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Abstract

Any biological object, and speci�cally the brain, is the result of evolution. Evo-

lution proceeds by accumulation and combination of stable intermediate states � as

is well known, survival of the �ttest really means survival of the stable. Simple ex-

amples abound: for instance, human emotional response involves both a fast archaic

loop bypassing the cortex, and a slower cortical loop; motion control architecture in
vertebrates is believed to involve combinations of simple motor primitives. However,

in themselves, accumulations and combinations of stable elements have no reason to

be stable. Hence the hypothesis that evolution will favor a particular form of stabil-

ity, which automatically guarantees stability in combination. Such a form of stability,

which we refer to as "contraction," can be characterized mathematically. Thus, con-

traction theory may help guide functional modelling of the central nervous system,

and conversely it provides a systematic method to build arbitrarily complex robots out

of simpler elements. Furthermore, contraction theory may shed light on the problem

of perceptual unity (binding problem) by providing simple models and conditions for

the overall convergence of a large number of specialized processing elements connected

through networks of feedback loops.

1 Introduction

As our understanding of both brain function and robot design improves, common fundamen-
tal questions are starting to emerge, leading us to explore the relations between integrative
neuroscience and robotics beyond the most obvious analogies.
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While today the evolution and development of cognitive processes is seen as closely linked
to the progressive re�nement of sensorimotor functions, similarly robotics takes arti�cial
intelligence (AI) beyond its classical conceptual domain by emphasizing the central role of
physical interaction with the environment. Of course, the constraints and opportunities
of robotics are very di�erent from those of biology. While their physical hardware is far
behind nature's, in principle robots can have perfect memory, near-perfect repeatibility, can
use mathematics explicitly, and can simulate (imagine) speci�c actions much faster than
humans. The travelling speed of information through an nerve axon is signi�cantly slower
than the speed of sound, while that along an electrical wire is closer to the speed of light,
i.e., six orders of magnitude faster. Waiting (processing) time at each and every synapse is
about 1 ms, probably a major incentive for developing parallel computational architectures.
But similar delay problems can also be found in robotics, if one looks not at an autonomous
robot, but rather, for instance, at telerobotics over large distances.

While most of robotic theory is founded on physical models and mathematical algorithms,
the most fundamental conceptual tool in biology is the theory of evolution. Evolution pro-
ceeds by accumulation and combination of stable intermediate states: Darwin's \survival of
the �ttest" really means survival of the stable (Dawkins, 1976; Simon, 1962). For instance,
human emotional response involves both a fast archaic loop bypassing the cortex, and a
slower cortical loop (Ledoux, 1996); motion control architecture in vertebrates is believed to
involve combinations of simple motor primitives (Bernstein, 1967; Bizzi, et al., 1993).

Conceptually, such accumulations have also been a recurrent theme in cybernetics and
AI history (Walter, 1950, 1951; Simon, 1962, 1981; Ashby, 1966; Braitenberg, 1984; Minsky,
1986) under various guises (Brooks, 1986, 1999). They also form the basis of several recent
theories of brain function (Tononi, et al., 1998; Dehaene, et al., 1998; Crick and Koch, 1998;
Edelman and Tononi, 2000; Grossberg, 2000) and of biological motor control (Bernstein,
1967; Bizzi, et al., 1993; Mussa-Ivaldi, 1997; Wolpert and Kawato, 1998; Tresch, et al., 1999;
Jordan and Wolpert, 1999; Thoroughman and Shadmer, 2000; Giszter, et al. 2000).

However, in themselves, accumulations and combinations of stable elements have no rea-
son to be stable. Hence our hypothesis that evolution will favor a particular form of stability,
which automatically guarantees stability in combination, since this would considerably re-
duce (in e�ect, avoid combinatorial explosion of) trial-and-error as the systems become large
and complex. Such a form of stability, which we shall refer to as "contraction," can be
characterized mathematically. Thus, contraction theory may help guide functional mod-
elling of the central nervous system, and conversely it provides a systematic method to build
arbitrarily complex robots out of simpler elements.

