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Abstract

The neocortex has a remarkably uniform neuronal organization, suggesting that
common principles of processing are employed throughout its extent. In particular, the
patterns of connectivity observed in the superficial layers of the visual cortex are con-
sistent with the recurrent excitation and inhibitory feedback required for cooperative-
competitive circuits such as the soft winner-take-all (WTA). WTA circuits offer inter-
esting computational properties such as selective amplification, signal restoration, and
decision making. But, these properties depend on the signal gain derived from positive
feedback, and so there is a critical trade-off between providing feedback strong enough
to support the sophisticated computations, while maintaining overall circuit stability.
The issue of stability is all the more intriguing when one considers that the WTAs
are expected to be densely distributed through the superficial layers, and that they
are at least partially interconnected. We consider the question of how to reason about
stability in very large distributed networks of such circuits. We approach this problem
by approximating the regular cortical architecture as many interconnected cooperative-
competitive modules. We demonstrate that by properly understanding the behavior
of this small computational module, one can reason over the stability and convergence
of very large networks composed of these modules. We obtain parameter ranges in
which the WTA circuit operates in a high-gain regime, is stable, and can be aggregated

∗This article has been accepted for publication by MIT Press in a forthcoming issue of Neural computation
(2010). This is a pre-print version (as accepted) which will be superseded by the official version as soon as it
appears in print. In the meantime please cite this article as ”in press” in Neural Computation.
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arbitrarily to form large stable networks. We use nonlinear Contraction Theory to
establish conditions for stability in the fully nonlinear case, and verify these solutions
using numerical simulations. The derived bounds allow modes of operation in which the
WTA network is multi-stable and exhibits state-dependent persistent activities. Our
approach is sufficiently general to reason systematically about the stability of any net-
work, biological or technological, composed of networks of small modules that express
competition through shared inhibition.

1 Introduction

Large biological and artificial systems often consist of a highly interconnected assembly of com-
ponents (Fig 1). The connectivity between these elements is often densely recurrent, resulting
in various loops that differ in strength and time-constant (Girard, Tabareau, Pham, Berthoz, &
Slotine, 2008; Slotine & Lohmiller, 2001; Hopfield, 1982; Amari, 1977; Douglas, Koch, Mahowald,
Martin, & Suarez, 1995; Liu, Wang, & Liu, 2006). This organization is true of the neocortex,
where the statistics of connectivity between neurons indicate that recurrent connections are a fun-
damental feature of the cortical networks (Douglas & Martin, 2004; Binzegger, Douglas, & Martin,
2004; Douglas et al., 1995). These recurrent connections are able to provide the excitatory and
inhibitory feedback necessary for computations such as selective amplification, signal restoration,
and decision making. But, this recurrence poses a challenge for the stability of a network (Slotine
& Lohmiller, 2001; Tegnér, Compte, & Wang, 2002; Cohen & Grossberg, 1983). Connections may
neither be too strong (leading to instability) or too weak (resulting in inactivity) for the network
to function properly (Koch & Laurent, 1999). In addition connections are continually changing
as a function of learning, or are accumulated semi-randomly throughout development or evolu-
tion. How then, do these networks ensure stability? Artificial neural networks can rely on their
bounded (e.g. sigmoid) activation functions, but biological neurons do not usually enter satura-
tion. Instead, their stability depends crucially on the balance between inhibition and excitation
(Hahnloser, Sarpeshkar, Mahowald, Douglas, & Seung, 2000; McCormick & Contreras, 2001). In
this paper we explore how the stability of such systems is achieved, not only because we wish to
understand the biological case, but also because of our interest in building large neuromorphic
electronic systems that emulate their biological counterparts (Indiveri, Chicca, & Douglas, 2009).

Reasoning about the computational ability as well as the stability of neural systems usually
proceeds in a top-down fashion by considering the entire system as single entity able to enter many
states (as for example in Hopfield networks (Izhikevich, 2007; Hopfield, 1982; Hertz, Krogh, &
Palmer, 1991)). Unfortunately, the number of states that must be considered grows exponentially
with the size of the network, and so this approach quickly becomes intractable. For this reason
stability analysis of large-scale simulations of the brain are proving difficult (Izhikevich & Edelman,
2008; Ananthanarayanan, Esser, Simon, & Modha, 2009; Markram, 2006).

We present an alternative approach, which uses bottom-up reasoning about the modules that
constitute the network. The idea is that the stability of the modules should be conferred on
the networks that they compose. Of course, simply combining several modules, each of which
is stable in isolation, to form a larger system does not necessarily imply that the new system is
stable (Slotine & Lohmiller, 2001; Slotine, 2003). However, we explore the possibility that when the
modules employ a certain kind of stability mechanism, then they are indeed able to confer stability
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also on the super-system in which they are embedded. We show that modules that achieve their
own stability by observing constraints on their inhibitory/excitatory balance, can be stable alone
as well as in combination.

We have chosen to examine this problem in networks of WTA circuits (Yuille & Geiger, 2003),
because these circuits are consistent with the observed neuroanatomical connections of cortex
(Douglas & Martin, 2004; Binzegger et al., 2004). Moreover, the WTA is interesting because it
can implement useful computational operations such as signal restoration, amplification, max-like
winner selection (i.e. decision making) or filtering (Maass, 2000; Hahnloser, Douglas, Mahowald,
& Hepp, 1999; Douglas & Martin, 2007; Yuille & Geiger, 2003). And, combining multiple WTAs
in a systematic manner extends these possibilities further by allowing persistent activity and state-
dependent operations (Rutishauser & Douglas, 2009; Neftci, Chicca, Indiveri, Slotine, & Douglas,
2008; Neftci, Chicca, Indiveri, Cook, & Douglas, 2010).

Typically, WTA networks operate in a high-gain regime in which their operation is non-linear
(e.g. selective amplification). While the stability of a WTA can be analyzed by linearizing around
the possible steady-states, rigorous analysis that takes the non-linearities into account is difficult
using linear analysis tools (Strogatz, 1994; Izhikevich, 2007; Hahnloser, 1998; Hahnloser, Seung, &
Slotine, 2003). Instead, we use nonlinear Contraction Analysis (Lohmiller & Slotine, 1998; Slotine,
2003; Lohmiller & Slotine, 2000) to investigate the stability of WTA networks. The concept
of contraction is a generalization of stability analysis for linear systems, allowing Contraction
Analysis (Lohmiller & Slotine, 1998) to be used for the analysis of circuits in the fully-non linear
case, without making linearized approximations.

A nonlinear time-varying system is said to be contracting if initial conditions or temporary
disturbances are forgotten exponentially fast. Thus, any two initial conditions will result in the
same system trajectory after exponentially fast transients. Importantly, the properties of con-
tracting systems are preserved when they are combined to form a larger systems (Slotine, 2003).
Also, contraction allows parameter regimes which are not unduly restrictive. For instance, it can
describe strong feedback loops; and, ranges of parameters can be found where the system is both
contracting and operating in a highly non-linear regime. In addition, contraction analysis can
deal with systems that are multi-stable (expressing several stable attractors or behaviors), where
it guarantees exponentially fast convergence to one of the possible attractors. Such systems are
capable of rich state-dependent computations, while at the same being contracting.

We have used Contraction Analysis to reason about the permissible kinds and strengths of
connectivity within and between WTA modules embedded in a network. If the individual modules
are contracting, then observing our constraints is sufficient to guarantee stability (boundedness) of
a system composed of such modules. Thus, Contraction Analysis permits the derivation of simple
bounds on the network parameters that will guarantee exponential convergence to equilibria in the
fully non-linear case. This approach enables the systematic synthesis of large circuits, which are
guaranteed to be stable if the set of bounds is observed. While we will demonstrate the feasibility
of our approach in the case of WTA-type networks, our approach is not restricted to such networks.
It can be applied as well to any simple non-linear circuit that is capable of non-linear computational
operations.
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Figure 1: Illustration of the problem. The two arrows at the bottom represent external input
whereas all other connections are internal and excitatory. Shown is a recurrently connected system
composed of 5 modules (each of which is a recurrent network). Given properties of the modules
alone, can we guarantee the stability of the large connected system ? What constraints does each
module have to observe for this to be true?
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2 Results

Our results are organized as follows. First, we introduce the basic organization of the WTA circuit.
Second, we apply contraction theory to analyze the stability of networks of WTA circuits. We
derive analytically the bounds on the parameters of the network that permit it to operate properly
in either a soft-or hard WTA configuration. We conclude by performing numerical simulations to
confirm that the analytical bounds are valid and not unnecessarily restrictive.

