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Abstract

In this paper, we revisit standard results on singular perturbations and multiple time-scales using convergence

analysis tools based on nonlinear contraction theory. Specifically, assuming that the fast and slow subsystems

are each partially contracting, we obtain explicit bounds on the convergence rate of the trajectories to the slow

manifold and on the asymptotic error between the trajectories of the singularly perturbed system and those of

the reduced system. As an application example, we illustrate the design of a biomolecular insulation device.

I. INTRODUCTION

Multiple time-scales have been viewed as a key ingredient ofthe modular architecture of complex

systems ever since [27]. In recent years, this perspective has been strengthened in the context of the

flurry of research in systems biology, most notably by [13, 15]. A mathematical treatment has been

recently proposed [11, 12], in which the difference of time scales between interconnected components is

shown to be responsible for functional modularity. Mathematically, the standard description of dynamical

systems with multiple time-scales is based on singular perturbation theory, whose main results were

established more than 40 years ago [14, 17, 29]. The standardresults on the finite time interval require

local exponential stability of the slow manifold to show that trajectories starting sufficiently close

to the slow manifold approach anǫ-neighbor of it, in whichǫ is a small parameter quantifying the

time scale separation. Results on the infinite time intervaladditionally require that the origin of the

reduced system is locally exponentially stable. Singular perturbation arguments have been extensively

employed in biochemical systems to investigate the validity of the quasi-steady state approximation

for enzyme kinetics [4, 26, 30]. More recently, singular perturbation theory has been employed for

quantifying impedance-like effects, called retroactivity, in biomolecular networks [6] and for designing
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biomolecular insulation devices that attenuate retroactivity to enforce modular composition [11, 12]. In

these works, time scale separation is due to differences in the order of magnitude of the reaction rates

of the processes considered (Section V).

In this paper, we use comparatively recent convergence analysis tools, based on nonlinear contraction

theory and virtual dynamical systems, to revisit some key results on singular perturbations. Nonlinear

contraction theory [20, 31], a viewpoint on incremental stability which we briefly review in Section II,

has emerged as a powerful tool in applications ranging from Lagrangian mechanics to network control.

Historically, ideas closely related to contraction can be traced back to [9] and even to [18] (see also [3,

23], and e.g. [19] for a more exhaustive list of related references). In addition, contraction is preserved

through a large variety of systems combinations, which may make it particularly suitable in the context

of biological systems [13], subject to evolution and development mechanisms. Here, we assume that the

fast and slow subsystems are each partially contracting andleverage robustness results in contraction

theory to obtain explicit bounds on the difference between the trajectories of the original system and

those of the reduced system. Similarly, we provide explicitbounds on the rate of convergence of the

trajectories to the slow manifold. Our bounds hold independently of the value ofǫ and they approach,

as ǫ tends to zero, those found in standard singular perturbation results [14].

As an illustration of our result, we derive explicit bounds on retroactivity between two interconnected

biomolecular systems [12]. When the time scale of the upstream system is faster than that of its input, the

retroactivity at the interconnection with a downstream system is attenuated. Hence, the interconnection

is functionally modular, that is, loading effects due to thedownstream system only minimally perturb

the dynamics of the upstream system. In [12], employing singular perturbation theory, the order of

convergence and attenuation were determined as function ofǫ. Here, we provide explicit bounds on

both the attenuation and rate of convergence. This result isapplied to a one-step reaction model of a

phosphorylation system to show how it can be tuned so that theinterconnection to any downstream

system is functionally modular.

This paper is organized as follows. In Section II, tools fromcontraction theory are reviewed. In

Section III, we give the main result of the paper for systems with two time scales, while in Section IV,

we illustrate the extension to multiple time scales. In Section V, we specialize the system structure to

those of biomolecular interconnections and then consider aconcrete example in Section VI.
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II. CONTRACTION THEORY TOOLS

Recall that, given a norm|·| on the state space, and its induced matrix norm‖A‖, for an ar-

bitrary square matrixA, the associatedmatrix measureµ is defined as (see [5], [22])µ(A) :=

limh→0+
1
h
(‖I+ hA‖ − 1) . The basic result of nonlinear contraction analysis [20] that we shall use

in this paper can be stated as follows.

Theorem 1 (Contraction). Consider them-dimensional deterministic systeṁx = f(x, t) where f is a

smooth nonlinear function. The system is said to be contracting if any two trajectories, starting from

different initial conditions, converge exponentially to each other. A sufficient condition for a system to be

contracting is the existence of some matrix measure,µ, such that∃λ > 0, ∀x, ∀t ≥ 0, µ
(

∂f(x,t)
∂x

)

≤

−λ. The scalarλ defines the contraction rate of the system.