In this paper, we explore some of the possible implications of this hypothesis. In section 2,
we de�ne contraction and review its basic properties. In section 3, we discuss some potential
applications to physiological modelling. As we shall see, contraction theory may also shed
light on the problem of perceptual unity (binding problem) by providing simple models and
conditions for the overall convergence of a large number of specialized processing elements
connected through networks of feedback loops. Section 4 speci�cally discusses issues of delays
in information transmission. Section 5 o�ers brief concluding remarks.
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2 Modularity and Stability

Basically, a nonlinear dynamic system will be called contracting if initial conditions or tem-
porary disturbances are forgotten exponentially fast, i.e., if trajectories of the perturbed
system return to to their nominal behavior with an exponential convergence rate. It turns
out that relatively simple conditions can be given for this stability-like property to be ver-
i�ed, and furthermore that this property is preserved through basic system combinations,
such as parallel combinations, feedback combinations, and series or hierachies.

Incidentally, such a de�nition �ts rather naturally with known data on biological motion
perturbation, e.g. perturbation of arm movement (Soechting and Lacquaniti, 1988; Won and
Hogan, 1995). Furthermore, it is intrinsic, in the sense that the system's \nominal" behavior
needs not be known. Finally, such a form of stability, at least in a local sense, is also a basic
prerequisite for any learning, since it guarantees the consistency of the system's behavior in
the presence of small disturbances or variations in initial conditions.

2.1 Contraction Analysis

In this section, we summarize the basic results of (Lohmiller and Slotine, 1998), to which the
reader is referred for more details. We consider general deterministic systems of the form

_x = f(x; t) (1)

where f is an n � 1 nonlinear vector function and x is the n � 1 state vector. The above
equation may also represent the closed-loop dynamics of a controlled system with state
feedback u(x; t). All quantities are assumed to be real and smooth, by which it is meant
that any required derivative or partial derivative exists and is continuous. The basic result
of (Lohmiller and Slotine, 1998) can then be stated as

Theorem 1 Consider the system (1). If theres exist a uniformly positive de�nite metric

M(x; t) = �(x; t)T �(x; t),

such that the associated generalized Jacobian

F =
�
_� +� @f

@x

�
��1

is uniformly negative de�nite, then all system trajectories then converge exponentially to a
single trajectory, with convergence rate j�maxj, where �max is the largest eigenvalue of the
symmetric part of F.

It can be shown conversely that the existence of a uniformly positive de�nite metric with
respect to which the system is contracting is also a necessary condition for global exponential
convergence of trajectories. In the linear time-invariant case, a system is globally contracting
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if and only if it is strictly stable, with F simply being a normal Jordan form of the system
and � the coordinate transformation to that form.

In this paper, for simplicity we shall concentrate on the global convergence result above.
In the case that F is uniformly negative de�nite only in a �nite region, then the result can
be shown to hold for all trajectories starting in the largest ball (with respect to the metric
M) contained in that region.

Example 2.1: Consider the gradient descent method for a time-varying cost function V (x; t)

_x = �
@V

@x

If V is strictly convex, i.e., if @2V
@x2

> 0 uniformly, then this dynamics is contracting, since its

Jacobian is uniformly negative de�nite. 2

Example 2.2: Time-invariant contracting systems can be shown to converge to a unique

equilibrium point. Indeed, consider the system _x = f(x), contracting with respect to �. One

can easily verify that
d

dt
(�f ) = F(�f)

which implies that �f and thus f = _x converge exponentially to zero, and therefore that x

converges exponentially to a constant vector.

Similarly, contracting systems of the form

_x = f(x;u(t))

where the input u(t) is periodic in time, can be shown to converge towards a periodic state of

the same period as the input. 2

2.2 Combinations of contracting systems

As a form of stability, one of the main features of contraction is that it is automatically pre-
served through a variety of system combinations. The reader is again referred to (Lohmiller
and Slotine, 1998; 2000a) for further details and extensions.

