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Abstract

Nonlinear contraction theory allows surprisingly simple analysis of synchronisation phenomena in distributed networks of
coupled nonlinear elements. The key idea is the construction of a virtual contracting system whose particular solutions include
the individual subsystems’ states. We also study the role, in both nature and system design, of co-existing “power” leaders,
to which the networks synchronize, and “knowledge” leaders, to whose parameters the networks adapt. Also described are
applications to large scale computation using neural oscillators, and to time-delayed teleoperation between synchronized groups.

Similarly, contraction theory can be systematically and simply extended to address classical questions in hybrid nonlinear
systems. The key idea is to view the formal definition of a virtual displacement, a concept central to the theory, as describing
the state transition of a differential system. This yields in turn a compositional contraction analysis of switching and resetting
phenomena. Applications to hybrid nonlinear oscillators are also discussed.
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1 Introduction

This paper surveys recent applications and extensions of
contraction theory [29]. After a brief review of the basic
theory in section 2, we consider two broad domains, par-
tial contraction analysis of synchronization phenomena
in networks [58,51,48] in section 3, and compositional
contraction analysis of hybrid systems [7] in section 4.
Applications to cooperative control, large scale compu-
tation, and hybrid models of neural oscillators are also
discussed. Finally, extensions to time-delayed group tele-
operation [60] are studied in section 5.

2 Nonlinear Contraction Analysis

Basically, a nonlinear time-varying dynamic system will
be called contracting if initial conditions or temporary
disturbances are forgotten exponentially fast, i.e., if tra-
jectories of the perturbed system return to their nom-
inal behavior with an exponential convergence rate. It
turns out that relatively simple conditions can be given
for this stability-like property to be verified, and further-
more that this property is preserved through basic sys-
tem combinations. Furthermore, the concept of partial
contraction allows to extend the applications of contrac-

tion analysis to include convergence to behaviors or to
specific properties (such as equality of state components,
or convergence to a manifold) rather than trajectories.

2.1 A Basic Result

In this section, we summarize the basic results of [29],
to which the reader is referred for more details.

We consider general time-varying deterministic systems
of the form

ẋ = f(x, t) (1)

where f is an n×1 nonlinear vector function and x is the
n×1 state vector. The above equationmay also represent
the closed-loop dynamics of a controlled system with
state feedback u(x, t). All quantities are assumed to be
real and smooth, by which it is meant that any required
derivative or partial derivative exists and is continuous.
The basic result of [29] can then be stated as

Theorem 1 Consider system (1), and assume there ex-
ists a uniformly positive definite metric

M(x, t) = Θ′(x, t) Θ(x, t)
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such that the associated generalized Jacobian

F =
(
Θ̇ + Θ ∂f

∂x

)
Θ−1

is uniformly negative definite. Then all system trajecto-
ries converge exponentially to a single trajectory, with
convergence rate |λmax|, where λmax is the largest eigen-
value of the symmetric part of F. The system is said to
be contracting.

By Θ′ we mean the Hermitian (conjugate transpose) of
Θ, and by symmetric part ofFwemean 1

2 (F+F′). It can
be shown conversely that the existence of a uniformly
positive definite metric with respect to which the system
is contracting is also a necessary condition for global ex-
ponential convergence of trajectories. In the linear time-
invariant case, a system is globally contracting if and
only if it is strictly stable, with F simply being a normal
Jordan form of the system and Θ the coordinate trans-
formation to that form. The results immediately extend
to the case where the state is in Cn.

An important property is that, under mild conditions,
contraction is preserved through system combinations
such as parallel, series or hierarchies, translation and
scaling in time and state, and certain types of feed-
back [29,31,49,48].

Example 1 [48] Consider the system

ẋ = f(x, t) + B(x, t) u

and assume that there exist control primitives u =
pi(x, t) which, for any i, make the closed-loop system
contracting in some common metric M(x). Multiplying
each equation

ẋ = f(x, t) + B(x, t) pi(x, t)

by a positive coefficient αi(t), and summing, shows that
any convex combination of the control primitivespi(x, t)

ẋ = f(x, t)+B(x, t)
∑

i

αi(t) pi(x, t) ,
∑

i

αi(t) = 1

also leads to a contracting dynamics in the same metric.
For instance, the time-varying convex combination may
correspond to smoothly blending learned primitives in a
humanoid robot.

2.2 Partial Contraction

Next we recall the basic principles of partial contraction
analysis, which will be a major tool in studying synchro-
nization phenomena. The reader is referred to [58,51,48]
for details.

Theorem 2 Consider a nonlinear system of the form

ẋ = f(x,x, t)

and assume that the auxiliary system

ẏ = f(y,x, t)

is contracting with respect to y. If a particular solution of
the auxiliary y-system verifies a smooth specific property,
then all trajectories of the original x-system verify this
property exponentially. The original system is said to be
partially contracting.

Proof: The virtual, observer-like y-system has two par-
ticular solutions, namely y(t) = x(t) for all t ≥ 0 and
the solution with the specific property. This implies that
x(t) verifies the specific property exponentially. ✷

Note that contraction may be trivially regarded as a
particular case of partial contraction. Also, consider for
instance an original system in the form

ẋ = c(x, t) + d(x, t)

where function c is contracting in a constant metric. The
auxiliary contracting systemmay then be constructed as

ẏ = c(y, t) + d(x, t)

and the specific property of interest may consist e.g. of
a relationship between state variables.

The notion of building a virtual contracting system to
prove exponential convergence applies also to control
problems. Consider for instance a nonlinear system of
the form

ẋ = f(x,x,u, t)

and assume that the control input u(x,xd, t) can be cho-
sen such that

ẋd = f(xd,x,u, t)

where xd(t) is the desired state. Consider now the aux-
iliary system

ẏ = f(y,x,u, t)

It the auxiliary y-system is contracting, then x tends
xd exponentially exponentially, since both are particular
solutions of the y-system.

Example 2 Consider a rigid robot model

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ

and the energy-based controller [50]

H(q)q̈r + C(q, q̇)q̇r + g(q)− K(q̇ − q̇r) = τ
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with K a constant s.p.d. matrix. The virtual y-system

H(q)ẏ + C(q, q̇)y + g(q) − K(q̇ − y) = τ

has q̇ and q̇r as particular solutions, and furthermore
is contracting, since the skew-symmetry of the matrix
Ḣ − 2C implies

d
dt

δyTHδy = −2δyT(C + K)δy + δyTḢδy = −2δyTKδy

Thus q̇ tends to q̇r exponentially. Making then the usual
choice q̇r = q̇d − λ(q − qd) creates a hierarchy and
implies in turn that q tends to qd exponentially.