2.1 The winner-take all network

Each winner-take all (WTA) x consists of N − 1 excitatory units x1..N−1 and one inhibitory unit
xN (See Fig 2A). Each excitatory unit receives recurrent input from itself (α1) and its neighbors
(α2,3,...). For simplicity, only self-recurrence is considered here (α2,3,... = 0), but similar arguments
obtain when recurrence from neighboring units is included (see section 2.6). The inhibitory unit
receives input from each excitatory unit with weight β2, and projects to each excitatory unit with
weight β1. The dynamics of each unit are described by Eqs 1 and 2. The firing rate activation
function f(x) is a non-saturating rectification non-linearity max(0, x). The dynamics of this net-
work, and in particular the boundedness of its trajectories, depends on the balance of excitation
and inhibition.

τ ẋi +Gxi = f(Ii + αxi − β1xN − Ti) (1)

τ ẋN +GxN = f(β2

N−1∑
j=1

xj − TN) (2)

Where Ii(t) is external input to unit i. All thresholds Ti > 0 are constant and equal. G > 0 is
a constant that represents the load (conductance) and is assumed G = 1, unless stated otherwise.
All parameters are positive: α > 0, β1 > 0, β2 > 0. We will refer to such a system either as a WTA
or a ”recurrent map” throughout the paper. “Map“ will denote a WTA throughout, and not a
discrete dynamical system.

2.2 Combining several WTAs

A single WTA network can implement some useful computational operations (see Introduction).
However, more sophisticated computational operations can be achieved by combining several
WTAs (Rutishauser & Douglas, 2009) by sparse and selective connections between some of the
excitatory units of the various WTAs. We consider two ways of combining WTAs: bidirectional
and unidirectional. A bidirectional (and symmetric) connection establishes a recurrent connection
between two WTAs. A unidirectional connection provides the activity of one WTA as input to a
second WTA (feed-forward). The inhibitory units neither receive input from, nor do they project
to, any other map. Thus, activity between maps is always excitatory (positive). This arrangement
is motivated by the long range connections in cortex, which are predominantly excitatory (Douglas
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Figure 2: Illustration of connectivity and notation. Excitatory and inhibitory connections are
denoted by straight and dashed lines, respectively. (A) Single WTA with all connections shown
with respect to x3. (B) Simplified version with N = 3 units per map and α2 = 0 and α3 = 0. (C)
Combination of two WTAs by symmetric bidirectional connection γ. (D) Network comprising 3
WTAs x, y and z; connected by γ and φ connections. The network has two states (each represented
by one unit on maps x and y) and two transition units z1 and z2. External input I1(t) or I2(t) to
either z1 or z2 signals the arrival of a symbol to be processed by the network by executing a state
dependent transition. If the network is in state 1, activation of z1 initiates a transition from state
1 to 2. If the network is in state 2 and z2 becomes active, the network remains in state 2 (a loop,
see text). The local wiring on each WTA is not shown, but is equivalent to the connectivity of
(B).
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& Martin, 2004; Douglas et al., 1995) (but they can contact both excitatory and inhibitory targets).
While long-range inhibitory projections in cortex exist as well, we focus exclusively on excitatory
long-range connectivity in this paper.

These two kinds of connectivity are motivated by our previous finding that three WTAs con-
nected by a combination of bi-and unidirectional connections are sufficient to implement state-
dependent processing in the form of an automaton (Rutishauser & Douglas, 2009). An automaton
consists of two components: states, and transitions between states. By connecting two maps
bidirectionally, the network is able to maintain one region of persistent activity in the absence of
external input, and this winning region represents the current state of the automaton. (State de-
pendence is a form of memory and we thus refer to these localized regions of persistent activity as
memory states.) Transition circuits allow the network to select a new winner, conditioned on the
current state as well as an external input. The implementation of these transitions requires a third
WTA (to select the most appropriate transition) as well as unidirectional connections between the
maps that drive the transition (see below). In this paper we explore what constraints the presence
of these additional connections poses on the stability of this and larger (more than three WTAs)
networks.

First, consider two identical WTAs x and y (see Fig 2C). Each WTA consists of N = 3 units (2
excitatory, 1 inhibitory). The only connection between the two networks is γ, which symmetrically
(bidirectional) connects x2 and y2. Thus, this network can only represent one state.

The update equations for x2 and y2 thus become:

τ ẋ2 +Gx2 = f(I2 + αx2 + γy2 − β1xN − T ) (3)

τ ẏ2 +Gy2 = f(αy2 + γx2 − β1yN − T ) (4)

Second, we consider unidirectional connections between WTAs. These are feed-forward con-
nections between two maps: For example, when units on map x provide input to units on map
z. However, such feed-forward connections can result in (indirect) recurrence: For example, when
map z in turn provides input to x. Thus, analysis of unidirectional connections requires that we
consider three maps x,y and z simultaneously. The two maps x and y are connected bidirectionally
as shown above, whereas z contains units that receive external input as well as input from y and
also provide output to x (Fig 2D). In this way, strong enough activation of units on z can bias
the ongoing competition in the network and thereby induce a switch to a new winner (so changing
state).

A given unit on z can either receive input from a different unit than it projects to (so providing
a transition from one state to an other); or it can receive from and project to the same state. In
Fig 2D, z1 is an example of a unit that initiates a transition from state 1 to 2, whereas z2 receives
input from and projects to state 2. Thus, z2 establishes an additional loop of recurrent feedback
and is the more restrictive case when considering stability.

Following Fig 2D, the dynamics of x1 and x2 become

τ ẋ1 + x1 = f(I1 + αx1 + γy1 − β1xN − T ) (5)

τ ẋ2 + x2 = f(I2 + αx2 + γy2 + φz1 + φz2 − β1xN − T ) (6)

and similarly for y1, y2.

7



The dynamics for the two new units z1 and z2 are

τ ż1 + z1 = f(ITN1 + αz1 + φy1 − β1zN − T − TTN) (7)

τ ż2 + z2 = f(ITN2 + αz2 + φy2 − β1zN − T − TTN) (8)

The equations for the other units of the system are equivalent to the standard WTA.

The term TTNj is an additional constant threshold for activation of the transition unit, so that
in the absence of an external input ITNj, the transition unit will remain inactive zj = 0. The
external input ITNi can be used to selectively initiate a transition. An appropriate choice of the
threshold TTNj will ensure that the transition unit zj is active only when both the external input
ITNi > 0 and the input from the projecting map yjφ > 0 are present. The activation of zj is thus
state dependent, because it depends both on an external input as well as the current winner of the
map.

Now we will explore what constraints the presence of γ > 0 and φ > 0 impose on stability. We
will use Contraction Analysis to show that, if the single WTAs are contracting, γ and φ can be
used (with an upper bound) to arbitrarily combine WTAs without compromising the stability of
the aggregate system. Since we base our arguments on contraction analysis, we will first introduce
its basic concepts.

2.3 Contraction Analysis

Essentially, a nonlinear time-varying dynamic system will be called contracting if arbitrary ini-
tial conditions or temporary disturbances are forgotten exponentially fast, i.e., if trajectories of
the perturbed system return to their unperturbed behavior with an exponential convergence rate.
It turns out that relatively simple algebraic conditions can be given for this stability-like prop-
erty to be verified, and that this property is preserved through basic system combinations and
aggregations.

A nonlinear contracting system has the following properties (Lohmiller & Slotine, 1998, 2000;
Slotine, 2003; Wang & Slotine, 2005)

• global exponential convergence and stability are guaranteed

• convergence rates can be explicitly computed as eigenvalues of well-defined Hermitian ma-
trices

• combinations and aggregations of contracting systems are also contracting

• robustness to variations in dynamics can be easily quantified

Before stating the main contraction theorem, recall first the following. The symmetric part of
a matrix A is AH = 1

2
(A + A∗T ). A complex square matrix A is Hermitian if AT = A∗ , where T

denotes matrix transposition and ∗ complex conjugation. The Hermitian part AH of any complex
square matrix A is the Hermitian matrix 1

2
(A + A∗T ) . All eigenvalues of a Hermitian matrix

are real numbers. A Hermitian matrix A is said to be positive definite if all its eigenvalues are
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strictly positive. This condition implies in turn that for any non-zero real or complex vector x,
x∗TAx > 0. A Hermitian matrix A is called negative definite if −A is positive definite.

A Hermitian matrix A(x, t) dependent on state or time will be called uniformly positive definite
if there exists a strictly positive constant such that for all states x and all t ≥ 0 the eigenvalues of
A(x, t) remain larger than that constant. A similar definition holds for uniform negative definite-
ness.