Formally, some of the combination properties of contracting systems are most easily
stated used the notion of a virtual displacement, from classical physics. A virtual displace-
ment Æx is an in�nitesimal displacement at �xed time. Coordinate transformations of the
form Æz = �(x; t)Æx can be performed on virtual displacements � these are much more
general than simple coordinate changes, since an explicit z need not need exist, i.e., the
transformation need not be integrable. �(x; t)T �(x; t) de�nes the metric in Theorem 1.

Parallel combination: Consider two systems of the same dimension, contracting in the
same metric,

_x = fi(x; t) i = 1; 2
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Assume further that the metric depends only the state x and not explicitly on time. Then,
any uniformly positive superposition (where 9 � > 0; 8t � 0; 9 i; �i(t) � �)

_x = �1(t) f1(x; t) + �2(t) f2(x; t)

is contracting in the same metric. By recursion, this property can be extended to any number
of systems.

Hierarchical Combination: Consider two contracting systems, of possibly di�erent di-
mensions and metrics, and connect them in series, leading to a smooth virtual dynamics of
the form

d

dt

 
Æz1
Æz2

!
=

 
F11 0
F21 F22

! 
Æz1
Æz2

!

Then the overall system is contracting, as long as F21 is bounded. By recursion, the result
extends to hierarchies or cascades of contracting systems of arbitrary depths.

Feedback Combination: Consider two contracting systems, of possibly di�erent dimen-
sions and metrics, and connect them in feedback, in such a way that the overall virtual
dynamics is of the form

d

dt

 
Æz1
Æz2

!
=

 
F1 G

� GT F2

! 
Æz1
Æz2

!

where the matrix G(x1;x2; t) is arbitrary (other than being a matrix of partial derivatives).
Then the overall system is contracting. The result can of course be extended to any number of
systems: with obvious notations, overall contraction is achieved if Gij+G

T
ji = 0; 8i; j; i 6= j.

Note that, essentially, the convergence rate of parallel combinations is the weighted sum
of the individual convergence rates, the convergence rate of feedback combinations is the
slowest of the individual convergence rates, and the convergence time-constant of hierarchical
combinations is the sum the individual convergence time-constants.

Translation and scaling: It is straightforward to show that if f(x; t) de�nes a contract-
ing dynamics with respect to a constant metric, so does any scaled and translated version
f(a(t)x � b(t); t), where a(t) and b(t) are arbitrary di�erentiable functions and a(t) is uni-
formly positive de�nite. This property, combined with the parallel combination property
above, can allow contracting dynamics to be used as wavelet-like basis functions in problems
of dynamic approximation, estimation, and adaptive control,

_x =
X
i

�i(t) f(ai(t)x� bi(t); t)

and thus can provide practical tools for progressive re�nement and learning. Note that the
translation step is tuned to the scale

ai(t) x � bi(t) = ai(t)
�
x �

bi(t)

ai(t)

�
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Of course, contraction is also preserved by any combination of the above. External inputs
can be provided through any subsytem dynamics. Overall contraction also implies that the
system will recover exponentially fast from temporary disturbances in any subsystem.

It is straightforward to incorporate adaptive techniques in contraction-based designs if
part of the system's uncertainty consists of unknown but constant or slowly-varying pa-
rameters (Lohmiller and Slotine, 2000b). Finally, although for simplicity we concentrate on
systems described by ordinary di�erential equations, the discussion extends to large classes
of partial di�erential equations.

3 Some applications

In this section, we discuss some potential applications of the above discussion to physiological
modelling and robotic design. Speci�cally, we discuss composite signals, motor primitives,
navigation, prediction, and oscillator synchronisation. We also show how the developement
�ts naturally with recent theories on the binding problem. In section 4, we will speci�cally
consider some questions linked to information transmission delays in biological and robotic
systems.