Example 3 Consider a convex combination or inter-
polation between contracting dynamics

ẋ =
∑

i

αi(x, t) fi(x, t)

where the individual systems ẋ = fi(x, t) are con-
tracting in a common metric M(x) and have a common
trajectory xo(t) (for instance an equilibrium), with all
αi(x, t) ≥ 0 and

∑
i αi(x, t) = 1. Then all trajectories

of the system globally exponentially converge to the tra-
jectory xo(t). Indeed, the auxiliary system

ẏ =
∑

i

αi(x, t) fi(y, t)

is contracting (with metric M(y) ) and has x(t) and
xo(t) as particular solutions.

Other applications of partial contraction are studied in
[58,51,59,60] and in [23].

3 Synchronization in Coupled Networks

The results in this section are based on [58,51,59,60].

3.1 Networks with General Connectivity

Fig. 1. An example of generally coupled networks.

Consider a coupled network containing n elements

ẋi = f(xi, t) +
∑
j∈Ni

uji (xj ,xi,x, t) i = 1, . . . , n

where x = [x1, . . . ,xn]T , uji is the coupling force from
element j to i, andNi denotes the set of the active neigh-
bors of element i, which can be very general (Figure 1

illustrates a distributed example). Assume more specif-
ically that the couplings are bidirectional, symmetric,
and of the form

uji = uji ( xj − xi, x, t )

where uji ( 0, x, t ) = 0 , and

Kji =
∂uji ( xj − xi, x, t )

∂(xj − xi)
> 0 uniformly

with Kji = Kij . For instance, one may have

uji = ( Cji(t) + Bji(t) ‖xj − xi‖ ) (xj − xi)

with Cji = Cij > 0 uniformly and Bji = Bij ≥ 0.

For such a coupled network, all the elements inside will
synchronize exponentially if

λm+1(LK) >
n

max
i=1

λmax(Jis) uniformly (2)

where m is the dimension of each single element, LK

denotes the weighted Laplacian matrix, and Jis is the
symmetric part of ∂f

∂x (xi, t). The proof [51][58] is based
on applying Theorem 2 to the auxiliary system

ẏi = f(yi, t) +
∑
j∈Ni

uji (yj − yi, x, t)− K0

n∑
j=1

yj +

K0

n∑
j=1

xj(t)

where K0 is a constant symmetric positive definite ma-
trix, whose value can be set arbitrarily according to need.
In a general understanding, the condition (2) is equiva-
lent to three requirements:

• the network is connected,
• λmax(Jis) is upper bounded,
• the coupling strengths are stronger than a threshold.

Note that if Jis is negative definite, synchronization will
occur for any coupling strength even if the network is
not connected. On the other hand, if Jis is contracting
but based on a non-identity metric, it may be the case
that elements are stable by themselves, but they will
tend to self-excited oscillations if diffusion interactions
are added [58], a phenomenon similar to pioneering work
by Turing [56] and Smale [52].

The analysis carries on straightforwardly to other kind
of couplings, to unidirectional couplings, and to positive
semi-definite couplings. The definition of the “neighbor”
setsNi is quite flexible. While it may be based simply on
position proximity (neighbors within a certain distance
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of each node), it can be chosen to reflect many other
factors, such as similarity, closure, continuity, common
region and connectedness.

3.2 Algebraic Connectivity

The three requirements we concluded in the last section
actually represents the conditions on both the individ-
ual dynamics and the network’s geometric structure. For
a coupled network, increasing the coupling gain for an
existing link or adding an extra link will both improve
the convergence process [58].

To see this in more detail, let us assume that all the links
within the network are bidirectional (the corresponding
graph is called undirected graph) with identical coupling
gain K = KT > 0. Thus,

λm+1( LK ) = λ2 λmin(K)

where λ2 is the algebraic connectivity (the second min-
imum eigenvalue) of the standard graph Laplacian ma-
trix. If both the element dynamics and the coupling gains
are fixed, the synchronization condition can be written
as

λ2 > λ̂ uniformly
where

λ̂ =
maxi λmax(Jis)

λmin(K)

In fact, we can further transform this condition to the
ones based on more explicit properties in geometry [51],
such as the graph diameter D (the maximum number of
links between two distinct nodes [10])

D <
4

nλ̂

or the mean distance ρ̄ (the average number of links
between distinct nodes [36])

ρ̄ <
2

λ̂(n− 1)
+

n− 2
2(n− 1)

These results imply that, different coupling links or
nodes may make different contributions to synchroniza-
tion, because they may play different roles in network
structure. Consider a network with open chain struc-
ture and another one as a closed ring (see Figure 2 as
an illustration). Although the number of coupling links
only differ by one in these two cases, with the network
size n tending to infinite, the effort to synchronize an
open chain network will be four times than that to a
closed one [51].

As another example, consider a ring network, a star net-
work and an all-to-all network. With the network size

......

Fig. 2. Comparison of a network with open chain structure
and another one as a closed ring.

n → ∞, the threshold of the coupling strength to syn-
chronize the ring network tends to infinite. It tends to 0
for the all-to-all network, and only needs to have order
1 for the star network. It is much easier to synchronize
the star network than to the ring. The reason is that,
the central node in the star network performs a global
role, which makes the graph diameter keep as constant
no matter how big the network size is. Such a star-liked
structure is very popular in real world. For instance, the
world wide web is composed by many connected subnet-
works with star structure.

Fig. 3. Comparison of three different kinds of networks.

3.3 Switching Networks

The results above can be extended to analyze the col-
lective behaviors of cooperating moving units with local
couplings, where the network structure changes abruptly
and asynchronously [21][44][51][58]. The examples in-
clude aggregate motions in the natural world, such as
bird flocks, fish schools, animal herds, or bee swarms.

Consider such a network. Assume the dynamics of ele-
ment i is given as the same as that in the last sections,
except that Ni = Ni(t) denotes the set of the active
neighbors at time t. Apply partial contraction analysis
to each time interval during which N (t) =

⋃Ni(t) is
fixed. If the condition (2) is always true, δzT δz with z =
[y1, . . . ,yn]T , the square distance between two neigh-
boring trajectories of the auxiliary system, is continuous
in time and upper bounded by a vanishing exponential
(though its time-derivative can be discontinuous at dis-
crete instants). Since the particular solution of the auxil-
iary system in each time interval is y1 = · · · = yn = y∞,
all the elements in the network will reach agreement ex-
ponentially as they tend to y1 = · · · = yn, which is a
constant region in the state-space.