Consider now a general dynamical system in Rn,

ẋ = f(x, t) (9)

with f a smooth non-linear function. The central result of Contraction Analysis, derived in (Lohmiller
& Slotine, 1998) in both real and complex forms, can be stated as:

Theorem Denote by ∂f
∂x

the Jacobian matrix of f with respect to x. Assume that there exists
a complex square matrix Θ(x, t) such that the Hermitian matrix Θ(x, t)∗TΘ(x, t) is uniformly
positive definite, and the Hermitian part FH of the matrix

F =

(
Θ̇ + Θ

∂f

∂x

)
Θ−1

is uniformly negative definite. Then, all system trajectories converge exponentially to a single
trajectory, with convergence rate | supx,t λmax(FH)| > 0. The system is said to be contracting, F is
called its generalized Jacobian, and Θ(x, t)∗TΘ(x, t) its contraction metric. The contraction rate is
the absolute value of the largest eigenvalue (closest to zero, although still negative) λ = |λmaxFH |.

In the linear time-invariant case, a system is globally contracting if and only if it is strictly
stable, and F can be chosen as a normal Jordan form of the system, with Θ a real matrix defining
the coordinate transformation to that form (Lohmiller & Slotine, 1998). Alternatively, if the
system is diagonalizable, F can be chosen as the diagonal form of the system, with Θ a complex
matrix diagonalizing the system. In that case, FH is a diagonal matrix composed of the real parts
of the eigenvalues of the original system matrix.

Note that the activation function f(x) = max(x, 0) (see Eqs 1-2) is not continuously differen-
tiable, but it is continuous in both space and time, so that contraction results can still be directly
applied (Lohmiller & Slotine, 2000). Furthermore, the activation function is piecewise linear with
a derivative of either 0 or 1. This simple property is exploited in the following by inserting dummy
terms lj, which can either be 0 or 1 according to the derivative of f(x): lj = d

dx
f(xj(t)). For a

single WTA, there are a total of N dummy terms.

2.4 Stability of a single WTA

We begin the contraction analysis by considering a single WTA. The conditions obtained in this sec-
tion guarantee that the dynamics of the single map converge exponentially to a single equilibrium
point for a given set of inputs. Actually, the WTA has several equilibrium points (corresponding
to each possible winner), but contraction analysis shows that for a given input a particular equilib-
rium will be reached exponentially fast, while all others are unstable. Thus, as long as the network
does not start out exactly at one of the unstable equilibria (which is impossible in practice), it
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is guaranteed to converge to the unique equilibrium point (the winner) determined by the given
set of inputs. Our strategy is two-fold: first we show that the WTA is contracting only if one of
the excitatory units is active (the ”winner” in a hard-WTA configuration). Second, we show that
in the presence of multiple active excitatory units, the dynamics diverge exponentially from the
non-winning states.

Following section 2.3, a system with Jacobian J is contracting if

τΘ J Θ−1 < 0 (10)

The Jacobian J has dimension N and describes the dynamics of a single WTA, and Θ is a trans-
formation matrix (see section 2.3 and below). Using dummy terms lj as shown in the previous
section, the Jacobian of the WTA is

τJ =

 l1α−G 0 − l1β1
0 l2α−G − l2β1
l3β2 l3β2 −G

 (11)

This WTA has two possible winners (x1 or x2) that are represented by l1 = 1, l2 = 0 or
l1 = 0, l2 = 1, respectively (l3 = 1 for both). Assuming the second unit is the winner, the Jacobian
becomes

τJW2 =

 −G 0 0
0 α−G − β1
β2 β2 −G

 (12)

Our approach consists in first finding a constant metric transformation Θ describing the contraction
properties of the simple Jacobian (12) for appropriate parameter ranges, a process equivalent to
standard linear stability analysis, and then using the same metric transformation to assess the
contraction properties of the general nonlinear system.

Let us first find ranges for the parameters α, β1, β2 such that JW2 is contracting. This is the case
if τΘ JW2 Θ−1 < 0, where Θ defines a coordinate transform into a suitable metric. The left hand-
side is the generalized Jacobian F = ΘJW2Θ

−1 (see section 2.3). Based on the eigendecomposition
JW2 = QΛQ−1, where the columns of Q correspond to the eigenvectors of JW2, define Θ = Q−1.
This transformation represents a change of basis which diagonalizes F (Horn, 1985). This choice
of a constant invertible Θ also implies that Θ∗TΘ is positive definite (since x∗TΘ∗TΘx = ||Θx||2,
∀x).

Using this transformation and assuming G = 1, the Hermitian part of F (Eq 10) is negative
definite if 1

0 < α < 2
√
β1β2 (13)

0 < β2 (14)

0 < β1β2 < 1 (15)

Note that these conditions systematically relate α to the inhibitory loop gain β1β2, and also permit
α > 1 (see below for discussion).

1These solutions are derived by considering the eigenvalues of the Hermitian part of (10), which is diagonal and
real, and then solving the system of inequalities λmax < 0.
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The above conditions guarantee contraction for the cases where inhibition (l3 = 1) and one
excitatory unit are active (here l2 = 1 and l1 = 0 but the same bounds are valid for l2 = 0 and
l1 = 1). The next key step is to use the same metric to study arbitrary terms l2,3 and l1 = 0, so as
to show that the system is contracting for all combinations of l2,3, except the combinations from
which we want the system to be exponentially diverging. In the same metric Θ and using the
Jacobian Eq 11 with l1 = 0 the Hermitian part of F becomes (with i2 = −1)

FH =


−1 0 0

0 −1 + 1
2
αl2 − (2iβ1β2+α(−iα+

√
−α2+4β1β2))(l2−l3)

2
√
−α2+4β1β2

0 − (−2iβ1β2+α(iα+
√
−α2+4β1β2))(l2−l3)

2
√
−α2+4β1β2

−1 + 1
2
αl2

 (16)

Note that Eq (16) was simplified assuming the bound given in Eq 13. We require FH < 0. A

matrix of the form

[
λ1 r
r∗ λ2

]
is negative definite if λi < 0 and |r|2 < λ1λ2 (Wang & Slotine,

2005). For (16), this results in

(β1β2(l2 − l3))2

−α2 + 4β1β2
< (−1 +

1

2
αl2)

2 (17)

The bounds (13)-(15) on the parameters satisfy this condition whenever l2 = l3 and l2 = 0, l3 = 1.
As expected, for the case l2 = 1, l3 = 0 (only excitation active) the system is not contracting for
α > 1. Rather, we require that in this case the system is exponentially diverging, as we detail
below.

Next, we consider the full Jacobian (Eq 11) with all l1,2,3 = 1. For the network to be a hard-
WTA, we require that this configuration is exponentially diverging. The dynamics of interest
are the excitatory units, so that, following (Pham & Slotine, 2007), the system is exponentially
diverging away from this state if

VJVT > 0 (18)

where V is the projection matrix

V =

[
α 0 − β1
0 α − β1

]
(19)

The constraint (18) assures that the system diverges from certain invariant subspaces where Vx

is constant. For V as shown in (19), Vx =

[
αx1 − β1x3
αx2 − β1x3

]
. Each row represents one excitatory

unit. If condition (18) is satisfied, the network is guaranteed to diverge exponentially away from
this equilibrium.

Condition (18) is satisfied (for G = 1) if

1 < α (20)

0 < β1 (21)

0 < β1β2 < (1− 1

α
)(β2

1 +
α2

2
) (22)

The above conditions were derived based on the system of inequalities λmin > 0 given by the
eigenvalues of the Hermitian part of the left-hand side of (18). The same calculation using instead
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Figure 3: Illustration of the different operating conditions as a function of the excitatory strength
α and the inhibitory loop gain β1β2. Note the transition from a soft-WTA to hard-WTA at α = 1.

l1,2 = 1 and l3 = 0 (excitation, but no inhibition) results in the same bounds for exponential
divergence from the state of no inhibition.

Combining (i) conditions (13)-(15) for exponential convergence to the winner state and (ii) con-
ditions (20)-(22) for exponential divergence from the non-winning and the excitation-only states,
yields

1 < α < 2
√
β1β2 (23)

1

4
< β1β2 < 1 (24)

β1β2 < (1− 1

α
)(β2

1 +
α2

2
) (25)

Note the two key components: the excitatory gain α and the inhibitory gain β1β2. The above
conditions establish lower and upper bounds on the parameters for global exponential convergence
to a unique winner for a given set of inputs.