A proof of this theorem for non-Euclidean norms is shown in [20], Section 3.7(iii) (see also [25]). The

standard matrix measures used in this paper are listed in Table I. The condition number of an invertible

square matrixA is defined by|A| |A−1|, which, for the Euclidean norm, is given by the ratio between

the largest and smallest singular values ofA. More generally, contraction may be shown by using matrix

measures induced by the weighted vector norm|x|Θ,i = |Θx|i, with Θ a constant invertible matrix and

i = 1, 2,∞. Such measures, denoted withµΘ,i, are linked to the standard measures by:µΘ,i(A) =

µi (ΘAΘ−1) , ∀i = 1, 2,∞. In this paper, we leave the matrix measure and the corresponding vector

norm unspecified as the results hold as stated independentlyof the norm employed.

TABLE I

STANDARD MATRIX MEASURES FOR A REALn× n MATRIX , A = [aij ]. THE i-TH EIGENVALUE OFA IS DENOTED WITHλi(A).

vector norm,|·| induced matrix norm,|A| induced matrix measure,µ (A)

|x|
1
=

∑n

j=1
|xj | |A|1 = maxj

∑

i |aij | µ1 (A) = maxj

(

ajj +
∑

i6=j |aij |
)

|x|
2
=

(

∑n

j=1
|xj |

2
) 1

2

|A|2 =
√

maxi λi(ATA) µ2 (A) = maxi

(

λi

{

A+A∗

2

})

|x|∞ = max1≤j≤n |xj | |A|∞ = maxi

∑

j |aij | µ∞ (A) = maxi

(

aii +
∑

j 6=i | aij |
)

For convenience, we will also say that afunction f(x, t) is contracting if the systemẋ = f(x, t)

satisfies the sufficient condition of Theorem 1. Similarly, we will then say that the corresponding Jacobian

matrix ∂f
∂x
(x, t) is contracting. We shall also use the following property of contracting systems [20, 28].

Lemma 1. (Robustness) Assume that the systeṁx = f (x, t) is contracting, with an associated metric
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transformationΘ and contraction rateλ, and consider the “perturbed” systeṁxp = f (xp, t)+d(xp, t)

whered(xp, t) is bounded, that is,∃ d ≥ 0, ∀xp, ∀t ≥ 0, |d(xp, t)| ≤ d. Then, any trajectory of the

perturbed system satisfies|xp(t)− x(t)| ≤ χe−λt|xp(0)− x(0)|+ d χ
λ
, in which χ is an upper bound

on the condition number ofΘ [20, 21].

Proof: With R(t) = |Θ (xp(t)− x(t)) | , one has (see [20])d
dt
R+ λR ≤ |Θd(xp, t)|. Similarly,

using the1-norm or the∞-norm, and proceeding as in [7] (Chapter 4) one hasd+

dt
R+λR ≤ |Θd(xp, t)|

where d+

dt
denotes the right-hand derivative with respect to time. Integrating the above yields the result.

This lemma is valid for all norms and matrix measures from Table 1 (employed to compute the

contraction rate) as long as they are chosen consistently.

III. B ASIC RESULTS

We consider the standard singular perturbation framework [14]






ẋ = f (x, z, t)

ǫ ż = g (x, z, ǫ) , ǫ ≥ 0
. (1)

Definition 1. [31] System (1) is said to bepartially contracting inx if the virtual system

ẏx = f (yx, z(t), t) (2)

is contracting for anyz(t) and for all t. Similarly, system (1) is said to bepartially contracting inz if

the virtual system

ǫ ẏz = g (x(t),yz, ǫ) (3)

is contracting for anyx(t) and for allǫ > 0.

Theorem 2. If system (1) is partially contracting inz, then equationg (x, z, ǫ) = 0 can be equivalently

written asz = γ(x, ǫ), i.e., there is a unique, global mapping betweenx, ǫ and z.

Proof: The virtual systemǫ ẏz = g (xo,yz, ǫ) is contracting by hypothesis, for anyxo(t). If we

setxo equal to someconstantvector, this system is also autonomous, and therefore tendsto a unique
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equilibrium [20]. Thus for any givenxo, the algebraic equationg (xo,yz, ǫ) = 0 has a unique solution,

which we can denoteyz = γ(xo, ǫ).

Denoteγ(x) := γ(x, 0) and assume it is globally differentiable. Differentiatingthe relationg (x, γ(x), 0)

= 0 with respect tox then yields the familiar expression

∂γ(x)

∂x
= −

(

∂g

∂z

)−1
∂g

∂x
(x, γ(x), 0), (4)

which is valid globally, as the matrix∂g
∂z

is uniformly invertible.