As an example, we study a simplified model of schooling
or flocking in continuous-time

ẋi =
∑

j∈Ni(t)

Kji (xj − xi) i = 1, . . . , n

4



where xi denotes the set of the states needed to reach
agreements, such as heading, attitude, velocity, etc.
Ni(t) is defined as the set of the nearest neighbors
within a certain distance around element i at current
time t. Since Jis = 0 here, the synchronization con-
dition is satisfied if only the network is connected.
Therefore ∀i, xi converges exponentially to a par-
ticular solution, which in this case is a constant value
x̄ = 1

n

∑n
i=1 xi(0). In fact, to reach a group agreement,

the network need not be connected for any t ≥ 0. A
generalized condition can be derived which is the same
as that obtained in [21] for a discrete-time model. If we
separate time into an infinite sequence of bounded in-
tervals starting at t = 0, and if the network is connected
across each such interval (being connected across a time
interval means that the union of the different graphs
accounted along the interval is connected), the agree-
ment x1 = · · · = xn will be reached asymptotically − a
condition akin to persistency of excitation in adaptive
systems. The proof is based on the fact that, the closer
a subgroup tends to a local agreement, the closer they
tend to the global one [51].

3.4 Leader-Followers Networks

The previous results can also be extended to ana-
lyze the coupled network with an additional leader
[21][26][51][58]. Consider such a system

ẋ0 = f(x0, t)

ẋi = f(xi, t) +
∑
j∈Ni

Kji (xj − xi) + γi K0i (x0 − xi)

i= 1, . . . , n

where x0 is the state of the group leader, γi = 0 or 1,
and Ni does not include the links with x0. The states of
all the followers will converge exponentially to the state
of the leader [51][58] if

λmin(LK + In
γiK0i

) >
n

max
i=1

λmax(Jis) uniformly

where In
γiK0i

is a block diagonal matrix with the ith diag-
onal entry as γiK0i. Note that one important condition
for leader-following is that, the whole group of n+1 ele-
ments is connected. Thus the n followers could be either
connected together, or there could be isolated subgroups
all connected to the leader. Also note that, the network
structure here can change from time to time, too.

Note that this result, besides its dubious moral implica-
tions, also means that it is easy to detract a group from
its nominal behavior by introducing a “covert” element,
with possible applications to group control games, ethol-
ogy, and animal and plant mimicry.

The existence of an additional leader does not always
help the followers’ network to synchronize. Consider for

instance the case when the leader has identical connec-
tions to all the followers, i.e., ∀i, K0i = kI, k > 0. Then

λmin(LK + In
γiK0is

) = k

This implies that the connections between the leader
and the followers do promote the convergence within the
followers’ network if λm+1(LK) < k , which is more
likely to happen in a network with less connectivity.

Such a leader-following mechanism may cause synchro-
nization propagation [51] in big networks, where the den-
sity is not smoothly distributed. Therefore the leader
could be a group of elements, which synchronize first due
to high connectivity. This leaders group does not have to
be independent. They can receive feedback from the fol-
lowers as well. The inputs from these leaders then facil-
itate synchronization in low-density regions, where the
elements may not be able to synchronize by themselves.
The leaders group here is very similar to the concept of
core group in infectious disease dynamics [35], which is
a group of the most active individuals. A small change
in the core group will make a big difference in whether
or not an epidemic can occur in the whole population.

Note that synchronization can be made to propagate
from the center outward in a more active way, for in-
stance through diffusion of a chemical produced by lead-
ers or high-level elements and having the ability to ex-
pand the communication channels it passes through, i.e.,
to increase the gains through diffusion. Such a mecha-
nism represents a hierarchical combination with gain dy-
namics. By extending the state, the analysis tools pro-
vided here can apply more generally to combinations
where the gain dynamics are coupled to each other (with
arbitrary connectivity) and to the xi .

Finally, note that in the spirit of Example 1 (section 2),
different leaders xj

0 of arbitrary dynamics can define
different primitives which can be combined. Contraction
of the follower dynamics (i = 1, . . . , n)

ẋi = f(xi, t) +
∑
j∈Ni

Kji (xj−xi) +
∑

j

αj(t) γ
j
i Kj

0i (x
j
0−xi)

is preserved if
∑

j αj(t) ≥ 1, ∀t ≥ 0.

3.5 Knowledge-based Leaders

The leader-following mechanism we introduced in the
last section can be considered as power-based, where the
leader’s dynamics is independent and thus followed by
all the others. In fact, there exists another kind of leader
role, which is knowledge-based [60,61]. In a knowledge-
based network, members’ dynamics are initially non-
identical. The leader is the one whose dynamics is fixed
or changes comparatively slowly. The followers obtain
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dynamics knowledge from the leader through adapta-
tion. In this sense, if we understand the power leader as
the one who tells the others “where to go”, a knowledge
leader is the one who indicates “how to go”.

Consider a coupled network containing n elements

ẋi = f(xi,ai, t) +
∑
j∈Ni

Kji(xj − xi) i = 1, . . . , n

where the connectivity can be general. Assume now that
the uncoupled dynamics f(xi,ai, t) contains a parame-
ter set ai which has a fixed value a for all the knowl-
edge leaders. Denote Ω as the set of the followers, whose
adaptations are based on local interactions

ȧi = PiWT (xi, t)
∑
j∈Ni

Kji (xj − xi) ∀ i ∈ Ω

where Pi > 0 is constant and symmetric, and W(xi, t)
is defined by

f(xi,ai, t) = f(xi,a, t) + W(xi, t)ãi

with ãi = ai − a.

For such a knowledge-based leader-followers network, we
can derive a synchronization condition very similar to
(2), which contains no leaders. Consider the Lyapunov-
like function

V =
1
2
( xT LKx +

∑
i∈Ω

ãT
i P−1

i ãi )

which yields

V̇ = xT ( LKΛ − L2
K ) x

where
LKΛ = D I(KΛ)ijs

DT

D is the incidence matrix [10], and I(KΛ)ijs
is a block

diagonal matrix whose kth diagonal entry (KΛ)ijs is the
symmetric part of KijΛij , with

Λij =
∫ 1

0

∂f
∂x

(xj + χ(xi − xj),a, t) dχ

corresponding to the kth link. Applying Barbalat’s
lemma [50], the states of all the elements will converge
together asymptotically if

λ2
m+1(LK)
λn(L)

> max
k

λmax(KΛ)ijs

and all the states are bounded. Furthermore [50], ∀ i ∈ Ω,
ai will converge to a if ∃ α > 0, T > 0, ∀t ≥ 0,

∫ t+T

t

WT (xi, r)W(xi, r)dr ≥ αI

Note that such is the case in a coupled oscillator network
as long as oscillations are preserved.