Under these constraints (in particular on the excitatory loop strength α) the system is globally
convergent yet always selects a winner. The system does not depend on saturation to acquire this
stability. Also, the constraints guarantee that the system does not oscillate, apart from transient
oscillations during convergence. This has been established by demonstrating that the system is
either contracting or exponentially diverging for any subset of the dummy terms l1,2,3. Note that
the system is contracting in the same metric Θ for all contracting subsets. While we defined
the metric Θ for a particular winner, the same constraints result from defining a similar Θ for
any of the other possible winners. Similar conditions can be derived for conditions where the
winner is represented by multiple active units such as when a ”bump of activity” is introduced
by adding excitatory nearest-neighbor connections α2 (Rutishauser & Douglas, 2009; Douglas &
Martin, 2007) (see section 2.6). Numerically, these ranges permit a wide range of parameters. For
example, for β1 = 3 and β2 = 0.3, 1 < α < 1.89. Under these conditions, the system operates in a
highly non-linear regime (where the loop gain can be up to 50!).

The analysis above focused on the regime where α > G (with G = 1). In this mode, the system
acts as a highly non-linear WTA, always selecting a binary winner. What if the system operates
in α < 1 ? In this configuration, the winner unit is still contracting (Eq 13).
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Figure 4: Illustration of combining a simple WTA to form a bigger WTA . White units are
excitatory, gray units inhibitory. (A) Simple map consisting of one excitatory unit x1 and one
inhibitory unit x2. (B) Combining two identical copies of the map shown in (A) by providing
excitatory input β2 from each excitatory unit to both inhibitory units. This new map, consisting
of two excitatory units, is functionally equivalent to a WTA with two excitatory and one inhibitory
units. The two inhibitory units x2 and x4 have, at all times, the same level of activity. The same
principal can be extended to form maps of arbitrary size.

What happens when all units (l1,2,3 = 1) are active and α < 1? Defining Θ based on the
Jacobian J with all units on and solving ΘJΘ−1 < 0, we find that this system is contracting for
α < 1. The system where all excitatory units are active is thus contracting under this condition,
implying that the system is in a ”soft-WTA” configuration. While the system still selects a
winning unit, the activity of the loosing unit is not completely suppressed. Also note that in
this configuration, no persistent activity in the absence of external input is possible. A graphical
illustration of both modes of operation is shown in Fig 3.

Finally, note that the time-constant τ was assumed to be equal for all units. Note that, in this
case, the numerical value of τ does not influence the bounds (since τ > 0 multiplies the entire
Jacobian, see Eq 10). Similar conditions can be derived for conditions where the time-constants
are not equal (see Appendix C), in which case only the ratio of the time-constants is relevant.

2.5 Stability of single WTA of arbitrary size

Can this analysis be extended to maps of arbitrary size? While the approach in the previous
section can be applied to maps of any size, an alternative approach is to first define contraction for
a map consisting only of a single excitatory and inhibitory unit and then extend it recursively by
one unit at a time, while showing that this extension does not change the contraction properties.
This approach is illustrated in Fig 4.

The most simple map consists of one excitatory and one inhibitory unit (Fig 4A) . While there
is no competition between different inputs, this map otherwise preserves all the properties of a
WTA (such as non-linear amplification of the input). The Jacobian of this map is:

τA =

[
l1α−G − l1β1
l2β2 −G

]
(26)
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This system (Fig 4A) is contracting if the conditions shown in Eqs 23-25 for the parameters
α, β1, β2 hold. The approach used to derive the bounds is equivalent to the one described above:
first, define a Θ = Q−1, where Q is based on the eigendecomposition of A with l1,2 = 1. Then,
define the valid parameter ranges based on Eq 10. The same permissible parameters result (see
Eqs 13, 15, 14).

Combining two such maps by feeding excitatory input to both inhibitory neurons by both
excitatory neurons leads to a WTA with two excitatory units (Fig 4B). This map is equivalent to
the map shown previously, except for that it contains two inhibitory neurons. These are, however,
functionally equivalent (their activity and derivatives are the same at all points of time). Thus the
behavior of both systems will be equivalent. The Jacobian of the combined system is:

τJ =

[
A1 G1

G2 A2

]
(27)

where

τG =

[
0 0
l2β2 0

]
(28)

and A1,2 = A after adjusting the li terms appropriately (l1,2 and l3,4 for A1 and A2, respec-
tively). Similarly, G1,2 = G for l2 and l4, respectively. Note that combining the two systems in
this way adds only two (strictly positive) terms to the equations describing the dynamics of the
inhibitory neurons. Thus, inhibition in this new system can only be larger compared to the smaller
system. Thus, if the smaller system is contracting (as shown above), the combined system must
also be contracting (shown in the next section).

Defining a metric Θ based on the eigendecomposition of J for either l1,2,4 = 1 and l3 = 0 or
l1,3,4 = 1 and l2 = 0 and then solving

τΘ J Θ−1 < 0 (29)

results in the same constraints for the system to be contracting (see Eqs 13, 15, 14).

This result can be generalized so that it is valid for adding one unit to a map that is already
contracting. This can be seen directly by considering the eigenvalues of the Hermitian part of
F = ΘJΘ−1, defined either for a system with n units or n + 1 units. A system with n = 1 units
has Jacobian A1 and is contracting as shown previously. The condition for it to be stable Fs < 0
requires (for the real part only)

1

2
(−2 + α±

√
α2 − 4β1β2) < 0 (30)

A system with n = 2 units has Jacobian J (Eq 27) and is stable if (29) holds. This requires

1

2
(−2 + α±

√
α2 − 4β1β2) < 0 (31)

Comparing Eqs 30 and 31 reveals that adding a unit n+1 to a system of n units does not change the
conditions for contraction to a single winner. Thus, if the recurrent map consisting of n excitatory
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unit is contracting the system of n + 1 units is also contracting. By recursion this proof can be
applied to maps of arbitrary size.

What if multiple units on the map are active? Above conditions show that a single winner is
contracting on an arbitrary sized map. In a hard-WTA configuration, the system should always
emerge with a single winner. We have previously shown that our system has this property when
α > 1 (see Eq 18). Here, we extend this argument to maps of arbitrary size. Note that only the li
for the excitatory units can be switched inactive. All inhibitory neurons (since they all represent
the same signal) are always li = 1.

Here, we start with a system that has n = 2 units (since a system of n = 1 does not have
competition). The goal is to find conditions that enforce a single winner for n = n+ 1 units. For
the n = 2 system (J with all l1,2,3,4 = 1), enforcing VJVT > 0 (see Eq 18) with

V =

[
α −β1 0 −β1
0 −β1 α − β1

]
(32)

gives conditions for this configuration (both units on, i.e. l1 = l3 = 1) to be exponentially unstable
(thus converging to an other subset of the li terms). Similar to (19), the system diverges from
invariant subspaces where Vx is constant. For the projection (32), αx1 − β1x2 − β1x4 = 0 and
αx3 − β1x2 − β1x4 = 0 defines the equilibrium. If condition (18) is satisfied, the network is
guaranteed to diverge exponentially away from this equilibrium.

The eigenvalues of the Hermitian part of this system (same as for Eq 18) are uniformly positive
if the following two conditions hold

−α2 + α3 > 0,−α2 + α3 − β2
1 + 2αβ2

1 − 4αβ1β2 > 0 (33)

Note that any solution requires α > 1 (solutions are shown in (20)-(22)). This condition thus
shows that any two simultaneously active units can not be contracting if α > 1.

For the 3 unit system, applying (27) recursively results in the Jacobian

τJ =

 A1 G1 G1

G2 A2 G2

G3 G3 A3

 (34)

Applying an appropriate V constructed in analog to (32) shows that VJVT > 0 for this system if

−α2 + α3 > 0,−α2 + α3 − 6β2
1 + 3αβ2

1 − 9αβ1β2 > 0 (35)

Note that a sufficient solution continues to require α > 1. We have thus shown, under α > 1
that a system with n = 2 as well as n = 3 can only have one active unit. By recursion, the same
argument can be used to show that any system n = n+ 1 can not have a subset of i units (where
1 < i <= n) active. Any such system is thus always converging to a single winner. Any such
system will have these properties if the parameters are within the ranges shown in Eqs 20, 21, 22)
hold.

For purposes of this proof, we used additional inhibitory units (one for each excitatory unit).
Note that this arrangement is for mathematical convenience only: In an implemented system these
units can be collapsed to one unit only (or several to implement local inhibition). Collapsing all
units to one does not change the dynamics of the system, because all inhibitory units have the
same activity (and its derivatives) at all times.