Lemma 2. Assume that system (1) is partially contracting inz, with an associated metric transformation

Θz, and letλz/ǫ be the contraction rate of (3). Assume further that, given (4), one can write∃ d ≥

0, ∀x, ∀z, ∀t ≥ 0,
∣

∣

∣

∂γ(x)
∂x

f (x, z, t)
∣

∣

∣
≤ d and thatg(x, z, ǫ) is Lipschitz continuous inǫ with constantK.

Then, any trajectory of (1) is such that

|z(t)− γ(x(t))| ≤ χze
−(λz/ǫ)t|z(0)− γ(x(0))|+

(d+K) χz

λz

ǫ ∀ t ≥ 0, (5)

whereχz is an upper bound on the condition number ofΘz.

Proof: Note that yz = z(t) is a solution of the contracting virtual systemǫ ẏz = g (x(t),yz, ǫ)

while yzd = γ(x(t)) is a solution of the “perturbed” contracting virtual systemǫ ẏzd = g (x(t),yzd, ǫ)+

ǫ ∂γ(x)
∂x

f (x(t), z(t), t) + (g (x(t),yzd, 0)− g (x(t),yzd, ǫ)) . Let d(yzd, t) := ǫ ∂γ(x)
∂x

f (x(t), z(t), t) +

(g (x(t),yzd, 0)− g (x(t),yzd, ǫ)). Then, applying Lemma 1 yields|yz(t)−yzd(t)| ≤ χz e
−(λz/ǫ)t|yz(0)−

yzd(0)| +
d̄χz

λz
, in which d̄ is such that|d(yzd, t)| ≤ d̄. By the assumptions of the lemma, in turn, we

can taked̄ = ǫ d+K ǫ, which gives the bound (5).

Theorem 3. Assume, in addition to the hypotheses of the previous Lemma,that system (1) is partially

contracting inx, with an associated metric transformationΘx, and letλx be the contraction rate of

(2). Assume furthermore thatf (x, z, t) is Lipschitz continuous inz, with Lipschitz constantα and that

γ(x) is Lipschitz continuous with Lipschitz constantαγ. Let xγ be a solution of the reduced system

ẋγ = f (xγ , γ(xγ), t) . (6)

Then, any trajectory of (1) satisfies

|x(t)− xγ(t)| ≤ χx|x(0)− xγ(0)|e
−λxt + ǫ

(

C1(e
−λxt − e−(λz/ǫ)t) + C2(1− e−λxt)

)

, ∀ t ≥ 0, (7)
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and

|z(t)− γ(xγ(t))| ≤ χze
−(λz/ǫ)t|z(0)− γ(x(0))|+

(d+K) χz

λz
ǫ+

αγχx|x(0)− xγ(0)|e
−λxt + αγǫ

(

C1(e
−λxt − e−(λz/ǫ)t) + C2(1− e−λxt)

)

, ∀ t ≥ 0,

(8)

in which C1 = χx α χz|z(0)−γ(x(0))|
(λz−ǫλx)

, C2 = χx α χz (d+K)
λz λx

, and χx is an upper bound on the condition

number ofΘx.

Proof: Write ẋ = f (x, z, t) = f(x, γ(x), t)+(f (x, z, t)−f(x, γ(x), t)) and let∆2(t) := f (x, z, t)−

f(x, γ(x), t). Since f is Lipschitz continuous inz, we have that|∆2(t)| ≤ α|z − γ(x)|, in which,

by Lemma 2 we have that|z − γ(x)| ≤ χz|z(0) − γ(x(0))|e−(λz/ǫ)t + (d+K) χz

λz
ǫ, ∀t ≥ 0. Letting

R = |Θx(x − xγ)|, we have that (see proof of Lemma 1)d+

dt
R + λxR ≤ |Θx∆2(t)|. Integrating

this and considering the bound on∆2(t) leads to inequality (7). Finally, since|z(t) − γ(xγ(t))| ≤

|z(t) − γ(x(t))| + |γ(x(t)) − γ(xγ(t))| and γ(x) is Lipschitz continuous with Lipschitz constantαγ,

inequality (8) follows from Lemma 2 and inequality (7).

Remark. In singular perturbation theory, we have thatx(0) = xγ(0) and thatǫ ≪ 1. Under these

conditions, Theorem 3 implies that for any giventb > 0, there is anǫ∗ > 0 such that for allǫ ≤ ǫ∗

we have that|z(t)− γ(xγ(t))| = O(ǫ) for all t ≥ tb and that|x(t)− xγ(t)| = O(ǫ) for all t ≥ 0. The

advantage of the approach through contraction theory is that ǫ does not need to be small and the bounds

are quantified in terms of known parameters. The conditions required by the contraction approach are,

however, stronger than the local exponential stability requirements in singular perturbation theory.