The analysis, detailed in [60],implies that new elements
can be added into the network without prior knowledge
of the individual dynamics, and that elements in an ex-
isting network have the ability to recover dynamic in-
formation if temporarily lost. Similar knowledge-based
leader-followers mechanism may exist in many natural
processes. In evolutionary biology, for instance, knowl-
edge leaders are essential to keep the evolution processes
uninvasible or evolutionary stable [43]. In reproduction,
the leaders are senior members. The knowledge-based
mechanism may also describe evolutionary mutation or
disease infection [35], where the leaders are mutants or
invaders. Knowledge-based leader-followingmay also oc-
cur in animal aggregate motions or human social activ-
ities. In a bird flock, for instance, the knowledge leader
can be a junior or injured member whose moving capac-
ity is limited, and which is protected by others through
dynamic adaptation.

In fact, knowledge leaders holding different parameters
can co-exist in the same network. Assume the dynamics
f contains l parameter sets a1, a2, . . . ,al with

f(xi, a1
i , . . . ,a

l
i, t) = f(xi, a1, . . . ,al, t) +

l∑
k=1

Wkãk
i

Denoting by Ω1,Ω2, . . . ,Ωl the followers sets corre-
sponding to different parameters, the adaptation laws
are, for k = 1, 2, . . . , l,

ȧk
i = Pk

i WT
k (xi, t)

∑
j∈Ni

Kji (xj − xi) ∀ i ∈ Ωk

Power leaders and knowledge leaders can co-exist in the
same network. For instance, a leader guiding the direc-
tion may use state measurements from its neighbors to
adapt its parameters to the values of the knowledge lead-
ers.

The adaptation law we used corresponds to inserting an
integrator in the feedback loop [50]. Such an integra-
tor can be replaced by any operator which preserves the
passivity of the mapping from measurement error to pa-
rameter error. For instance, the adaptation law could be

âi = ai + QiWT (xi, t)
∑
j∈Ni

Kji (xj − xi)
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where Qi > 0 is symmetric and constant, and ai is de-
fined as before. Using estimated parameter âi in the fol-
lowers’ dynamics corresponds to putting an PI block in
feedback loop, which improves the convergence rate as
compared to having only the I operator.

The adaptive model we described represents a genotype-
phenotype mapping, where adaptation occurring in
genotypic space is based on the interactions of be-
havioral phenotypes. The complexity of the genotype-
phenotype mapping makes it still a challenge in today’s
evolutionary biology [43].

Last, both power leaders and knowledge leaders could be
virtual, which is common in animal aggregate motions.
For instance, a landmark may be used as a virtual power
leader. Similarly, when hunting, an escaping prey could
specify both where and how.

3.6 Fast Neural Computation

Recent research has explored the notion that artificial
spike-based computation, inspired by models of com-
putations in the central nervous system, may present
significant advantages for specific types of large scale
problems[9][11] [47][55][57]. In this section, we study
new models for two common instances of such com-
putation, winner-take-all(WTA)[1][12][22] [33][59] and
coincidence detection [17][59]. In both cases, very fast
convergence is achieved based on simple networks of
FitzHugh-Nagumo neurons.

The FitzHugh-Nagumo(FN) model [8][38] is a well-
known simplified version of the classical Hodgkin-Huxley
model [16]. Originally derived from the Van der Pol
oscillator [50][53], it can be generalized using a linear
state transformation to the dimensionless system [37]

{
v̇ = v(α− v)(v − 1)− w + I

ẇ = βv − γw

where α, β, γ are positive constants, v models membrane
potential, w accommodation and refractoriness, and I
stimulating current. Simple properties of the FN model
can be exploited for neural computations.

The basic network structure computing WTA is illus-
trated in Figure 4, where each FN neuron receives both
an external input and a global inhibition. The global
inhibition neuron receives synaptic inputs from the FN
neurons. It spikes whenever any FN neuron spikes, after
which it slowly converges to a rest steady state. The spe-
cific dynamics of the global neuron can be very general.

The linear complexity of the WTA network makes it
possible to replace the single global inhibitory neuron
with a group of interneurons, each of which only inhibits

O ...... 

o

I
1
 I
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I
n−1

 I
n
 

FN neurons 

Global inhibitory neuron

O O O

Fig. 4. Neural network computing winner-take-all.

a set of local FN neurons. In this distributed version,
synchronization of the interneurons can be guaranteed
by the general nonlinear synchronization mechanisms
derived in the last sections. Figure 5 shows a simulation
result from [59].
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Fig. 5. Simulation result of a distributed WTA computation
with four interneurons and twenty inputs. The plots are (a)
states vi versus time and (b) inhibitions zi versus time.

In contrast to most existing studies, the network’s ini-
tial state can be set arbitrary in our model, and its con-
vergence is guaranteed in at most two spiking periods,
making it particularly suitable to track time-varying in-
puts. If several neurons receive the same largest input,
they all spike as a group. Since FN neurons are indepen-
dent, they can be added or removed from the network
at any time. The model can be extended to compute
k-winner-take-all and soft-winner-take-all. In the latter
case, a desynchronized spiking sequence is obtained in
each stable period.

A similar leader-followers network can be used to com-
pute coincidence detection, which plays a key role in tem-
poral binding [17][28]. By replacing the global inhibition
neuron in Figure 4 with an excitory FN neuron, very fast
and salient response can be expected for a “many-are-
equal” moment [59]. Figure 6 shows a simulation result
from [59].

3.7 Fast Inhibition

The dynamics of a large network of synchronized ele-
ments can be completely transformed by the addition of
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output 

inputs

time 

time 

Fig. 6. Simulation result of fast coincidence detection. The
output in the upper plot captures the “many-are-equal” mo-
ment among the inputs shown in the lower plot.

a single inhibitory coupling link. Start for instance with
the synchronized network

ẋi = f(xi, t) +
∑
j∈Ni

Kji (xj − xi) i = 1, . . . , n

and add a single inhibitory link between two arbitrary
elements a and b

ẋa = f(xa, t) +
∑

j∈Na

Kja (xj − xa) + K (−xb − xa)

ẋb = f(xb, t) +
∑

j∈Nb

Kjb (xj − xb) + K (−xa − xb)

The network is contracting for strong enough coupling
strengths [51]. Hence, the n elements will be inhibited. If
the function f is autonomous, they will tend to equilib-
rium points, as we illustrated in Figure 7. If the coupling
strengths are not very strong, the inhibitory link will
still have the ability to destroy the synchrony, and may
then generate a desynchronized spiking sequence as il-
lustrated in Figure 8. Adding more inhibitory couplings
preserves the result.

Such inhibition properties may be useful in pattern
recognition to achieve rapid desynchronization between
different objects. They may also be used as simplified
models of minimal mechanisms for turning off unwanted
synchronization, as e.g. in epileptic seizures or oscilla-
tions in internet traffic. In such applications, small and
localized inhibition may also allow one to destroy un-
wanted synchronization while only introducing a small
disturbance to the nominal behavior of the system.

Cascades of inhibition are common in the brain, in a way
perhaps reminiscent of NAND-based logic.