3.1 Composite variables

Composite signals, i.e., signals representing mixtures of more obvious physical quantities
such as position or velocity, are pervasive in the nervous system (Berthoz, 1999). There
may be good mathematical reasons for this. Indeed, using the right combination of variables
can signi�cantly reduce the complexity of control or estimation problems by enforcing a
hierarchy of contracting systems, as we now brie
y discuss. Composite variables will also
be discussed later in the context of predictor and observer design, and to robustify systems
against information transmission delays.

Control problems, for instance, are often greatly simpli�ed by the introduction of inter-
mediate \sliding" variables. A sliding variable is a combination of the instantaneous error
and its successive time derivatives. By choosing this combination so that the implicit di�er-
ential equation it de�nes is exponentially stable, high-order control problems can be reduced
to much easier �rst-order problems (see e.g., (Slotine and Li, 1991)). For example, in a
second-order mechanical system, one may choose

s = _~q + �~q

where ~q(t) = q(t)� qd(t) is the tracking error and � is a strictly positive constant. From the
point of view of the previous discussion, such composite variables correspond to creating a
hierarchy of contracting systems

_s = �(s; t) contracting by choice of control law
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_~x + �~x = s contracting by de�nition of s

The qualitative behavior of the contracting system depends on the actual choice of the
composite variable. For instance,

_~x + (�1 + �2j~xj)~x = s

(where the �i are strictly positive constants) reacts faster to larger errors, since its scalar
Jacobian is �(�1 + 2�2j~xj). The dimension of the controlled space can even change in
real-time. For instance, the following choice (Slotine and Khatib, 1988)

_x+ � ~x sat(
Vmax

�k~xk
) = s

corresponds to a ballistic motion at constant velocity Vmax in the direction opposite to the
error vector, followed by a linear position control when the target is in reach:

k~xk large ! _x+ Vmax
~x

k~xk
= s

k~xk small ! _x+ � ~x = s

Consider now an arbitrary number of continuously di�erentiable dynamics

_x = fi(x; t)

that are all locally contracting in some ball Bi around di�erent operating points xi with
respect to possibly di�erent �i . These dynamics can be sequenced while preserving overall
contraction, as long as switching between dynamics occurs when xi 2 Bi+1 (analogously
to more classical task sequencing in e.g. (Burridge, et al., 1999)). Composite variables may
also be used to control such control switching between di�erent phases of a task, or between
stereotyped motions � a preliminary investigation of this hypothesis using psychophysical
experiments was performed in (Hanneton, et al., 1998).

Composite variables of the above type will also be used in the next example.

3.2 Motor primitives

Recently, there has been considerable interest in analyzing feedback controllers for biological
motor control systems as combinations of simpler elements, or motor primitives (Bizzi, et
al., 1993; Mussa-Ivaldi, 1997; d'Avella and Bizzi, 1998; Tresch, et al., 1999). Besides being
biological plausible, such a structure is intuitively appealing, as it may yield considerable
dimensionality reduction in learning and planning. More recent work aims to con�rm this
general structure using intrinsic experiments (Giszter and Kargo, 2000; Kargo and Giszter,
2000). Similar goals motivate e.g. (Atkeson et al., 1997; Schaal, 1999; Fod et al., 2000).

(Bizzi, et al., 1993; Mussa-Ivaldi, 1997) stimulate a small number of areas in a frog's
spinal cord and measure the resulting torque/angle relations. Force �elds appear to add
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when di�erent areas are stimulated at the same time, so that (Bizzi, et al., 1993; Mussa-
Ivaldi, 1997) propose the following biological control inputs

� = �
nX
1

ki(t)f(q� qi)

where each single torque ki(t)f(q� qi(t)) results from the stimulation of area i in the spinal
cord, with ki(t) � �k > 0 and @f

@q
� �I > 0 . Likely candidates for ki(t) are sigmoids and

pulses (Mussa-Ivaldi, 1997; Berthoz, 1993), and periodic activation patterns from central
pattern generators.