IV. M ULTIPLE TIME SCALES

In this section, we apply Theorem 3 to systems with three different time scales:


















ẋ = f(x, z,w, t)

ǫ1ż = g(x, z,w, ǫ1), ǫ1 ≥ 0

ǫ2ẇ = h(x, z,w, ǫ2), ǫ2 ≥ 0

. (9)

Let ν1 := ǫ1, ν2 := ǫ2/ǫ1, q := (z,w), H(x,q, ν1, ν1ν2) := (g(x,q, ν1),
1
ν2
h(x,q, ν1ν2)), and re-write

system (9) as






ẋ = f(x,q, t)

ν1q̇ = H(x,q, ν1, ν1ν2).
(10)
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Assumption 1. System (10) is partially contracting inq with metric transformationΘq. Furthermore,

there isλ∗ > 0 such that the contraction rate is given byλq/ν1 in which

λq = λ∗ min

(

1,
1

ν2

)

. (11)

Proposition 1. Consider system (10) and assume thatJH :=





∂g
∂q

∂h
∂q



 is such that there isλ > 0 such

that µ∞(JH) ≤ −λ for all x and for all ν1, ν2 > 0. Then, Assumption 1 is satisfied withλ∗ = λ and

Θq = I.

Proof: Let J := ∂H
∂q

= [Jij] be the Jacobian ofH and re-write it asJ =





Ja

1
ν2
J b



 with Ja =

[Ja
ij ] = ∂g

∂q
and J b = [J b

ij ] = ∂h
∂q
. By the assumption of the Lemma, we have thatmaxi(J

a
ii +

∑

j 6=i |J
a
ij|) ≤ −λ and maxi(J

b
ii +

∑

j 6=i |J
b
ij|) ≤ −λ. Hence, we have thatµ∞(J) = maxi(Jii +

∑

j 6=i |Jij|) = max
(

maxi(J
a
ii +

∑

j 6=i |J
a
ij|),

1
ν2
maxi(J

b
ii +

∑

j 6=i |J
b
ij|)

)

≤ max
(

−λ,− λ
ν2

)

. It thus fol-

lows thatµ∞(J) ≤ −λmin
(

1, 1
ν2

)

, which implies that system (10) is partially contracting inq with

metricµ∞, metric transformationΘq = I, and contraction rateλq/ν1 in which λq = λmin(1, 1/ν2).

Assumption 2. The equationH(x,q, 0, 0) = 0 has a unique global differentiable solutionq = γq(x) =

(γz(x), γw(x)).

Lemma 3. Assume that one can write∃ d ≥ 0, ∀x, ∀z, ∀w, ∀t ≥ 0,
∣

∣

∣

∂γq(x)
∂x

f (x, z,w, t)
∣

∣

∣
≤ d and that

H(x,q, ν1, ν1ν2) is Lipschitz continuous with respect toν1 with constantK. Then, any trajectory of (9)

is such that for allt ≥ 0

|(z(t),w(t))−(γz(x(t)), γw(x(t)))| ≤ χqe
−(λq/ǫ1)t|(z(0),w(0))−(γz(x(0)), γw(x(0)))|+

(d+K) χq

λq
ǫ1,

(12)

whereχq is an upper bound on the condition number ofΘq and λq = λ∗min(1, 1/ν2).

Proof: Apply Lemma 2 to system (10). This system is partially contracting inq by the assumptions

of the Lemma with contraction rateλq/ν1 andλq satisfying equation (11).

Theorem 4. Assume, in addition to the hypotheses of Lemma 3, that system(10) is partially con-

tracting in x, with an associated metric transformationΘx, and let λx be the contraction rate. As-

sume furthermore thatf (x, z,w, t) is Lipschitz continuous in(z,w), with Lipschitz constantα and
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that γq(x) is Lipschitz continuous with constantαγ . Let xγ be the solution of the reduced system

given by ẋγ = f (xγ , γz(xγ), γw(xγ), t) , with xγ(0) = x(0). Then, any trajectory of (9) satisfies

|x(t)− xγ(t)| ≤ ǫ1
(

C1(e
−λxt − e−(λq/ǫ1)t) + C2(1− e−λxt)

)

∀ t ≥ 0, and

|(z(t),w(t))− (γz(xγ(t)), γw(xγ(t)))| ≤ χqe
−(λq/ǫ1)t|(z(0),w(0))− (γz(x(0)), γw(x(0)))|