0 50 100 150 200 250 300
t

Fig. 7. An example of fast inhibition with a single inhibitory
link. The plot shows the states of ten FitzHugh-Nagumo
neurons in the time space. The inhibitory link is actived at
t = 100 and removed at t = 200.

60 70 80 90 100 110

t 

Fig. 8. Fast inhibition with weak single inhibitory link, ac-
tived at t = 60 and removed at t = 100.

4 Hybrid Systems

We now turn to another application and extension of
contraction analysis, namely compositional contraction
analysis of hybrid systems. The development is based
on [7], which systematically extends earlier results in
[31].

We let λ(.) and λ(.) denote the maximal and minimal
eigenvalues of a matrix, and σ(.) and σ(.) denote the
maximal and minimal singular values of a matrix. Also,
γ(.) ≡ σ(.)/σ(.) denotes the condition number of a ma-
trix, and ‖.‖ the spectral norm of a matrix, and the sub-
script s refers to the symmetric part of a matrix. Finally,
R+ refers to the set of non-negative real numbers and
N∗ to the set of strictly positive integers.

Using differential displacements δx at fixed time (which
will be further discussed later), the associated differen-
tial dynamics of system (1) is represented by the equa-
tion:

d

dt
δz(t) = F δz(t) (3)

where δz = Θ(x, t) δx. System (1) is contracting if
(and only if [29])

∃ α < 0, λ(Fs) ≤ α (4)
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4.1 Discrete-time Systems

Analogous results to section 2 hold for discrete-time sys-
tems given by

x(k + 1) = f(x(k), k) (5)
where x ∈ Rn and k ∈ N. Defining similarly the differ-
ential displacement δx(k), the corresponding differential
dynamics is represented by

δz(k + 1) = F δz(k) (6)

where the differential displacement transformation
δz(k) = Θ(x, k)δx(k) is used, with Θ(x, k) an
n × n matrix of a uniformly bounded inverse, and
M(x, k) = Θ(x, k)

′
Θ(x, k) the metric. Let J(x, k) =

∂f(x, k)/∂x(k) be the Jacobian of the vector field
of interest, then the generalized Jacobian is given as
F(x, k) = Θ(x(k + 1), k + 1) J Θ(x(k), k)−1.

The analogue to Theorem 1 for discrete-time systems
[29] is given next.

Theorem 3 A discrete-time system given by Equation
(5) is contracting if and only if ∃ a metric M(x, k) such
that the generalized Jacobian F is uniformly negative def-
inite. This is equivalent to ∃ β < 1 such that σ(F ) ≤ β.

4.2 Compositional Contraction Analysis

The compositional description of contraction of nonlin-
ear systems is presented using a generalized differen-
tial state transition matrix in a metric. This approach,
along with the equivalent variational conditions based
on a vector field’s Jacobian [29], will become a basis
for a unified simple characterization of the transition
and stability of hybrid nonlinear systems. The result
not only yields generalizations and relaxations of the ex-
isting conditions for stability of switched systems and
resetting systems, including earlier work based on con-
traction [31], but also spans systems combining switch-
ing and resetting, which will be referred to as switched-
resetting systems.

The approach is unified across both continuous-time and
discrete-time systems based on the description of con-
traction through the differential state transition matrix.

4.2.1 Results

Let the initial differential displacement be defined as
δxo ≡ dx(to), where the initial condition vector xo =
x(to). Then the differential displacement is given by:

δx(t) =
∂x(xo, t)

∂xo
δxo (7)

where ΦJ (t, to) ≡ ∂x(xo, t)/∂xo will be referred to
as the differential state transition matrix. The gen-
eralized differential state transition matrix satisfies
δz(t) = ΦF (t, to)δzo and is given by:

ΦF (t, to) = Θ(t) ΦJ(t, to) Θ−1
o (8)

where Θo = Θ(x(to), to) and Θ(t) = Θ(x(t), t).
Identically in the discrete-time case, ΦJ(k, ko) =
∂x(xo, k)/∂xo will be referred to as the differential
state transition matrix, with the generalized differen-
tial state transition matrix is given by ΦF (k, ko) =
Θ(k)ΦJ (k, ko)Θ−1

o , where Θo = Θ(x(ko), ko) and
Θ(k) = Θ(x(k), k). Note that explicit dependence on x
has been omitted in the notation for simplicity.

Theorem 4 A system given by Equation (1)( or (5))
is contracting if and only if ∃ a metric M(x, t) (or
M(x, k)) and η < 0 such that the generalized differen-
tial state transition matrix ΦF satisfies ‖ΦF (t, to)‖ ≤
eη(t−to) ( or ‖ΦF (k, ko)‖ ≤ eη(k−ko)).

Proof: To prove sufficiency assume that ‖ΦF (t, to)‖ ≤
eη(t−to). Then

‖δz(t)‖= ‖ΦF (t, to)δzo‖ ≤ ‖ΦF (t, to)‖ ‖δzo‖
≤ ‖δzo‖ eη(t−to)

To prove necessity take ‖δz(t)‖ ≤ ‖δzo‖ eη(t−to). Given
‖δzo‖ �= 0 define a normalized state vector v = δzo

‖δzo‖
and thus

‖δz(t)‖= ‖ΦF (t, to) (‖δzo‖v) ‖ = ‖δzo‖‖ΦF (t, to)v‖

Hence

sup ‖δz(t)‖= ‖δzo‖ sup
‖v‖=1

‖ΦF (t, to)v‖ = ‖δzo‖‖ΦF (t, to)‖

≤ ‖δzo‖ eη(t−to)

which yields

‖ΦF (t, to)‖ ≤ eη(t−to)

Since the normalized vector v can be chosen arbitrarily
this completes the proof. The proof for the discrete-time
case is identical with replacing t by k and to by ko. ✷

4.2.2 Remarks

• The differential state transition matrix is the same as
the state transition matrix for a linear system since
Φ = f(t, to) only. This obviously does not generally
hold for nonlinear systems because Φ = f(t, to,xo).
The statement also holds for the discrete-time case.
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• The unified result in Theorem 4 implies that η ≡ α
in equation (4) and η ≡ lnβ in Theorem 3. In this
regard, |η| will be referred to as the contraction rate.

• The composition property of the state transition ma-
trix holds for the differential state transitionmatrix by
uniqueness of solutions of the linear differential equa-
tion (2), in the same metric:
ΦF (t3, t1) = ΦF (t3, t2)ΦF (t2, t1), ∀t1, t2, t3.