However time-varying spring gains ki(t) do not generally guarantee stable mechanical
motions. Imagine a spring which is very weak when it is being elongated and very strong when
it puts back energy in the system. This spring represents an energy source and the system
can become unstable. Instead, assume that an intermediate composite variable is used, for
instance s = q + T _q , with T a strictly positive constant, and introduce corresponding
damping, so as to get the dynamics in �rst-order form

H _s = �
nX
1

ki(t)f(s� si(t))

Note that the sliding variable, which replaces pure position as the argument of the primitives,
can be interpreted simply as a �rst-order prediction of position, with prediction time T . As
discussed in section 3.1, however, many structures for s are actually possible, as long as they
de�ne contracting dynamics. Biological plausibility of speci�c choices may be studied as
physiological data in motion (rather than isometric data) becomes available.

The \open-loop" terms ki(t) (and, if non-zero, si(t)) describing the desired trajectory,
may themselves be the outputs of contracting dynamics in the brain, time-advanced because
of the signi�cant nerve transmission delays. The primitives in (s�si) may then be generated
at the spinal chord level through high-bandwidth few-synapse connections (combined with
the natural viscoelastic properties of the muscles). Note that di�erent metrics may be used
at each level of this hierarchy. This is rather natural, since e.g. typically motion control is
done in intrinsic coordinates, while planning is done in extrinsic coordinates � indeed, it has
even been suggested that some aspects of motion planning in the brain may use an aÆne
metric, perhaps exploiting commonalities with visual processing (Pollick and Sapiro, 1997;
Flash, et al., 1997).

Finally, note some that not all motion primitives need to be contracting: some can be
repulsive (as in obstacle avoidance, for instance when arm motion should avoid hitting the
torso), as long as the overall sum is contracting.

3.3 Navigation

In the human vestibular system, otolithic organs measure linear acceleration, while semi-
circular canals estimate angular velocity (through heavily damped angular acceleration sig-
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nals). As is well known, this con�guration is essentially the same as in the so-called strap-
down problem in inertial navigation, where angular position (Euler angles) x = ( ; �; �)T

and inertial position r are computed from angular velocity ! and acceleration 
, measured
in intrinsic (body-�xed) coordinates,

_x = H�1! (2)

�r = _v = A
 (3)

with

H =

0
B@

1 0 � sin �
0 cos cos � sin 
0 � sin cos � cos 

1
CA

Using � = AH , where A(x) is the orthonormal transformation matrix from intrinsic to
inertial coordinates, leads for (2) to the generalized Jacobian (Lohmiller and Slotine, 2000a)

F = 0

Thus, (2) and (3) represent a hierarchy of three indi�erent systems. Noticing that @A=@x
is bounded, this shows that the basic strapdown algorithm is marginally contracting.

Strict contraction can then be ensured either by addition of dissipation, or by appropriate
combination with other sensors (such as vision), and thus the above stucture can form the
basis of a navigation system.

3.4 Prediction and Observers

Prediction is one of the main activities of the brain (Berthoz, 1999). It can be found in
many aspects, such as anticipating the trajectory of a ball to be caught, avoiding moving
obstacles, using the last hours of sleep to prepare the body to awake, and even perhaps in
the unreasonable e�ectiveness of the placebo e�ect. Prediction also plays a key role in active
sensing, perception (as opposed to just sensing). In the nervous system, sensory information
is selected, �ltered, or simpli�ed at every sensory relay.

Which brings us to the general question of observers, which are mathematical algorithms
used to compute or predict the internal state of a dynamic system given partial measure-
ments. An observer is typically composed of a system simulation (using a perhaps coarse
internal model), guided and corrected by actual measurements on the system. Furthermore,
in the case of active sensing and under certain conditions, the observer can select the mea-
surement or set of measurements to best improve the estimate � at any instant, the most
relevant measurement to be made can be speci�ed a priori. Kalman �lters and their ex-
tensions are probably the best known observers for linear systems, and are designed to be
optimal in some speci�c sense (see (Dickmanns, 1998) for a recent discussion of active sens-
ing applications), but similar ideas can apply to nonlinear systems as well. Also note that
observers may be viewed as generalizing the notion of a content-addressable memory � as
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in the case of Marcel Proust's madeleine leading to the eight volumes of \Remembrance of
Things Past."