+
(d+K) χq

λq

ǫ1 + αγǫ1
(

C1(e
−λxt − e−(λq/ǫ1)t) + C2(1− e−λxt)

)

,

in which C1 = χx α χq|(z(0),w(0))−(γz (x(0)),γw(x(0)))|

(λq−ǫ1λx)
, C2 = χx α χq (d+K)

λq λx
, and χx is an upper bound on

the condition number ofΘx. Furthermore, asǫ1, ǫ2 → 0 the trajectories of system (9) are such that

|x(t)− xγ(t)| = O(ǫ1) +O(ǫ2) and for all tb > 0 there areǫ∗1 >, ǫ∗2 > 0 such thatǫ1 ≤ ǫ∗1 and ǫ2 ≤ ǫ∗2

imply |(z(t),w(t))− (γz(xγ(t)), γw(xγ(t)))| = O(ǫ1) +O(ǫ2), ∀t ≥ tb.

Proof: Apply Theorem 3 to system (10). By equation (11), whenν2 > 1 and ǫ1, ǫ2 → 0 we have

that C1, C2 = O(ǫ2/ǫ1), while whenν2 ≤ 1 we have thatC1, C2 = O(1) as ǫ1, ǫ2 → 0. This leads to

the desired result.

V. ATTAINING MODULARITY IN BIOMOLECULAR SYSTEMS THROUGH TIME SCALE SEPARATION

Here, we illustrate how the tools developed in the previous sections can be applied to obtain explicit

bounds on retroactivity attenuation as studied in earlier work [11, 12]. Letu ∈ Du ⊂ R
q
+, y ∈ Dy ⊂ R

n
+,

andv ∈ Dv ⊂ R
p
+ be vectors whose components denote concentrations of chemical species, such as

proteins, enzymes, DNA sites, etc. We consider the following model for an isolated biomolecular system

(similar to that of metabolic networks [16]):






u̇is = h(uis, t) +G1A r(yis,uis)

ẏis = G1B r(yis,uis) +G1l(yis,uis),
(13)

in which h(u, t) ∈ R
q is a reaction rate vector modeling the dynamics of speciesu, r(y,u) ∈ R

r is

a reaction rate vector modeling the interaction of species in the vectoru with species in the vectory,

l(y,u) ∈ R
n is a reaction rate vector driving the dynamics ofy, A ∈ R

r×q, B ∈ R
r×n, andG1 is a

positive constant. Consider next the interconnection of this system with a downstream system whose
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vector of species isv:


















u̇ = h(u, t) +G1A r(y,u)

ẏ = G1B r(y,u) +G1 l(y,u) +G2C s(y,v)

v̇ = G2D s(y,v),

(14)

in which s(y,v) ∈ R
s is a reaction rate vector modeling the interaction between the y-subsystem and

the v-subsystem. Here,G2 = βG1 with β > 0. We assume thatu(0) = uis(0) andy(0) = yis(0).

System (14) is a general model for a biomolecular system. Interconnections always occur through

reactions, whose rates (r ands, in this case) appear in both the upstream and the downstreamsystems

with different coefficients. ConstantG1 models the timescale of the system. We are interested in those

cases in which the system evolves on a faster timescale than that of its input, that is,G1 ≫ 1. This

situation is encountered, for example, when they dynamics model protein modification processes (such

as phosphorylation, allosteric modification, dimerization, etc.), while the dynamics ofu model slower

processes such as protein production and decay or signalingfrom outside the cell (here modeled by

h(u, t)) [2, 10, 24]. ConstantG2 models the timescale of the interconnection mechanism of the y-

subsystems with thev-subsystem. For example, when this downstream system models gene expression,

s models the binding and unbinding process of transcription factors to DNA binding sites. This reaction

is faster than production and decay of proteins and therefore we also have thatG2 ≫ 1 [2, 8].

Definition 2. (Functionally Modular Interconnection)We say that the interconnection of system (14)

is functionally modular provided there are constantsG∗, K0, K1, λ > 0 (not depending onG1 andG2)

such that for allG1 > G∗ we have that|y(t)− yis(t)| ≤ K0e
−λG1t + K1

G1
.