• The composition property holds for the discrete-time
case but in forward-time only (unless Φ is invertible):
ΦF (j, k) = ΦF (j, i)ΦF (i, k), ∀j ≥ i ≥ k

Establishing the equivalent condition for contraction
based on the differential state transition matrix, The-
orem 4, along with the compositional property will
become the basis for hybrid systems contraction analy-
sis. This is the case since there is no difference between
the required condition for contraction for continuous-
time and discrete-time systems when viewed via the
generalized transition matrix. In fact, the composition
property of this operator will allow for the description
of the complicated evolution and transition of hybrid
systems to be captured by simple means. Upon produc-
ing required conditions for stability of a hybrid system,
the verification of the required conditions on individual
systems can then be performed using the equivalent
variational conditions, equation (4) and Theorem 3.
This is the case since a closed form explicit expression
for the differential transition matrix is not always possi-
ble and it is only used as an intermediate analysis tool.
Note that although the state transition matrix is only
useful for (possibly time-varying) linear systems, the
differential version applies to the nonlinear case and is
all what is needed to characterize contraction.

Contraction of a hybrid system, though it retains the
same formal definition, has a slightly different interpre-
tation. A hybrid system can be seen as a family of partic-
ular systems which can be activated depending on how
the system’s solutions trigger the logic-based transitions.
Each of these systems is characterized by a unique tran-
sition operator described by a composition of individual
dynamics active during certain time intervals. Then all
solutions of a particular system will converge exponen-
tially to a single particular trajectory if the hybrid system
is contracting, and similarly for all particular systems.
In some cases, all particular trajectories of these partic-
ular systems are the same, e.g. a common fixed point for
all switching sequences of a switched system. In other
important cases, the solutions of the overall hybrid sys-
tem are steered to different pathways and different par-
ticular trajectories, by design. In such cases, the overall
hybrid system is still said to be contracting if it is con-
tracting for each particular system, as solutions that do
not converge to the same particular trajectory are not
solutions of the same particular system.

4.3 Switched Hybrid Systems

Switched hybrid systems are defined as systems combin-
ing continuous state variables, governed by differential
equations or difference equations, and discrete states,
governed by discrete (symbolic) dynamics. These dis-
crete states govern the switching between different vec-
tor fields. In this paper as in most of the existing hybrid
literature, the case of infinitely fast switching is not con-
sidered, and thus the set of switches is countable.

Definition 1
(i) A continuous-time switched system is defined by

ẋ(t) = fq(x(t), t) q(t)+ = g(x(t), t, q(t))

(ii) A discrete-time switched system is defined by

x(k + 1) = fq(x(k), k) q(k)+ = g(x(k), k, q(k))

Here x ∈ Rn is the continuous state and q ∈ N∗ is the
discrete state, which is the switching index. The switching
can be triggered by a state event, a time event or discrete
state history, i.e., memory. Also continuous and discrete
times t ∈ R+ and k ∈ N, respectively.

Two theorems providing sufficient conditions for con-
traction of switched hybrid systems are presented. The
first is a generalization of the well-known condition of a
common quadratic Lyapunov function [27,46] for fixed
point stability of systems of the form ẋ = fq(x).

Theorem 5 A continuous-time (or discrete-time)
switched system is contracting if the individual systems
are contracting with respect to metrics Mi = Θ

′
iΘi

which are equal at the switching times. This means that
Θi(ti) = Θi+1(ti) (orΘi(ki) = Θi+1(ki)) ∀ i where ti
(or ki) is the ith switching time.

Proof: Let ΦJi(ti, ti−1) be the transition matrix for the
ith system associated with Jacobian Ji and active during
the period ∆tsi = ti − ti−1. The generalized transition
matrix is ΦFi associated with a generalized JacobianFi.
Then the overall transition matrix ΦJ(t, to) can be writ-
ten as a composition of individual systems’ transition
matrices:

‖ΦJ(t, to)‖= ‖ΦJn(t, tn)ΦJn−1(tn, tn−1) . . .
. . .ΦJ3(t3, t2)ΦJ2(t2, t1)ΦJ1(t1, to)‖

= ‖Θn(t)−1ΦFn(t, tn)Θn(tn)Θn−1(tn)−1 . . .

. . .Θ2(t1)Θ1(t1)−1ΦF1(t1, to)Θ1(to)‖
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Using Θi(ti) = Θi+1(ti), this yields

‖ΦJ(t, to)‖= ‖Θn(t)−1ΦFn(t, tn)ΦFn−1(tn, tn−1) . . .
. . .ΦF3(t3, t2)ΦF2(t2, t1)ΦF1(t1, to)Θ1(to)‖

≤ ‖Θn(t)−1‖‖ΦFn(t, tn)‖‖ΦFn−1(tn, tn−1)‖ . . .
. . . ‖ΦF2(t2, t1)‖‖ΦF1(t1, to)‖‖Θ1(to)‖

Now contraction of the individual systems implies
‖ΦFi(ti, ti−1)‖ ≤ eαi∆tsi where αi < 0 ∀ i. Thus

‖ΦJ(t, to)‖ ≤ ‖Θn(t)−1‖‖Θ1(to)‖
i∗∏

i=1

eαi∆tsi

where ‖Θn(t)−1‖‖Θ1(to)‖ ≤ c, with c some constant by
boundedness of the inverse of each metric transforma-
tion Θi. In here,

∏i∗

i=1 e
αi∆tsi will vanish exponentially

if αi < 0 ∀ i as t → +∞ , i.e, i∗ → +∞. The above result
shows that the switched system verifies the definition of
contraction. For the discrete-time case, the proof is iden-
tical by just replacing t by k and α by lnβ following the
unified compositional approach of section 3.2. ✷

The next theorem is a general condition for switched sys-
tems stability with multiple constant metrics for a wide
class of systems. The result reduces the conservatism in
the common Lyapunov function condition and is much
simpler to compute than multiple Lyapunov function
conditions that only conclude stability in the sense of
Lyapunov. The result represents the trade-off in the de-
sign of a hybrid switched system between the key prop-
erties of the individual systems and the switching speed.

Theorem 6 A continuous-time (or discrete-time)
switched system is contracting if the individual sys-
tems are contracting with respect to constant met-
rics Mi = Θ

′
iΘi and ηi∆tsi + ln γ(Θi) < 0 (or

ηi∆ki + ln γ(Θi) < 0) ∀ i. Here, the contraction rate
ηi ≡ αi, where λ(Fsi) ≤ αi for the ith continuous-time
system operating over a period ∆tsi. Equivalently for the
discrete-time case, ηi ≡ lnβi, where σ(Fi) ≤ βi for the
ith system operating over a period ∆ki.

Proof: Again ΦJi(ti, ti−1) is the transition matrix for
the ith system associated with Jacobian Ji and active
during the period ∆tsi = ti−ti−1. The generalized tran-
sition matrix is ΦFi associated with a generalized Jaco-
bian Fi. Then the overall transition matrix ΦJ(t, to) can
be written as the composition:

‖ΦJ(t, to)‖= ‖ΦJn(t, tn)ΦJn−1(tn, tn−1) . . .
. . .ΦJ3(t3, t2)ΦJ2(t2, t1)ΦJ1(t1, to)‖

= ‖Θn(t)−1ΦFn(t, tn)Θn(tn)Θn−1(tn)−1 . . .