Speci�cally, consider a dynamic system

_x = f(x; t)

If the system is contracting, an observer can be constructed just by copying the dynamics

_̂x = f(x̂; t)

Indeed, the estimate x̂ will then converge towards x exponentially. In the more general case,
if a partial or indirect measurement of the state is available (dim y � dim x)

y = y(x)

under certain conditions one can choose a function g such that the dynamics

_̂x = f(x̂; t) + g(ŷ � y)

converges towards x exponentially, where ŷ = y(x̂) . Note the prediction/correction (or
equivalently, simulation/feedback) structure of the above equation. The choice of g can be
simpli�ed by using an appropriate composite variable.

Example 3.1: Consider the Van der Pol oscillator

�x+ (x2 � 1) _x+ f(x; t) = 0

where x is measured and v = _x to be estimated. De�ning the composite variable

v̂ = �v + kx k > 1

the observer
_�v + (x2 + k � 1)v̂ + f(x; t) = 0

leads to exponential convergence of the estimate v̂ to v. Indeed, one has

_̂v + (x2 � 1)v̂ + k(v̂ � v) + f(x; t) = 0

where v̂ = v is a particular solution and the Jacobian � (x2 + k � 1) is uniformly negative

de�nite.

The role of the internal model can also be well understood on this example. Consider instead the
problem of estimating velocity given position measurements, based on the simpler system model

�x = 0

Proceeding as before leads to the observer

_�v + �v̂ = 0

v̂ = �v + �x

But this is nothing but �ltered di�erentation

v̂ = �

�
1�

�

p+ �

�
x =

� p

p+ �
x

(with p the Laplace variable), which indeed converges exponentially to the correct value for the

system model. 2
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It can be shown that bounds on the quality of the internal model translate into bounds
on the quality of the estimation. Furthermore, one can trade o� modelling quality versus
measurement precision, as we discuss next.

Assume now that the measurements occur instead at discrete time instants. The predic-
tion/correction parts of the observer are then performed in sequence, with prediction occuring
between measurements, and correction when the new measurement becomes available

_̂x = f(x̂; t) simulation between measurements

x̂new = x̂old + g(ŷold � y; t) discrete update based on measurement

In this form, it becomes clear that if several possible measurements or sets of measurements
can be performed, one may try at each step to select the most relevant (i.e., the measurement
or set of measurements i which will best contribute to improving the estimate x̂)

x̂+ = x̂� + gi(ŷ
�
i � yi; t)

Similarly to the Kalman �lters used in (Dickmanns, 1998) for linear systems, this can be
achieved by computing, along with the state estimate itself, the corresponding quadratic
bounds R on the estimation error (Lohmiller and Slotine, 2000b), and then selecting accord-
ingly the measurement i which minimizes

Rnew = ��i e
�iTi Rold + kdmodel Ti + dikmax

Note the trade-o� between internal model precision, represented by dmodel, measurement
quality, represented by the error bound di, and measurement frequency 1=Ti (with �i the
expansion rate between measurements, and ��i the discrete expansion rate at measurement
time).

Finally, by analogy with sensory relays, note that hierarchies of contracting observers are
themselves contracting.

3.5 Oscillator Synchronisation

Rythmic phenomena are pervasive in physiology. These include, for instance, the rhythmic
motor behaviors used in locomotion and driven by central pattern generators, as in walking,
swimming, or 
ying, automatic mechanisms such as breathing and heart cycles, and intrinsic
pacemakers in the brain (Kandel, et al., 2000; Dowling, 1992). As we mentioned earlier, a
time-invariant contracting system driven by a periodic input converges exponentially to a
periodic state of the same period. The results can be made more speci�c in the practically
important case of oscillator synchronisation, using tools quite similar to those studied for
observers.