Note that system (14) can be viewed as a perturbed version of system (13). Hence, one could, in

principle, apply the robustness result given in Lemma 1. Assuming that the isolated system is contracting

with contraction rateλG1, one would obtain that the trajectories of the perturbed system exponentially

converge with rateλG1 to a neighbor of the isolated system trajectory of amplitudeaG2/G1 for a

suitablea > 0. This would not show that the interconnection is functionally modular because this

neighbor cannot be made arbitrarily small by increasingG1 given thatG2 = βG1. We show in what

follows that even ifG2 is as large asG1, the structure of the interconnection and the application of the

results of the previous section lead to showing that the interconnection is functionally modular. Assume

that system (14) has the two following properties (see [12]).
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P1 There is an invertible matrixT ∈ R
q×q and a matrixM ∈ R

n×q such thatT A + M B = 0,

M l(y,u) = 0 for all (y,u), andM C = 0;

P2 ker(D) ⊆ ker(C).

Using the change of variablesx = T u+M y, using Property P1, and lettingǫ = 1/G1, we obtain






ẋis = T h(T−1(xis −M yis), t)

ǫ ẏis = B r(yis,T
−1(xis −M yis)) + l(yis,T

−1(xis −M yis)),

and 

















ẋ = T h(T−1(x−M y), t)

ǫ ẏ = B r(y,T−1(x−M y)) + l(y,T−1(x−M y)) + βC s(y,v)

ǫ v̇ = βD s(x,v).

Lemma 4. Assume that system (15) is partially contracting inyis, with an associated metric trans-

formation Θy, and let λy/ǫ be the contraction rate. Lety = γy(x) be the globally unique and

differentiable solution ofB r(y,T−1(x − M y)) + l(y,T−1(x − M y)) = 0. Assume that∃ d ≥

0, ∀y, ∀x, ∀t ≥ 0,
∣

∣

∣

∂γy(x)
∂x

T h(T−1(x−M y), t)
∣

∣

∣
≤ d. Further, assume that system (15) is partially

contracting inxis, with an associated metric transformationΘx, and let λx be the contraction rate.

Let T h(T−1(x − M y), t) be Lipschitz continuous iny, with Lipschitz constantα and let γy(x) be

Lipschitz continuous with constantαγ . Let xγ be the solution of the reduced system

ẋγ = T h(T−1(xγ −M γy(xγ)), t), xγ(0) = x(0). (15)

Then,|yis(t)−γy(xγ(t))| ≤ χye
−(λy/ǫ)t|yis(0)−γy(x(0))|+

d χy ǫ
λy

+αγǫ
(

C1(e
−λxt − e−(λy/ǫ)t) + C2(1− e−λxt)

)

,

in which C1 = χx α χy|yis(0)−γy(xis(0))|

(λy−ǫλx)
, C2 = χy α χx d

λy λx
, with χy and χx upper bounds on the condition

numbers ofΘy andΘx, respectively.

Proof: Apply Theorem 3 to system (15) withx = xis, z = yis, f(x, z, t) = T h(T−1(x−M y), t),

andg(x, z, ǫ) = B r(y,T−1(x−M y)) + l(y,T−1(x−M y)).

Lemma 5. Let the assumptions of Lemma 4 be satisfied. Let system (15) bepartially contracting in

z = (y,v) with associated metric transformationΘz and letλz/ǫ be the contraction rate. Letz = γz(x)

be the globally unique solution of{Ds(x,v) = 0 andBr(y,T−1(x−M y)) + l(y,T−1(x−M y)) +

βCs(y,v) = 0}. Assume that∃ d′ ≥ 0, ∀z, ∀x, ∀t ≥ 0,
∣

∣

∣

∂γz(x)
∂x

Th(T−1(x−M y), t)
∣

∣

∣
≤ d′. Let γz(x)

be Lipschitz continuous with constantα′
γ . Let xγ be the solution of the reduced system (15). Then,
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|y(t)−γy(xγ(t))| ≤ χze
−(λz/ǫ)t|z(0)−γz(x(0))|+

d′ χz ǫ
λz

+α′
γǫ

(

C ′
1(e

−λxt − e−(λz/ǫ)t) + C ′
2(1− e−λxt)

)

,in

whichC ′
1 =

χz α χx|z(0)−γz(x(0))|
(λz−ǫλx)

, C ′
2 =

χz α χx d′

λz λx
, with χz andχx upper bounds on the condition numbers

of Θz andΘx, respectively.

Proof: Apply Theorem 3 withf(x, z, t) = T h(T−1(x −M y), t), g(x, z, ǫ) = (Br(y,T−1(x −

My))+ l(y,T−1(x−M y))+βCs(y,v), βD s(y,v)) and take into account thatDs(y,v) = 0 implies

Cs(y,v) = 0 by Property P2 so thatγz(x) = (γy(x), γv(x)) with γy(x) as in Lemma 4.