. . .Θ2(t1)Θ1(t1)−1ΦF1(t1, to)Θ1(to)‖

Now if Θi are constant then

‖ΦJ(t, to)‖= ‖Θ−1
n ΦFn(t, tn)ΘnΘ−1

n−1ΦFn−1(tn, tn−1) . . .

. . .Θ−1
2 ΦF2(t2, t1)Θ2Θ−1

1 ΦF1(t1, to)Θ1‖
≤ ‖Θ−1

n ‖‖ΦFn(t, tn)‖‖Θn‖‖Θ−1
n−1‖ . . .

. . . ‖Θ2‖‖Θ−1
1 ‖‖ΦF1(t1, to)‖‖Θ1‖

Contraction of the individual systems implies that
‖ΦFi(ti, ti−1)‖ ≤ eαi∆tsi , where αi < 0 ∀ i. Further-
more, since ‖Θi‖ = σ(Θi), ‖Θ−1

i ‖ = 1/σ(Θi) and
γ(Θi) = σ(Θi)/σ(Θi),

‖ΦJ(t, to)‖ ≤
i∗∏

i=1

γ(Θi) eαi∆tsi ≤
i∗∏

i=1

eln γ(Θi)+αi∆tsi

In here,
∏i∗

i=1 e
αi∆tsi+ln γ(Θi) will vanish exponentially if

ln γ(Θi)+αi∆tsi < 0 ∀ i as t → +∞ , i.e., as i∗ → +∞.
Therefore, the switched system is indeed contracting.
Again the proof is identical for the discrete-time case by
just replacing t by k and α by lnβ. ✷

Note that the average dwell time property, see [27], is no
other than a conservative special case of the condition in
Theorem 6. The average dwell time property uses an av-
erage ∆ts and a single quantity based on the Lyapunov
functions, which can be seen as a gross estimate of the
conditioning from the different metrics.

Contraction immediately extends to cases where indi-
vidual systems are not all contracting if one can group
terms in the composition as:

∞∑
i=1

αi∆tsi =
∞∑

j=1

aj (Theorem 5)

∞∑
i=1

αi∆tsi + ln γ(Θi) =
∞∑

j=1

aj (Theorem 6)

where aj < 0, ∀ j, and similarly for the discrete-time
case. This is consistent with the expectation that acti-
vating an unstable system or a system that is not con-
tracting in the same metric can preserve stability if we
switch away from it quickly enough. A simple example
is measurement sampling rate specification in observer
designs for unstable continuous-time systems [31,49,63].

4.4 Resetting Hybrid Systems

Resetting hybrid systems, also known as impulsive sys-
tems [62,14,15], are defined as systems combining contin-
uous state variables, governed by differential equations
for which some or all states are being reset at discrete
time instances via a resetting law, i.e., a difference equa-
tion. The discrete states’ evolution governs such resets.
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In this paper, the case of infinitely fast resetting is not
considered. We assume that the set of resets is count-
able, i.e., the resets are distinct. Under these assump-
tions resets based on time or continuous state values are
treated identically.

Definition 2 A hybrid resetting system is defined by

ẋ(t) = f(x(t), t), t �= tq
x(t)+ = h(x(t), t), t = tq
q(t)+ = g(x(t), t, q(t))

Here t ∈ R+ and x ∈ Rn is the continuous state and
q ∈ N∗ is the discrete state, which is the resetting index.
The discrete state can be triggered by a state event, a time
event or discrete state history, i.e, memory.

We state two theorems giving two sufficient conditions
for contraction of resetting systems, analogous to Theo-
rems 5 and 6 for switched systems. The reader is referred
to [7] for proofs and discussion.

Theorem 7 A resetting system is contracting if α∆tri+
lnβ < 0 ∀ i. Where σ(H) ≤ β and H is generalized Ja-
cobian associated with h(x, t) in a metric Md = Θ

′
dΘd.

While, λ(Fs) ≤ α, where Fs is the symmetric part of the
generalized Jacobian associated with f(x, t) in the metric
Mc = Θ

′
cΘc. The metrics need to be equal at the reset-

ting times, which means that Θc(ti) = Θd(ti) where ti is
the ith resetting time ∀ i. Here,∆tri is the period between
two resets following the ith reset.

The next theorem gives a less restrictive condition for
contraction of state resetting systems, which applies to
systems with constant metrics.

Theorem 8 A resetting system is contracting if α∆tri+
ln(βγ(Θc)γ(Θd)) < 0 ∀ i. Where σ(H) ≤ β and H is
generalized Jacobian associated with h(x, t) in a constant
metric, Md = Θ

′
dΘd. While, λ(Fs) ≤ α ,where Fs is

the symmetric part of the generalized Jacobian associated
with f(x, t) in a constantmetricMc = Θ

′
cΘc. Here,∆tri

is the period between two resets following the ith reset.

Again contraction can be extended to cases where indi-
vidual systems are not contracting if one can appropri-
ately group terms in the composition, as

∞∑
i=1

α∆tri + lnβ =
∞∑

j=1

aj (Theorem 7)

∞∑
i=1

α∆tri + ln(βγ(Θc)γ(Θd))) =
∞∑

j=1

aj (Theorem 8)

where aj < 0, ∀ j. This can be used for on-line adjust-
ment of the resetting period, e.g., to preserve contraction
in the presence of unknown or variable delays.

4.5 Switched-Resetting Hybrid Systems

In this section, extensions to the previous two sections
are presented yielding conditions for systems that com-
bine resetting and switching (see [7] for proofs). This
class of hybrid systems, which will be referred to as
switched-resetting systems has received very little at-
tention in the literature. This may be attributed to the
increased complexity due to combining switching and
resetting. However, this posses no additional difficulty
when exploiting the proposed compositional approach.
In fact, the results extend in an analogous manner and
are detailed in this section for clarity. Here distinction
between continuous-time or discrete-time switched-
resetting systems is made based on which dynamics is
switched.

Definition 3
(i) A hybrid continuous-time switched-resetting system
is defined by the equations:
ẋ(t) = fq1(x(t), t), t �= tq2
x(t)+ = h(x(t), t), t = tq2
q(t)+ = g(x(t), t, q(t))

(ii) A hybrid discrete-time switched-resetting system is
defined by the equations:
ẋ(t) = f(x(t), t), t �= tq2
x(t)+ = hq1(x(t), t), t = tq2
q(t)+ = g(x(t), t, q(t))
Here t ∈ R+ and x ∈ Rn is the continuous state and
q = [q1, q2]

′
is discrete state and qi ∈ N∗, which can be

triggered by a state event, a time event or discrete state
history. In here, q1 is the switching index and q2 is the
resetting index.