15



2.5.1 Example

This example will show how to apply the approach outlined above in order to calculate the permis-
sible range of parameters for a toy recurrent map consisting of one excitatory and one inhibitory
unit (Fig 4A), whose Jacobian is A (Eq 26) with l1,2 = 1. Our intention is to illustrate in detail
the procedural aspects involved in the calculation.

First construct Q based on the eigenvectors of A and then set

Θ = Q−1 =

 − β2√
α2−4β1β2

1
2

(
1 + α√

α2−4β1β2

)
β2√

α2−4β1β2
1
2
− α

2
√
α2−4β1β2

 (36)

Then, transforming A using Θ results in the generalized Jacobian

F = τΘ A Θ−1 =

 1
2

(
−2 + α−

√
α2 − 4β1β2

)
0

0 1
2

(
−2 + α +

√
α2 − 4β1β2

)  (37)

Due to the choice of the metric Θ, only terms on the diagonal remain. The network is contract-
ing if the Hermitian part FH = 1

2
(F + F∗T ) (37) is negative definite. A sufficient condition for this

to be the case is Re(λmin(Fs)) < 0. Solving this system of inequalities results in the conditions
shown in (13, 14, 15).

2.5.2 Comparison with numerical simulations

Do the analytical bounds derived above match the behavior of the system when it is simulated?
We simulated a WTA network as described (with 2 excitatory units) and systematically tested
different combinations of the parameters α, β1, β2. For each simulation we determined whether all
units in the network reach steady state with ẋi = 0 after a sufficient amount of time. Such networks
where classified as stable or unstable, respectively (Fig 5). Here, we vary α and β1 while keeping
β2 = 0.25. While the analytically derived solution is slightly more conservative than necessary
it closely matches the results of the simulations (see Fig 5 and legend for details). The crucial
parameter is the excitatory strength relative to the inhibitory strength. This can be seen from the
general increase of the permissible value of α as a function of β1 (Fig 5). Note however that our
analytical solution assigns an upper bound to β1 as well, which is unnecessary for the numerical
simulations. However, strong values of β1 lead the system to oscillate and keeping the parameter
within the range derived analytically prevents this problem.

2.6 Stability of single WTA - bump of activity

The previous analysis considered WTA networks where only α1 = α > 0 and α2 = 0 (Fig 2A). In
this configuration, the winner of the competition is represented by a single active unit. However,
cooperation between neighboring units can also be introduced, by setting 0 < α2 < α1. The winner
is now represented by a more distributed ”hill of activity”. Our analysis can also be extended to
this case.
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Figure 5: Comparison of the permissible parameter range derived analytically, with that obtained
by simulation. Results are shown as a function of α and β1, while holding β2 = 0.25 (constant).
The region of contraction is indicated in light blue. The upper boundary is β1 <

1
β2

. The right

boundary is the upper-bound on excitation, α < 2
√
β1β2. Simulation results are indicated by

colored dots, where a red dot indicates success (contraction) and gray failure. For convenience,
only the range α > 1, β1 > 1 is shown here.
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For the simplest case of 2 units, this network has the Jacobian

τJ =

 l1α1 −G l1α2 − l1β1
l2α2 l2α1 −G − l2β1
l3β2 l3β2 −G

 (38)

with l1,2,3 = 1. Using the approach outlined previously, this system is stable if ΘJΘ−1 < 0. After
applying the Θ coordinate transform, examining the eigenvalues of the Hermitian part of this
system reveals that

1

2
(−2 + α1 + α2 ±

√
(α1 + α2)2 − 8β1β2) < 0 (39)

is a required condition (plus others, not shown). Comparing this condition to the eigenvalues of
the system with α2 = 0 (see (31)) reveals that α was replaced by α1 + α2 (plus some other minor
modifications). This result confirms the intuition that the crucial factor is the total excitatory
input α1 +α2 to any one unit. A sufficient condition for this system to be contracting is (compare
to Eq 13)

0 < α1 + α2 <
√

8β1β2 (40)

This condition applies as long as α1 +α2 < 2 and α1−α2 < 1. Together, these conditions similarly
permit a fairly wide range of parameters, including α1 > 1. For example, if β1 = 3, β2 = 0.3 and
α2 = 0.5, α1 < 1.5. Note the critical trade-off between the inhibitory gain β1β2 and the excitatory
gain α1 + α2 that is expressed in this section.

2.7 Stability of two bidirectionally coupled WTAs

Next we consider how two WTAs x and y can be coupled stably (by γ connections as shown above).
The key idea is first to give sufficient conditions for stable synchronization of the two WTA’s. Note
that by synchronization we mean here that two variables have the same value (in contrast to other
meanings of synchronization i.e. in population coding). This allows the dimensionality of the
stability analysis to be reduced. Indeed, synchronization implies that the overall system stability
can then be analyzed simply by considering the stability of the individual target dynamics, i.e.,
of any one of the subsystems where the external coupling variables have been replaced by the
corresponding (endogenous) variables in the subsystem. For instance, in the target dynamics of x,
equation (3) is replaced by

τ ẋ2 +Gx2 = f(I2 + αx2 + γx2 − β1xN − T ) (41)

Next, we shall see that in fact, given the form of coupling we assume, stable synchronization of the
subsystems comes “for free”. That is, it is automatically satisfied as long as sufficient conditions
for the stability of the individual target dynamics are satisfied.

Following (Pham & Slotine, 2007), synchronization occurs stably if the following holds:

VJVT < 0 (42)

where
V = [IN − IN ] (43)
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and J is the Jacobian of the entire system. Here, we define synchrony as equal activity on both
maps, i.e. xi = yi for all i. This condition is embedded in V as shown. Note that the system
need not start out as xi = yi to begin with but rather the condition embedded in V guarantees
that the system will converge towards this solution. Other conditions of synchrony (such as only
some neurons synchronizing) can similarly be specified by modifying V accordingly. V specifies a
metric M⊥ which is orthogonal to the linear subspace M in which the system synchronizes (i.e.
a flow-invariant subspace, see Theorem 3 in (Pham & Slotine, 2007)).

The Jacobian J has dimension 2N and is composed of the two sub-Jacobians J1 and J2 (as
shown in Eq 11), which describe a single WTA, and of the Jacobians of the couplings.

Introducing the coupling term

C =

 γ 0 0
0 γ 0
0 0 0

 (44)

results in the Jacobian J of the full system:

J =

[
J1 C
C J2

]
(45)

which can be written, using again dummy terms lj, as

τJ =


l1α−G 0 −l1β1 l1γ 0 0

0 l2α−G −l2β1 0 l2γ 0
l3β2 l3β2 −G 0 0 0
l4γ 0 0 l4α−G 0 −l4β1
0 l5γ 0 0 l5α−G −l5β1
0 0 0 l6β2 l6β2 −G

 (46)

The above expression yields:

τVJVT =

 (l1 + l4)(α− γ)− 2G 0 −β1(l1 + l4)
0 (l2 + l5)(α− γ)− 2G −β1(l2 + l5)

β2(l3 + l6) β2(l3 + l6) −2G

 (47)

Note that α > 0, β1 > 0, β2 > 0.

Consider now the Jacobian of e.g. subsystem-1 once synchronized, i.e., with the coupling terms
from subsystem-2 variables replaced by the same terms using subsystem-1 variables (this is what
we called earlier the target subsystem-1). Given equation (11) and (41), this Jacobian can be
written

τJ1
sync =

 l1(α + γ)−G 0 − l1β1
0 l2(α + γ)−G − l2β1
l3β2 l3β2 −G

 (48)

Comparing (47) and (48), we see that sufficient conditions for J1
sync (and similarly J2

sync) to be
negative definite automatically imply that VJVT is negative definite. Indeed, since γ ≥ 0,

∀ lj , J1
sync < 0 => ∀ lj , VJVT < 0 (49)

In other words, the basic requirement that the individual target dynamics are stable (as shown in
the previous section) automatically implies stability of the synchronization mechanism itself.
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Note the opposite signs of γ in Eqs (48) and (47). Intuitively, these express a key trade-off.
Indeed, the stronger γ is, the easier and stronger the synchrony of the memory state (Eq (47)).
However, a stronger connection also makes the system less stable. This is expressed by the positive
γ in Eq (48), which imposes stricter constraints on the permissible values of the other weights for
J1
sync to remain negative definite.