Example 3.2: Consider two identical Van der Pol oscillators in series

�x1 + �(x21 � 1) _x1 + !2x1 = �k( _x2 � _x1)
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�x2 + �(x22 � 1) _x2 + !2x2 = 0

The �rst equation can be written, with _x2 viewed as an input,

�x1 + �(x21 + k � 1) _x1 + !2x1 = �k _x2

which can easily be shown to be contracting for k > 1 (Combescot and Slotine, 2000). Further-

more, since x1 = x2 is an obvious particular solution, x1 ! x2 exponentially.

The result immediately extends to cascade of oscillators of the form

�x1 + �(x21 � 1) _x1 + !2x1 = �k( _x2 � _x1)

�x2 + �(x22 � 1) _x2 + !2x2 = �k( _x3 � _x2)

: : : : :

�xn + �(x2n � 1) _xn + !2xn = �k( _xn+1 � _xn)

�xn+1 + �(x2n+1 � 1) _xn+1 + !2xn+1 = 0

which all converge exponentially to xn+1. Indeed, this represents a hierarchy of n contracting

systems driven by xn+1, with x1 = x2 = : : : = xn = xn+1 as a particular solution.

The result may also be combined with the observer of Example 3.1 when only position measur-

erents are available. 2

A recent discussion of oscillators in the context of robotics can be found in (Williamson,
1999).

3.6 On the binding problem

The binding problem has long been one of the central themes of neuroscience. It is the
question of how, based on external inputs from multiple sensory modalities, hundreds of
specialized processing elements distributed in the brain give rise to a single uni�ed per-
ception of the world. In vision alone, for instance, some cortical areas process edges, others
shape, motion, depth, color, and so on. While there is extensive literature on the subject (see
(Kandel, et al., 2000)), recently it has been emphasized that the problem may be approached
as one involving overall convergence of large clusters of specialized dynamic processing ele-
ments connected through dense networks of feedback loops (Tononi, et al., 1998; Dehaene, et
al., 1998; Edelman and Tononi, 2000), primarily in the fast, thalamo-cortical system.

The previous discussion, of course, provides simple suÆcient conditions for such systems
to actually converge, and further for their states to vary smoothly and consistently as their
inputs change: one only needs each of the processing dynamics to be contracting, and the
feedback connection to enforce the required structure in some appropriate metric. While
precisely determining to what extent this happens in the brain would be a formidable task,
the principle could at least be used to achieve similar \decentralized" integration in arti�cial
systems.
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As mentioned in section 2.2, and regardless of the network's size, the overall convergence
rate will be merely the slowest of the individual convergence rates. This means in particular
that any new input or data supplied to a subsystem will quickly propagate through and be
processed by the entire system. Similarly, if driven by a signal periodic in time, the entire
system would quickly converge to an overall behavior at the same period. Note that this
is in sharp contrast with a hierarchical or series structure, where convergence time rapidly
increases with system size, and information 
ow is unidirectional.

For instance, if the individual building blocks are time-invariant, then, given any con-
stant inputs, the overall system will tend towards a unique equilibrium, with an exponential
convergence rate equal to that of the slowest subsystem. It may be viewed as solving, in a
distributed fashion, the set of coupled algebraic equations de�ned by _xi = 0 ; 8i. Of course,
some of the building blocks may themselves consist of system combinations, such as sums or
hierarchies of contracting sub-blocks.

In the next section, we consider similar questions of asynchronous distributed computa-
tion when the time-delay of information transmission between subsystems is signi�cant. In
particular, we show that, in principle, binding can still be achieved in those cases, although
of course convergence rate is then limited by the transmission delays.