Theorem 5. Let the assumptions of Lemma 4 and Lemma 5 hold. Then, the interconnected system (14)

satisfies the modular interconnection property withλ = min{λy, λz}, K0 = χy|yis(0) − γy(xis(0))| +

χz|z(0) − γz(x(0))|, K1 = d χy

λy
+ αγ(2C̄1 + C2) +

d′ χz

λz
+ α′

γ(2C̄
′
1 + C ′

2), G
∗ = 2λx

min{λy ,λz}
, in which

C̄1 =
χx α χy|yis(0)−γy(xis(0))|

λy/2
and C̄ ′

1 =
χz α χx|z(0)−γz(x(0))|

λz/2
.

Proof: From Lemma 4, Lemma 5, and the triangular inequality, we havethat if G1 > G∗ then

|y(t)− yis(t)| ≤ χye
−λyG1t|yis(0)− γy(xis(0))|+

d χy

G1λy
+ αγ

G1
(2C̄1 +C2) + χze

−λzG1t|z(0)− γz(x(0))|+

d χz

λzG1
+

α′
γ

G1
(2C̄ ′

1 + C ′
2).

VI. EXAMPLE

As an example, we consider a one-step reaction model of a phosphorylation cycle and demonstrate that

the interconnection to downstream targets can be rendered functionally modular by suitably adjusting

the values of the cycle parameters. For how to apply separation of time scales to show modularity

in a two-step reaction model of a phosphorylation cycle, thereader is referred to [12]. Here, using

contraction theory, we provide bounds explicitly in terms of the cycle parameters.

Phosphorylation cycles are among the most common intracellular signal transduction mechanisms.

They have been observed in virtually every organism, carrying signals that regulate processes such as

cell motility, nutrition, interaction with environment and cell death [1]. In this paper, we describe a

phosphorylation system extracted from the MAPK cascade [10] similar to the device proposed in [6].

For any species X, we denote byX (italics) its concentration. Let Z be a kinase expressed at (time-

varying) ratek(t) and degraded at rateδ. Let its substrate be X and let X* denote the phosphorylated

version of X. Let the total amount of X be constant and denotedby XT . Let Y be the phosphatase in

total amountYT . Then, the phosphorylation reactions are given by Z+X
k1−→ X∗+Z, Y+X∗ k2−→ X +Y,
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and the binding reaction with downstream targets p is given by X∗ + p
kon−⇀↽−
koff

C. We denote the total

concentration of downstream targets bypT . The system also has conservation lawspT = C + p and

XT = X∗ + X + C. In this system, we have thatk1XT , k2YT , koff ≫ δ, k(t). DefineG1 := k1XT/δ

and letη := (k2YT )/(k1XT ). DefineG2 := koff/δ and letkd := koff/kon. Letting alsou := Z, y := X∗,

v := C, and assuming thatpT/XT ≪ 1 the isolated system can be written as






u̇ = k(t)− δu

ẏ = G1δ
(

u
(

1− y
XT

)

− ηy
)

,

and the interconnection with downstream targets is given by


















u̇ = k(t)− δu

ẏ = G1δ
(

u
(

1− y
XT

)

− ηy
)

−G2(
δ
kd
y(pT − v)− δv)

v̇ = G2(
δ
kd
y(pT − v)− δv),

which are in the forms of equations (13)-(14) withr(y, u) = 0, h(u, t) = k(t) − δu, l(y, u) =

δ
(

u
(

1− y
XT

)

− ηy
)

, s(y, v) = ((δ/kd)y(pT − v) − δv). Note that system (16) is already in the

form (15) and system (16) is already in the form (15) withǫ = 1/G1 and β = G2/G1. Hence, we

can takeT = I andM = 0. One can easily verify the assumptions of Theorem 5. In particular, the

isolated system is partially contracting iny = y and inx = u with Θx = Θy = I, λx = δ, λy = ηδ,

and χx = χy = 1. The functionh(u, t) = k(t) − δu is Lipschitz continuous andγy(u) is given by

γy(u) =
u

((u/XT )+η)
, which is globally defined, differentiable, and Lipschitz continuous. Assuming that

k(t) is bounded, we also have that
∣

∣

∣

∂γy(u)
∂u

h(u, t)
∣

∣

∣
< d with d = maxt |k(t)−δu(t)|

η
. Furthermore, we have

thatα = 0 andαγ = 1/η. As a consequence,C1 = 0 andC2 = 0.

The connected system is partially contracting inz = (y, v) with measureµ2 andΘz = I or with mea-

sureµ1 andΘz = diag(1, θ) for suitableθ > 1. In what follows we show contraction of the system em-

ploying measureµ1. The JacobianJ is given byJ = δ





−(u/XT )− η − (β/kd)(pT − v) βy/kd + β

(β/kd)(pT − v) −(β/kd)y − β



 .