Synchronization of the two maps in this way allows reduction of the two coupled systems to
a single virtual system with the additional parameter γ for the coupling strength (Eq 47,48).
Stability of this hybrid system guarantees stability of the synchronization mechanism itself (Eq
49). The upper-bounds for γ are thus (based on Eq 13)

γ < 2
√
β1β2 − α (50)

As long as this condition is met, the dynamics of each map are contracting and their synchroniza-
tion is stable. The lower-bound on γ is determined by the minimal activity necessary to begin
”charging” the second map (which gets no external input in our configuration). The minimal
activity that a unit on the second map gets as input from the first map needs to be larger than its
activation threshold T , i.e. xiγ > T where xi is the steady-state amplitude during the application
of input (which is a function of the gain g = 1

1+β1β2−α). Thus,

T

gImax(t)
< γ (51)

2.8 Stability of unidirectionally coupled WTAs

Next, we extend our analysis to networks consisting of 3 WTAs x, y and z of the kind shown in Fig
2D and described in section 2.2. WTAs x and y are bidirectionally coupled to express the current
state and are equivalent to the network considered in the previous sections. A further WTA z is
added that contains units zi, referred to as transition neurons (TNs). In this example, there are
two TNs z1 and z2 (Fig 2D). Activation of the first (z1) leads the network to transition from state
x1 to x2, if the network is currently in x1. Activation of the second (z2) leaves the network in state
x2, if the network is currently in this state. If it is not so, then no activity is triggered. The TN z1
is an example of a transition from one state to another. TN z2 is an example of a transition that
starts and ends in the same state (a loop). This loop is intentionally introduced here, because it
poses a limit to stability. TNs receive and project input with weight φ > 0.

The Jacobian of the full system consists of 3N variables:

τJ =

 J1 C P2

C J2 0
0 P1 J3

 (52)

Since there are two memory states,

C =

 γ 0 0
0 γ 0
0 0 0

 (53)
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P1 describes the input and P2 the output of the TNs. Here,

P1 =

 φ 0 0
0 φ 0
0 0 0

 (54)

P2 =

 0 0 0
φ φ 0
0 0 0

 (55)

2.8.1 Case 1: loop

For purposes of worst-case analysis, assume that the TN z2 (which receives and projects to state
2) is permanently active. This is achieved by setting TTN = 0. In this case, we require that the
network remains synchronized in state z2.

The state is stable with z2 activated if the synchrony between x and y is not disrupted. This
is the case if

τVJVT =

 (l1 + l4)(α− γ)− 2 0 −β1(l1 + l4)
0 (l2 + l5)(α− γ)− 2 −β1(l2 + l5)

β2(l3 + l6) β2(l3 + l6) −2

 (56)

with V = [IN − IN 0N ] and J the Jacobian of the entire system (9 variables).

Note the similarity to equation (47). None of the non-linearity terms of the 3rd WTA l7, l8, l9,
nor φ, appear in this equation. Thus, the synchrony of the states is not influenced by the presence
of a consistently active loop TN. The presence of φ does thus not influence the synchrony between
x and y which represent the state. However, this combined system also needs to be contracting
for this system to be stable (i.e. reach steady state). Thus, we next derive the limits on φ for this
to be the case.

Using the insight gained in section 2.7, we replace the yi terms by xi terms for purposes of
stability analysis. Note that the principle of showing synchronization first introduces a hierarchy
(or series) of dynamic systems, so that the overall result converges if each step (sync and simplified
system) does, with convergence rate the slowest of the two. In our case the synchronization step
is always the fastest, so the overall convergence rate is that of the reduced system.

Next, we analyze the stability of the reduced system (consisting of x and z). Here, only z2
(loop TN) is used, z1 is not connected. The corresponding Jacobian is:

JTN =


l1(α + γ)− 1 0 −l1β1 0 0 0

0 l2(α + γ)− 1 −l2β1 0 l2φ 0
l3β2 l3β2 −1 0 0 0

0 0 0 l7α− 1 0 −l7β1
0 l8φ 0 0 l8α− 1 −l8β1
0 0 0 l9β2 l9β2 −1

 (57)

Having JTN be negative definite in the metric Θ,

∀ lj , ΘJTNΘ−1 < 0 (58)
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guarantees that the coupled system is stable. Following (Wang & Slotine, 2005) and (Slotine,
2003) (section 3.4), if the uncoupled systems are stable with contraction rates λx and λz, then the
coupled system is stable if

φ2 < λxλz (59)

and its contraction rate is

λx,z =
(λx + λz)

2
−
√

(
λx − λz

2
)2 + φ2 (60)

Note that λx,z > 0 is equivalent to condition (59). One then has 0 < λx,z ≤ λx ≤ λz. Note
that if the connection weights are not symmetric, φ in the expressions above can be replaced by
φ = φ1+φ2

2
.

The contraction rate for a single WTA is equal to the absolute value of the largest eigenvalue
of Fs (its real part) (Wang & Slotine, 2005). Following (10), the contraction rate for a WTA (such
as z) is λz = |Re(1

2
(−2 + α+

√
α2 − 4β1β2))|. Similarly, for a symmetrically coupled system with

coupling weight γ, the contraction rate is λx = |Re(1
2
(−2 + α + γ +

√
(α + γ)2 − 4β1β2))|. These

two conditions thus establish the upper-bound on the permissible weight of φ <
√
λxλz. Since

λx < λz, a good approximation is

φ < λx (61)

2.8.2 Case 2: transition

Here, the transition from one pattern of synchrony to an other (two states) is investigated. For
this purpose, both states x1 and x2 exist. Also, the TN z1 is connected. Since activating z1 leads
from a transition from state 1 to 2 (represented by x1 and x2). In the following, we assume that
the network is in x1 when initialized and z1 is active (i.e. TTN = 0). We then show that the
network will end up in the second synchrony pattern, representing x2.

Defining V as above and J the appropriate Jacobian of the full system yields

τVJVT =

 (l1 + l4)(α− γ)− 2 0 −β1(l1 + l4)
0 (l2 + l5)(α− γ)− 2 −β1(l2 + l5)

β2(l3 + l6) β2(l3 + l6) −2

 (62)

Similarly to equation (56), the terms of the 3rd WTA do not appear. Thus, activation of the
TN does not disturb the synchrony between x and y as such but only which particular units
synchronize (this is not visible in above equation).

Whether or not the system transitions from one pattern of synchrony to another is determined
by the threshold behavior of the activation function. As long as the input to x2, φz1 > 0 for
sufficient amount of time, the network will switch its pattern of synchrony. If, on the other hand,
z1 is not active for a sufficiently long time (relative to the contraction rate λx), the system will
return to the previous pattern of synchrony. Also note that z1 switches off automatically as soon
as the transition occurs (since then y1 ceases to be active). Thus, the timing of the external input
does not have to be tightly connected with the external dynamics, or can even be permanently
present.
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Figure 6: Simulation of a single WTA network (Fig 2B). (A) Excitatory units and external input.
(B) First derivative with respect to time for the excitatory units. The activity of x2 is offset by
100 timesteps relative to x1 for plotting purposes only. (C) Activity of the inhibitory unit. (D)
Derivative of the inhibitory unit. (E) The maximal eigenvalue Re(λmax(Fs)) of the generalized
Jacobian. (F) The minimal eigenvalue of λmin(V JVs). Activity is plotted in arbitrary units, x-axis
is in units of integration timesteps in units of 1000 (Euler integration with ∆ = 0.01). See the text
for details.
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Figure 7: Simulation of networks consisting of two (A-B) and three (C-D) recursively coupled WTA
networks. (A-B) Simulation of two symmetrically coupled WTAs as shown in Fig 2D (with φ = 0).
In this network, there are two γ connections between the maps (between x1, y1 and x2, y2). (A)
shows the excitatory units, (B) the inhibitory units. (C-D) Simulation of three coupled WTAs, as
illustrated in Fig 2D. Maps x and y are coupled symmetrically as in (A-B), whereas map z creates
a unidirectional feedback loop between y and x (see Fig 2D for details). Shown is the activity of
the excitatory units on x and y (C) as well as on the third map (z, panel D). Units of time are
integration timesteps in units of 1000. See text for details.
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Figure 8: Simulation of a randomly connected network consisting of 6 WTA modules. (A) Weight
matrix of the entire network. (B) External inputs used for the simulation shown in C-D. (C) Color-
coded diagram of the winner on each WTA. Winning units are either none (0) or 1-4 (indicated
by the color, representing 0-4). The bottom row shows to which WTA external input is currently
provided (1-6). (D) Plot of the activity of every unit in the network during application of the
input shown in B. Note how on every WTA, only one unit can be active (after convergence). The
color-code represents the activity of each unit, in arbitrary units. Units of time are integration
timesteps in units of 1000.
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2.9 Verification by simulation

2.9.1 Single WTA

The properties of contraction during the application of external input can be demonstrated by
numerical simulation of a single WTA network consisting of 2 excitatory and 1 inhibitory units
(see Fig 2B for wiring). Figure 6 shows the dynamics of the 3 units in the network while external
input is applied to the two excitatory units x1 and x2. The input I(t) is a binary pulse of amplitude
2.0 to x1 and 1.8 to x2 (difference 10%). Note how the network amplifies the small difference (x1
is the winner). Parameters were: α = 1.3, β1 = 2, β2 = 0.25, T = 0, G = 1, i.e. the gain was
g = 5 (steady-state amplitude g ∗ I). These parameters satisfy all conditions for contraction. The
properties of contraction are evaluated at every point of time by evaluating the effective Jacobian
at this point of time. The maximal eigenvalue Re(λmax(Fs)) of the generalized Jacobian indicates
whether the network is currently contracting or not. Whenever the values is below zero (dashed
line), Fs is negative definite.