4 Transmission delays

Delays are central in shaping the organisation and the performance of the central nervous
system. Besides the fast cortico-thalamo-cortical feedback loops mentioned above, the brain
uses also unidirectional, \long" loops or rings, for instance cortico-cerebello-thalamo-cortical
loops. Similarly, information takes about 1/10 second to travel from the brain to the hand,
including muscle delays. When playing a very fast passage on the piano, there is, literally, no
time for conscious feedback control. Many aircraft cockpit displays are analog rather than
digital so as to minimize reaction time. In robotics, similar questions of delays occur in the
context of force-re
ecting teleoperation for instance, or in handling computational delays, as
in visual processing.

Consider n such subsystems, of possibly di�erent dimensions

_zi = fi(zi; t) +
X
j

Gij�ij i = 1; :::; n

where the sum is performed over each loop j connecting subsystem i with other subsys-
tems. The loops are assumed to be separate, i.e., not to share common links, although each
subsystem may be part of many loops. The Gij are constant, and for each loop j the �ij
have the same dimension. Examples of this architecture include meshes or webs of arbitrary
size, with bidirectional coupling along each link, as well as parallel unidirectional rings of
arbitrary length. Inputs to the overall system can be provided through any of the subsystem
dynamics.
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While delays are inherent to the system physics, the overall system's stability properties
depend on which variables are actually transmitted. De�ne a composite input variable at
the subsystem i along the loop j

uij = GT
ijzi + Kj �ij

and a corresponding composite output variable

yij = GT
ijzi � Kj �ij

where Kj is a constant symmetric positive de�nite matrix which can be selected arbitrarily
for each loop j. Next, use these variables to transmit information along the loop j from
subsystem i1 to subsystem i2 , with time delay Ti1j

ui2j(t) = yi1j(t� Ti1j)

Extending the derivation in (Lohmiller and Slotine, 2000a), the rate of change of di�erential
length can then be computed as

1

2

d

dt

nX
i=1

0
@ÆzTi Æzi + 1

2

X
j

Z t

t�Tij

ÆyTijK
�1
j Æyij d�

1
A =

nX
i=1

Æzi
@fi
@zi

Æzi

Assuming that the individual subsystems are all contracting, this in turn shows asymptotic
contraction of the overall system.

The role of the composite variables above may be best understood from the physical
analogy which inspired it (Niemeyer and Slotine, 1991). If we restrict the above discussion
to mechanical systems, essentially the above transformations make the transmission channels
mimic 
exible mechanical beams � while such beams transmit waves bidirectionally with
pure delays, they contain no source of energy and therefore are inherently stable (Anderson
and Spong, 1989). Thus, the composite variables are referred to as \wave" (or scattering)
variables. Some further 
exibility in their choice can be obtained by noticing that contraction
is preserved through any orthonormal cooordinate change on the zi, and that the inputs �i
can be rede�ned through any constant invertible transformation. A preliminary investigation
of the role of wave variables in the control of biological movement, and in particular of their
relevance to models of the intermediate cerebellum, is proposed in (Massaquoi and Slotine,
1996).

In the case that the individual subsystems are time-invariant, the system tends towards
a unique equilibrium, which is therefore independent of the delays. Furthermore, if constant
external inputs are introduced, the system may be viewed as performing, in a distributed
fashion, the associated algebraic computations _zi = 0 ; 8i; with constraints of the form
ui1j = yi2j between adjacent subsystems i1 and i2 along the loop j, leading to GT

i1j
zi1j =

GT
i2j
zi2j and

P
i �ij = 0.
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5 Concluding remarks

The above program is of course rather ambitious, and the results presented preliminary.
However, we believe that it may lead to a better understanding of complex systems built
in stages, such as biological systems, and thus may be viewed as suggesting a dynamic
version of the pioneering work of (Simon, 1962). A speci�c discussion of the oculo-motor
system in this context is presented in (Berthoz and Slotine, 2000). Finally, note that, in
principle, the discussion can also extend to e�ective interaction between multiple robots, be
they electromechanical or biochemical.
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Science Foundation (KDI initiative).
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