Denotea := δ(u/XT ) + δη, b = δ(β/kd)(pT − v), andc = δβ(y/kd + 1). Letting Θz = diag(1, θ), we

obtain thatµ1(ΘzJΘ
−1
z ) = max(−a− b+ θb, (c/θ)− c). In order for such a maximum to be negative,

we need thatθ ∈ (1, 1+(a/b)). Furthermore, we have thatγz(u) =
(

u
(u/XT+η)

, pT y
y+kd

)

with y = u
u/XT+η

,

which is uniquely defined, differentiable everywhere and globally Lipschitz continuous. Assuming that

k(t) is bounded, we also have that|∂γz(u)
∂u

h(u, t)| ≤ d′ with d′ = maxt |k(t)− δu(t)|max(1/(η), pT/(kdη)).

In summary, for the connected system, we haveχz = θ, λz = max((am + bM) − θbM , cm(1 − 1/θ)),
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Fig. 1. Effect of speeding up the time scale of the phosphorylation system by increasingXT and YT . (Left) Step response for

low and high values ofXT andYT . (Right). Response to a periodic input for low and high values of XT andYT . In all simulations, we

have setk1 = 10−3, k2 = 0.01, δ = 0.01, kon = 50, koff = 100, pT = 20 for the connected system andpT = 0 for the isolated system,

in the upper plots, we haveXT = 0.2 andYT = 0.5, while in the lower plots these values areXT = 2 · 104 andYT = 5 · 104. For the

step response, we havek(t) = 5 · 10−5, while for the periodic response, we havek(t) = 5 · 10−5(1 + sin(ωt)) with ω = 5 · 10−4.

with am = δη (the smallest value ofa), bM = δpTβ/kd (the largest value ofb), and cm = δβ (the

smallest value ofc). We can choose forθ the value such thatam + bM − θbM = cm(1 − 1/θ), which

gives θ = ((am + bM − cm) + ((am + bM − cm)
2 + 4bMcm))

1/2)/(2bM). Furthermore, we have that

α′
γ = max{1/η, pT/(kdη)} and α′ = 0. As a consequence, we have thatC ′

1 = C ′
2 = 0. For this

example, we have that the functionally modular property is satisfied withλ = min{λy, λz}, K0 = 0,

andK1 =
d χy

λy
+ d′χz

λz
= maxt |k(t)− δu(t)|

(

1
ηλy

+ max(1,pT /kd)θ
ηλz

)

. These calculations indicate that the

bounds can be improved by either decreasing the ratiopT/kd or by increasingk2YT with respect to

k1XT . This information could not be obtained by the singular perturbation analysis performed in [12].

For the parameter values employed in the simulations of Figure 1 when large amounts ofXT and

YT are employed, we obtain thatK1/G1 = 2 · 10−6, which is an upper bound on the error between

the isolated and connected system trajectories. The numerical simulation of Figure 1 shows an error

of about5 · 10−8. Between our bound and the measured error, there is a factor of about 40. This is

because the two eigenvalues of the JacobianJ there is also a factor of about 40 and thatλz basically

accounts for the slowest eigenvalue ofJ . By virtue of Theorem 7, the difference between the isolated

and connected system behavior can be rendered arbitrarily small by increasing the value ofG1, which

December 22, 2011 DRAFT



14

can be performed by increasing the amounts of total substrate XT and phosphataseYT by comparable

amounts. This point is illustrated by numerical simulationin Figure 1. This Figure illustrates that for low

values ofXT andYT corresponding toG1 = 0.02 andG2 = 5 · 104 the difference between the isolated

and connected system behaviors is substantial. IncreasingXT andYT so thatG1 = 2 ·103 is comparable

to G2 = 5 · 104, the difference between the isolated and connected system behaviors is attenuated. The

amounts ofXT and YT in synthetic circuits in living cells can be easily tuned. Specifically, one can

place the genes expressing proteins X and Y under the controlof constitutive promoters with desired

strength.

VII. CONCLUSIONS

In this paper, we have shown how using contraction theory onecan obtain explicit and global

convergence bounds for systems with multiple time scales. We have illustrated how to employ these

techniques to analyze the problem of functionally modular interconnections in biomolecular systems

and provided a concrete example consisting of a phosphorylation system. This problem was considered

before in [12], in which under weaker assumptions singular perturbation theory allowed to obtain the

order of convergence of trajectories. Here, using contraction theory, we provided explicit bounds, which

are in general useful to guide how the parameters should be tuned in the design of biomolecular systems.
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