The minimal eigenvalue of λmin(V JVs) (Fig 6E) indicates points of time when the network is
not contracting. Whenever the value is above the dashed line, V JV T is positive definite. Note the
interplay of the dynamics of the maximal eigenvalue of the generalized Jacobian and the minimal
eigenvalue of V JV T , which together reflect the dynamic state of the system. Whenever the system
is contracting, λmax(Fs) < 0. Shortly after the onset of the external input (t=1000), no winner has
been selected and the system is not contracting. Instead it is diverging exponentially towards a
contracting region of the state space. Note also the other important transition of the system after
the offset of the input (t=6000). After a while only the inhibitory neuron is active, which explains
the change around t=7000.

2.9.2 Two-and three WTA networks

Next we simulated two networks: one consisting of two (Fig 7A-B) and one consisting of 3 (Fig
7C-D) recursively coupled WTAs, connected by either bidirectional or directional connections.
Parameters were: α = 1.3, β1 = 2.8, β2 = 0.25, γ = 0.15, T = 1. For the second simulation,
in addition TTN = 5, φ = 0.3. These simulations (see the legend of Fig 7 for details) illustrate
the dynamics of the network during persistent state dependent activity that exists due to the
γ connections. Also, it shows how these states can be utilized to implement state dependent
transitions (see Fig 2D for connectivity).

Notice how, after application of external input to x1, activity persists (Fig 7A). After applying
input to x2, the winner switches. Increasing inhibition (onset at t=15000, panel B) globally resets
both maps. Note also how application of external input to z1 leads to a transition from the first
to the second state only if the network is in state x1 (case (1) vs (2) as indicated in Fig 7D). This
illustrates a state dependent reaction of the network to external input. The third input application
(case (3) in Fig 7D) illustrates the stability of the network, even if the transition is onto itself.
Note how the network reaches a stable level of activity before the external input to z2 is removed,
indicating balanced inhibition/excitation despite multiple feedback loops both within and between
maps.
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2.9.3 Large networks

Contraction properties are particularly useful because they are preserved if several contracting
systems are combined to form a larger system (Slotine, 2003; Lohmiller & Slotine, 1998). Such
systems can be combined in several ways, including parallel combinations, hierarchies, and certain
types of feedback to form a new system. The resulting composite system is guaranteed to be
contracting as well if the underlying sub-systems are contracting (Slotine & Lohmiller, 2001; Slo-
tine, 2003). Note that, in themselves, combinations of stable modules have no reason to be stable
(Slotine & Lohmiller, 2001). This is only guaranteed if the constituting modules are contracting.
To illustrate that contracting WTA networks can be used to construct larger networks, we next
simulated a network consisting of 6 identical WTAs (Fig 8). The purpose of this simulation is to
demonstrate that satisfying contraction-properties at the level of the constituting modules (one
WTA) is sufficient to guarantee stability of a large connected network with many (potentially
unknown) feedback loops.

Each WTA consists of 4 excitatory and 1 inhibitory unit. The first 4 WTAs represent states and
remaining two state-dependent transitions. Bidirectional γ connections were generated randomly
between the excitatory units of these 4 WTAs. Unidirectional φ connections where placed randomly
between units on the last 2 WTAs and units on the first 4 WTAs. Parameters were α = 1.3,
β1 = 3.2, β2 = 0.25, γ = 0.15, T = 1, and φ = 0.3. Inputs were generated randomly, first
restricted to only the state-carrying WTAs and later only to the transition-inducing units. One
instance of this simulation is shown in Fig 8. Note the following features of the result: i) the
network is in a non-linear hard-WTA configuration: except for transients, only one excitatory unit
in each WTA is active (Fig 8D). ii) The reaction to the same external input depends on the state
of the network. For example, consider the inputs to WTA 5 in Fig 8C. Input to unit 1 (blue) is
provided twice, but only once does this induce a state switch (visible as change of winners on the
first WTAs). iii) levels of activity are strictly bounded, despite external input and high gain of
the network (Fig 8D). Similar simulations with other weights (even randomized) are also stable,
as long as the parameters are within the ranges permitted.

Simulation of a networks consisting of 100 and 1000 WTAs, probabilistically connected as
described above, were found to be stable as well. We assume the parameters of the WTA itself
are static. The critical concerns are the connections between the WTAs (γ and φ). As long the
pairwise connection probability between a given WTA and all other WTAs is sufficiently low,
stability will be guaranteed. This is because the sum of all γj which connect to a particular unit
needs to observe the constraint shown in Eq 50:

∑
j γj ≤ 2

√
β1β2 − α.

3 Discussion

Biology is replete with examples in which relatively independent sub-systems are coupled together
by various degrees of time-varying positive and negative feedback, and nevertheless the entire
system is functionally stable. The neocortex, with its billion neurons parcellated into millions of
interconnected local circuits is one striking example of such a system. We have chosen to study
this cortical case, because the functional stability of the vastly interconnected cortical system is
intimately associated with the expression of stable intelligent behavior.
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Our contribution toward understanding this intriguing phenomenon of collective stability, is
that we have identified and properly analyzed a small functional module (here a WTA circuit) and
showed that this knowledge alone allows us to guarantee stability of the larger system. By insta-
bility we here mean anything that leads to run-away behavior, which in biological neurons means
the neurons will latch into saturation and, if active long enough, die (Syntichaki & Tavernarakis,
2003). We do not consider this seizure-like pathological state to offer ’boundedness’ in any useful
sense. Instead, it is the case that neurons usually operate at a small fraction of their maximum
firing rate, and their networks are only stable because of tight inhibitory-excitatory balance. The
brain pays considerable attention to maintaining this balance. For these reasons the stability of
neuronal networks is better cast as stability in a network of (effectively) positively unbounded
linear threshold neurons, than for example sigmoidal neurons. The simplified model neurons we
used make the problem tractable, while preserving the features of real neurons that we believe are
crucial to understand neuronal circuits and their stability. We thus expect our observations to be
directly applicable to spiking neurons.

The strength of these results is that they cast light on the problem of how global stability
can be achieved in the face of the locally strong feedbacks required for active, non-linear signal
processing. We have examined this problem in networks of WTA circuits, because the WTA is a
rich computational primitive, and because neuroanatomical connectivity data suggest that WTA-
like circuits are a strong feature of the networks formed by neurons in the superficial layers of
cortex.

In essence, we have employed Contraction Analysis to demonstrate that a WTA network can at
the same time be contracting and strongly amplifying. Our key results are the bounds documented
in Eqs 23-25, 50, 61 and illustrated in Fig 3. It is important to note that this analysis could not
have been performed with standard linear tools (such as eigenvalues of Jacobians at fixed points),
which rely on linearizations and do not provide global stability conditions. While in principle
the asymptotic convergence may have been demonstrated using a Lyapunov function (Slotine &
Li, 1991), actually no such function is known for these kinds of networks. In contrast, using
contraction analysis we could demonstrate exponential (as opposed to asymptotic) convergence for
arbitrary initial conditions. In addition to systematic analysis, we have also confirmed our results
with simulation of random systems composed of WTAs. The WTA network thus constitutes a
strong candidate for a canonical circuit which can serve as a basis for the bottom-up construction
of large biological and artificial computational systems. Our approach is similarly applicable to
functional modules other than WTAs, such as liquid state machines with feedback (Maass, Joshi,
& Sontag, 2007).

