o dlystem with a downstream system whose
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vector of species is:
u = h(u,t) + GiA r(y,u)
= G1Br(y,u)+G; l(y,u) + G2C s(y, v) (14)
= GyD s(y, v),
in which s(y, v) € R® is a reaction rate vector modeling the interaction betwéerytsubsystem and
the v-subsystem. Here7, = G, with > 0. We assume thai(0) = u;s(0) andy(0) = yis(0).

System (14) is a general model for a biomolecular systenerdohnections always occur through
reactions, whose rates &nds, in this case) appear in both the upstream and the downsggsi®ms
with different coefficients. Constaidt; models the timescale of the system. We are interested ire thos
cases in which the system evolves on a faster timescale Harot its input, that is(z; > 1. This
situation is encountered, for example, when gheéynamics model protein modification processes (such
as phosphorylation, allosteric modification, dimerizatietc.), while the dynamics ai model slower
processes such as protein production and decay or signiating outside the cell (here modeled by
h(u,t)) [2,10,24]. Constantz, models the timescale of the interconnection mechanism efyth
subsystems with the-subsystem. For example, when this downstream system sgdak expression,

s models the binding and unbinding process of transcriptambofrs to DNA binding sites. This reaction

is faster than production and decay of proteins and thexef@ also have that, > 1 [2, 8].

Definition 2. (Functionally Modular Interconnection)e say that the interconnection of system (14)
is functionally modular provided there are constafits K, K1, A > 0 (not depending orz; and Gs)
such that for allG; > G* we have thaty(t) — yis(t)| < Koe " + &1

Note that system (14) can be viewed as a perturbed versiogstéra (13). Hence, one could, in
principle, apply the robustness result given in Lemma 1uAsaeg that the isolated system is contracting
with contraction rate\GG;, one would obtain that the trajectories of the perturbedesyexponentially
converge with rate\G; to a neighbor of the isolated system trajectory of amplitudg /G, for a
suitablea > 0. This would not show that the interconnection is functibnahodular because this
neighbor cannot be made arbitrarily small by increasifhggiven thatG, = 5G,. We show in what
follows that even ifG, is as large as-, the structure of the interconnection and the applicatiotine
results of the previous section lead to showing that thegotenection is functionally modular. Assume

that system (14) has the two following properties (see [12])
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10

P1 There is an invertible matriXf’ € R?*? and a matrixM € R"*? such thatT A +M B = 0,
M I(y,u) =0 for all (y,u), andM C = 0;
P2 ke(D) C ker(C).

Using the change of variables= T u + M y, using Property P1, and letting= 1/G;, we obtain

%o = T h(T " (xis — M yis), t)
evis = Br(yis, T (xis — M yis)) + 1(yis, T~ (xis — M yis)),
and
x = T h(T'(x—My),t)
ey = Br(y, T7'(x-My))+1(y,T7'(x = My))+ SCs(y, V)
v — AD s(x,v).

Lemma 4. Assume that system (15) is partially contractingyig, with an associated metric trans-
formation ®,, and let \,/e be the contraction rate. Ley = ~,(x) be the globally unique and
differentiable solution oB r(y, T™'(x — M y)) + l(y, T"}(x — M y)) = 0. Assume tha8l d >
0,Vy,vx,Vt > 0, a”g—f{x)T h(T !(x —My),t)| < d. Further, assume that system (15) is partially
contracting inx;s, with an associated metric transformati@,, and let A, be the contraction rate.
Let T h(T '(x — M y),t) be Lipschitz continuous ig, with Lipschitz constant: and let~,(x) be

Lipschitz continuous with constant,. Letx, be the solution of the reduced system

x, = Th(T™(x, = M 7,(x,)), 1), x,(0) = x(0). (15)
: (t)—’yy(xy(t)ﬂ < Xye—(/\y/e)t|yis( )—’Vy( ( ))H_de €+ay (Cl( — e~ Ay/o)t )+CZ(1 _ e Aat ))
in which €} = XMX”&(E)JZ?(X'S , Oy = M with y, and x, upper bounds on the condition

numbers of®, and ®,, respectively.