To systematically analyze subsets of active neurons which should either be contracting or not
(i.e. permitted winners or not) we utilized what we called li terms. The parcellation of the active
subsets of the network using such terms can be regarded as a generalization of the approach of
permitted and forbidden sets (”switching matrix”) (Hahnloser et al., 2003). However, that previous
approach is suitable only for fully symmetric networks, whereas the proper operation of a WTA
network requires asymmetry of the inhibitory connections. Our approach is to exhaustively show
for any possible subset of the li terms that it is either exponentially diverging or contracting. This
way, the network as a whole is guaranteed to exponentially converge to one of the fixed points.
The concept we developed can be applied at any point of time during the operation of the network.
In particular it can be applied before the winner is known. Our reasoning indeed guarantees that
a winner will be selected exponentially fast.

28



Winner-take-all networks are representatives of a broad class of networks, where a number of
excitatory units share a common inhibitory signal that serves to enforce competition (Dayan &
Abbott, 2001; Amari & Arbib, 1977; Yuille & Geiger, 2003; Hertz et al., 1991; Tank & Hopfield,
1986; Rabinovich et al., 2000; Ermentrout, 1992; Schmidhuber, 1989). There are many instances
of networks that share this property, including various neural networks but also gene regulatory
networks, in-vitro DNA circuits (Kim, Hopfield, & Winfree, 2004) and development. Competition
enforced by shared inhibition among excitatory units is a principal feature of brain organization
(Kurt et al., 2008; Baca, Marin-Burgin, Wagenaar, & Kristan, 2008; Tomioka et al., 2005; Pouille,
Marin-Burgin, Adesnik, Atallah, & Scanziani, 2009; Buzsaki, 1984; Mittmann, Koch, & Häusser,
2005; Gruber, Powell, & O’Donnell, 2009; Sasaki, Matsuki, & Ikegaya, 2007; Papadopoulou, Casse-
naer, Nowotny, & Laurent, 2010) and our findings are thus directly applicable for reasoning about
such circuits. WTA-type behavior has been experimentally demonstrated in a variety of brain
structures and species including the mammalian hippocampus and cortex (Kurt et al., 2008; Baca
et al., 2008; Mittmann et al., 2005; Gruber et al., 2009; Sasaki et al., 2007; Busse, Wade, & Caran-
dini, 2009). Also, the existence of functional WTA circuits has been suggested based on strong
anatomical evidence in others, in particular 6-layer cortex (Binzegger et al., 2004; Tomioka et al.,
2005).

Combining several WTA networks permits the implementation of computational operations
which can either not be performed by a single WTA or which would require an unrealistically
large WTA. In this paper, we show the constraints that need to be imposed on combinations of
such WTAs such that the new combined system is guaranteed to be stable. As an illustration
of the computational ability of a network consisting of several WTAs, we simulated a network
of 3 WTAs coupled both using symmetric and asymmetric connections (Figure 7). This network
demonstrates two crucial properties that combinations of WTAs permit: persistent activity in
the absence of input and state-dependent reaction to external input. While originally designed
to demonstrate the stability property, this is also a novel generalization of our previous state-
dependent processing network (Rutishauser & Douglas, 2009) as well as the pointer-map approach
(Hahnloser et al., 1999). Note that in contrast to the previous work, here all 3 WTAs are fully
homogeneous (identical). The only modifications needed are to establish appropriate connections
between the WTAs. In contrast, our previous networks consisted of one or several WTAs plus
specialized units. This new and more generic version makes the networks more stable, as excitatory
units can only exist as part of a WTA and thus always receive balanced inhibitory input. As in
the original (Rutishauser & Douglas, 2009), this enhanced three WTA network is also capable of
implementing any regular language (a state automaton).

While we demonstrated our approach for WTAs, our approach is sufficiently general to reason
systematically about the stability of any network, biological or technological, composed of networks
of small modules that express competition through shared inhibition. For example, synthetic DNA
circuits can perform computations, self-assemble and provide a natural way to enforce competition
through shared inhibition (Kim et al., 2004; Rothemund, Papadakis, & Winfree, 2004; Adleman,
1994). Both natural and synthetic gene regulatory networks depend on networks of stochastic
chemical reactions, resulting in a system of many nested feedback loops. Robustness is thus
a crucial issue (Soloveichik, 2009) and the notion of contracting modules to describe complex
aggregates might provide crucial insights into such systems. These networks can also implement
WTA-like computations (Kim et al., 2004). Self-assembly of synthetic DNA circuits and biological
tissue in general relies on de-novo bottom-up construction, analogous to our notion of first building
small contracting modules and then composing a system consisting of such modules.
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We expect that our results will have immediate application in interpreting the behavior of
biological neural networks. For example, most synapses in the nervous system are both unreliable
and plastic and so the postsynaptic effect elicited by given action potential is uncertain and time
varying. Contracting systems and their aggregations remain stable under these constraints pro-
vided the parameters remain within certain well-defined and rather broad ranges. Time-varying
changes both in the input as well as the structure of the network is thus permitted within a broad
range without endangering the stability of the system (Lohmiller & Slotine, 1998). This is partic-
ularly important if the system is modifying itself through processes such as developmental growth,
synaptic plasticity or adult neurogenesis.

A key question in neuroscience is how a large system such as the brain can rapidly modify itself
to adapt to new conditions. A possible solution that our results suggest is that some parts of the
network (the modules, here WTAs) could be pre-specified whereas the connections between the
modules are learned or modified. This would greatly reduce the required amount of learning or
developmental growth processes. A key question is how rules of plasticity can be utilized to enable
such learning. It is also an open question whether and how a given WTA can be systematically
decomposed into a combination of smaller WTAs that still perform the same function. This
question is crucial because the realistic size of a given WTA is restricted by the size of the projection
field of recurrent inhibition. Our results provide a framework for investigation of these important
questions.

4 Appendix

4.1 Appendix A: Constraints for persistent activity

The memory state requires ẋi = 0 while xi > 0 for the unit i that represents the last winner. At
this point, some necessary constraints on the weights can be derived. Since xi > 0, unit i is fully
linear. The activity of this unit is described by

τ ẋi = xi(α−G)− β1xN − Ti = 0 (63)

Thus, xi(α − G) = β1xN + Ti. It follows that α > G for xi to be positive. Intuitively,
α−G represents the effective recurrent input the unit receives after accounting for the load (which
causes it to decay exponentially to zero in the absence of input). This effective recurrent input
needs to be strong enough to account for the negative inhibitory input as well as the constant
current subtracted by the threshold. Also, in the two-map case, γ can be incorporated in this
argument as α+ γ > G (this follows from the synchrony, see below). Experimental measurements
in neocortex indicate that α > G (Douglas et al., 1995). The open-loop gain of such systems is > 1
(sometimes substantially so). Thus, these networks are only stable because of balanced inhibition.
The requirement to operate in the α > G posses strict requirements for stability.
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4.2 Appendix B: Notes on approximation of the activation function

To motivate the lj terms, consider the smooth non-linearity f(x) = log(a+exp(b(x+c)) with a = 1,

b = 1 and c = 0. Then, ẋ = exp(x)
exp(x)+1

. For large x, this is approximately equal to 1 and for negative
x < 0 approximately equal to 0. An approximate solution to the derivative is thus either 0 or 1.
Indeed, the sufficient stability conditions provided by the following analysis will be unchanged if
the nonlinearity is replaced by a general sigmoid of slope within the interval [0, 1], corresponding
to the dummy terms taking any time-varying value between 0 and 1. In optimization, a frequently
used approximation is p(x, a) = x + 1

α
log(1 + exp(−ax)) (the integral of the sigmoid function)

(Chen & Mangasarian, 1995). a > 0 is a constant. Its first derivative is 1
1+exp(−ax) and its second

derivative is a exp(−ax)
(1+exp(−ax))2 . Its derivatives are bounded between 0 and 1 and this function can thus

be used as a approximation. The approach that we use in this paper is thus similarly valid for this
and other smooth approximations (as long as the derivative is bounded <= 1).

4.3 Appendix C: Time-constants

All parameters given in the paper assume that the time-constant τ is the same for inhibitory and
excitatory units. Similar conditions can be derived if this is not the case. In particular, it is of
biological interest to consider inhibitory time-constants τI which are larger than the excitatory
time-constants τE. Taking possibly different time-constants into account, the bounds in Eqs 23-25
become

1 < α < 2

√
β1β2

τE
τI

+ 1− τE
τI

(64)

1

4

τE
τI

< β1β2 <
τE
τI

(65)

Note that the key variable is the ratio τE
τI

. If τE = τI , the bounds reduce to Eqs 23-25.
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