Proof: Apply Theorem 3 to system (15) with = xis, z = yis, f(x,2,t) = T h(T'(x—M y), ),
andg(x,z,¢) =Br(y, T™'(x - My)) +1(y, T"'(x - My)). =

Lemma 5. Let the assumptions of Lemma 4 be satisfied. Let system (1parbelly contracting in

= (y, v) with associated metric transformati@, and let)\./e be the contraction rate. Let = 7, (x)
be the globally unique solution dDs(x,v) = 0 andBr(y, T"'(x—My))+l(y, T} (x —My)) +
BCs(y,v) = 0}. Assume thaBl &' > 0,Vz,Vx,Vt > 0, |22 Th(T-(x - My),t)| < d'. Let.(x)

be Lipschitz continuous with constant. Let =, be the solutlon of the reduced system (15). Then,
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11

[y (1) =7y (%4 (£))] < xze™P=/2(0) =2 (x(0)) [+ 9355+l e (Cf (7! — e /9 4 Ch(1 — e*+)) in
whichC! = X O‘X”ELZZ(E);Zi(X(O C) = M . with y, andy, upper bounds on the condition numbers

of ®, and ®,, respectively.

Proof: Apply Theorem 3 withf(x,z,t) = T h(T'(x — M y), ), g(x,2,¢) = (Br(y, T"!(x —
My))+ Iy, T"'(x—My))+SCs(y, v), 3D s(y, v)) and take into account th@s(y, v) = 0 implies
Cs(y,v) =0 by Property P2 so that,(x) = (7,(x), 7,(x)) with ~,(x) as in Lemma 4. u

Theorem 5. Let the assumptions of Lemma 4 and Lemma 5 hold. Then, theantected system (14)
satisfies the modular interconnection property with= min{\,, \.}, Ko = x,|yis(0) — 7, (xis(0))| +

Xe2(0) = %= (x(O)], Ky = B + 0, (20, + C) + B2 + 0l (204 + C3), G* = 2, in which

O, = Xe o xylyis(0) =y (xis(0))] and Cl=x o xz|2(0)— ’Yz(x(o))l
2

Ay \./2

Proof: From Lemma 4, Lemma 5, and the triangular inequality, we hae¢ if G; > G* then

|y () — yis(t)] < xye 9 yis(0) — 7y (xis(0))] + é";‘ & (201 + Cy) 4 x.e712(0) — 7.(x(0))| +
ey 220 + Cy). -

VI. EXAMPLE

As an example, we consider a one-step reaction model of gopbogdation cycle and demonstrate that
the interconnection to downstream targets can be renderedidnally modular by suitably adjusting
the values of the cycle parameters. For how to apply separati time scales to show modularity
in a two-step reaction model of a phosphorylation cycle, rémder is referred to [12]. Here, using

contraction theory, we provide bounds explicitly in ternighee cycle parameters.

Phosphorylation cycles are among the most common inttdaelsignal transduction mechanisms.
They have been observed in virtually every organism, cagrgignals that regulate processes such as
cell maotility, nutrition, interaction with environment encell death [1]. In this paper, we describe a
phosphorylation system extracted from the MAPK cascad¢ ¢itfilar to the device proposed in [6].
For any species X, we denote By (italics) its concentration. Let Z be a kinase expressedim@uef
varying) ratek(t) and degraded at rate Let its substrate be X and let X* denote the phosphorylated
version of X. Let the total amount of X be constant and dented(. Let Y be the phosphatase in

total amountYr. Then, the phosphorylation reactions are given by)zk—1> X 4+Z, Y+ X* LENDYS +Y,
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and the binding reaction with downstream targets p is giverXb+ p % C. We denote the total
concentration of downstream targets by. The system also has conservation lgws= C + p and
Xr = X* + X + C. In this system, we have théy X1, kY7, kog > 0, k(t). Define Gy := k1 X7/
and letn := (koY7)/(k1 X 7). Define Gy := kog/d and letk, := ko /kon. Letting alsou := Z,y := X*,

v := C, and assuming that;/ X+ < 1 the isolated system can be written as

u o= k(t) — du
y = G15<U(1—X%)—77y),

and the interconnection with downstream targets is given by

0 o= k(t) — du
y = Gio (u <1 - X%) - ny> — Ga(L&y(pr —v) — dv)
v = Gz(;%y(PT—U) — 0v),

which are in the forms of equations (13)-(14) witlly,u) = 0, h(u,t) = k(t) — ou, (y,u) =

4] <u <1 — XLT) - ny) . s(y,v) = ((6/ka)y(pr — v) — dév). Note that system (16) is already in the
form (15) and system (16) is already in the form (15) with- 1/G; and 8 = G,/G;. Hence, we
can takeT' = I and M = 0. One can easily verify the assumptions of Theorem 5. In @4&r, the
isolated system is partially contracting in=y and inx = v with ®, = ©, =1, \, =4, A\, = nd,
and x, = x, = 1. The functionh(u,t) = k(t) — éu is Lipschitz continuous and,(u) is given by
Yy(u) = m, which is globally defined, differentiable, and Lipschitzntimuous. Assuming that
k(t) is bounded, we also have th 7g;iu)h(u,t)‘ < d with d = 22 MU=04Ol Fyrthermore, we have

thata = 0 anda, = 1/n. As a consequencé;; = 0 andCy = 0.

The connected system is partially contractingia (y, v) with measure., and®, = I or with mea-
sureu; and®, = diag(1, #) for suitabled > 1. In what follows we show contraction of the system em-
—(u/X7) —n—(B/ka)(pr —v)  By/ka+ B

(B/ka)(pr —v) ~(B/ka)y — B
Denotea := §(u/Xr) + on, b = 0(8/kq)(pr — v), andc = 06(y/kq + 1). Letting ©, = diag(1, 6), we

obtain thaty;(©.J0;!) = max(—a — b+ 6b, (c/) — ¢). In order for such a maximum to be negative,

ploying measure,. The Jacobiad is given byJ = §

we need that € (1,1+ (a/b)). Furthermore, we have that(u) = (m, ;’f—kyd> withy = =,
which is uniquely defined, differentiable everywhere anobglly Lipschitz continuous. Assuming that
k(t) is bounded, we also have tH&E" s (u, t)| < d’ with d’ = max, |k(t) — du(t)| max(1/(n), pr/ (kan))-

In summary, for the connected system, we hgve= 6, A\, = max((a,, + bys) — 0byr, cn(1 — 1/6)),
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Fig. 1. Effect of speeding up the time scale of the phosphorylationystem by increasing X+ and Yr. (Left) Step response for
low and high values ofX+ andYr. (Right). Response to a periodic input for low and high valoéXr andYr. In all simulations, we
have setk; = 1072, ko = 0.01, § = 0.01, kon = 50, kot = 100, pr = 20 for the connected system apd = 0 for the isolated system,
in the upper plots, we hav&r = 0.2 and Y7 = 0.5, while in the lower plots these values akér = 2 - 10* andYr = 5 - 10%. For the

step response, we hawét) = 5 - 10~°, while for the periodic response, we haké) = 5 - 107°(1 + sin(wt)) with w = 5-107%,

with a,, = dn (the smallest value of), by, = dprf/ks (the largest value ob), andc,, = 64 (the
smallest value of). We can choose fof the value such that,, + by, — 0by, = ¢, (1 — 1/6), which
gives 0 = ((am + bar — cm) + ((@m + bar — ¢n)? + 4barc))/?)/(2bas). Furthermore, we have that
of, = max{1/n,pr/(ksm)} and o’ = 0. As a consequence, we have ti@t = C; = 0. For this
example, we have that the functionally modular propertyaissfied with A\ = min{\,, \.}, K, = 0,
and K = d;;y + dA—X = max; |k(t) — du(t)] (% + W) . These calculations indicate that the
bounds can be improved by either decreasing the patig:; or by increasingk,Yr with respect to

k1 Xr. This information could not be obtained by the singular ypdyation analysis performed in [12].
For the parameter values employed in the simulations of rEiguwhen large amounts of; and

Yr are employed, we obtain thdf, /G, = 2 - 107%, which is an upper bound on the error between
the isolated and connected system trajectories. The noahesimulation of Figure 1 shows an error
of about5 - 1078, Between our bound and the measured error, there is a fattbaut 40. This is
because the two eigenvalues of the Jacobiahere is also a factor of about 40 and thatbasically
accounts for the slowest eigenvalue .bfBy virtue of Theorem 7, the difference between the isolated

and connected system behavior can be rendered arbitrandyl by increasing the value a¥,, which
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can be performed by increasing the amounts of total subskatand phosphatasg, by comparable
amounts. This point is illustrated by numerical simulatiofrigure 1. This Figure illustrates that for low
values of X and Y7 corresponding ta; = 0.02 andG, = 5 - 10* the difference between the isolated
and connected system behaviors is substantial. IncreaSinandY so thatG, = 2-10% is comparable
to G, = 5 - 10%, the difference between the isolated and connected systdiaviors is attenuated. The
amounts ofX; and Y7 in synthetic circuits in living cells can be easily tuned.e€ifically, one can
place the genes expressing proteins X and Y under the carftrmbnstitutive promoters with desired
strength.

VIlI. CONCLUSIONS

In this paper, we have shown how using contraction theory care obtain explicit and global
convergence bounds for systems with multiple time scales.h@le illustrated how to employ these
techniques to analyze the problem of functionally modufdenconnections in biomolecular systems
and provided a concrete example consisting of a phosphmmylaystem. This problem was considered
before in [12], in which under weaker assumptions singuktysbation theory allowed to obtain the
order of convergence of trajectories. Here, using contmadheory, we provided explicit bounds, which

are in general useful to guide how the parameters shouldigeltin the design of biomolecular systems.
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