The previous results can be combined as follows.

(i) A continuous-time switched-resetting system is con-
tracting if αi∆trij + lnβ < 0 ∀ i, j . Where σ(H) ≤ β
and H is generalized Jacobian associated with h(x, t)
in a metric. While, λ(Fsi) ≤ αi ,where Fsi is the sym-
metric part of the generalized Jacobian associated with
fi(x, t) all in metrics that are equal at the transition
times, i.e., switching times between them and resetting
times with metric associated with H . Here, ∆trij is the
period between two resets following the jth reset for the
ith switched system.

(ii) A discrete-time switched-resetting system is con-
tracting if α∆trij + lnβi < 0 ∀ i, j. Where σ(Hi) ≤ βi

and Hi is generalized Jacobian associated with hi(x, t)
all in the same metric. While, λ(Fs) ≤ α ,where Fs is
the symmetric part of the generalized Jacobian associ-
ated with f(x, t) in the same metric. Here, ∆trij is the
period between two resets following the jth reset by the
ith switched resetting law.
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4.6 Hybrid Models of Neural Oscillators

Expanding on the discussion of section 3, a spiking
neuron is actually best described by resetting dynam-
ics, since it produces precise impulses. Indeed, some of
the more recent models of neurons, see [20], use simple
resetting logic upon reaching threshold values of the
membrane potential. A formal and general hybrid model
is developed by considering the extended model of the
FitzHugh-Nagumo neuron comprised of the switched
continuous-time dynamics and a simple resetting law

v̇ = ci(v + w − 1
3
v3 + Ii)

ẇ=− 1
ci
(v − ai + biw) , t �= tj

x+ =Ad x + gj , t = tj (9)

wherex = [v, w]T ,Ad is a constantmatrix and gj is a dis-
crete input comprised of discrete stimulation and exter-
nal impulsive effects. The above system is a continuous-
time switched-resetting system. In addition to resetting,
switching is made between different values of ai, bi,ci,
and Ii. Contraction of the overall system is guaran-
teed if the discrete dynamics is contracting such that
αi∆tsi + ki ln(βγ(Θd)γ(Θi)) < 0, ∀ i, where ∆tsi is
the switching period for the ith switched system and
ki = ∆tsi/∆tri is number of resets of that system. Θd

is simply the similarity transformation that transforms
Ad to its simplest form and β < 1 is the modulus of its
maximum eigenvalue. Also Θi = diag(1, ci) and αi = ci.

Many important features of neurons [20] which are rarely
captured in a single model can be combined here. Exam-
ples include spike frequency adaptation, where the fre-
quency is relatively high at the onset of stimulation and
then decreases, which can be achieved by switching be-
tween bi and ci values. Other features include variable
interspike frequencies, which are easily controlled by ad-
justing ∆tri, as well as bistability of resting and spiking
states which correspond to switching between stimula-
tions Ii, which can be easily generated in response to the
current magnitude or phase of a state as well as time. In
fact, threshold variability, which suggests that neurons
have a variable threshold that depends on their prior
activity, is a truly hybrid phenomenon which is simply
dealt with here, since any switching or resetting can be
triggered by any state and/or time event.

4.7 Floquet Multipliers and Lyapunov Exponents

Finally, let us remark that two widely used tools in non-
linear systems’ analysis, Floquet multipliers and Lya-
punov exponents, can be easily interpreted in the con-
text of compositional contraction analysis via differen-
tial transition operators, suggesting in turn systematic
extensions.

Floquet multipliers, commonly used in stability and
bifurcations analysis of periodic solutions, are no
other than σi(ΦF(T, 0)) locally around a periodic
trajectory of period T . The Floquet decomposi-
tion is given as ΦJ(t, to) = P(t)−1eR(t−to)P(to) .
P(t) = P(t + T ) is a T -periodic transformation defined
as P(t) = eRtΦJ(t, 0)−1. In here, the T -periodic metric
M(t) = Θ(t)

′
Θ(t) is constructed using Θ = P(t)S,

where S is a similarity transformation matrix that takes
R to its simplest form. The constant (possibly complex)
matrix R is found by eRT = ΦJ(T, 0), usually numeri-
cally. The periodic solution is strictly stable if and only
if σ(ΦF(T, 0)) < 1 and unstable if σ(ΦF(T, 0)) > 1. This
conclusion takes advantage of the composition property
of the generalized differential state transition matrix,
which gives ΦF(kT + to, to) = ΦF(T, 0)k. In order to
verify flow contraction to this periodic trajectory one
needs that ∃ α < 0 : σ(ΦF(kT + to, to)) ≤ eαkT , see
equation (9). It is easy to see that this is the case if
an only if σ(ΦF(T, 0)) < 1. Whereas a bifurcation is
created if σ(ΦF(T, 0)) = 1, indicating contraction in-
difference. This corresponds to a zero eigenvalue of the
real matrix Fs. Recall that contraction behavior is only
concerned with eigenvalues of Fs and singular values
of ΦF. However, the classification of different types of
bifurcation points is determined by the eigenvalues of
ΦF or equivalently those of F. In this case, where the
real part of eigenvalues of F is zero, the eigenvalues of
ΦF(T, 0) are of the form eai, where i is the imaginary
number. The different possible values eai can take, all of
which are of modulus equal to one, yield different types
of bifurcations [39]. This approach, which has been
widely used to characterize local contraction around a
periodic trajectory can be also used globally with an
appropriate choice of metric transformation Θ(x, t).

Similarly, Lyapunov exponents, commonly used in the
study of chaos [13,53], are actually not that different
from Floquet multipliers from a contraction perspective,
since they are simply λi(Fs) for an identity metric, as
also noted in [29]. In contrast to Floquet multipliers such
exponents are indeed used globally. Infinite-time Lya-
punov Exponents are commonly used to indicate chaos
if λ(Fs) > 0 for M = I. However, more recent views of
Lyapunov exponents, referred to as the direct finite-time
Lyapunov exponents (DFTLE) [18] have been used to
identify stable invariant manifolds and global domains
of attraction of different solutions. In fact, the maxi-
mal DFTLE for a trajectory starting at xo is defined
as DFTLE(xo, t) = lnσ(ΦJ)/(t− to). Note that in the
identification of chaos it is sufficient to find that an av-
eraged maximal exponent is positive without a metric
change, since this indicates sensitive dependence on ini-
tial conditions. Similarly, to obtain graphical demonstra-
tions of boundaries between different solutions in lower
dimensional problems, it is sufficient to find that the
largest exponent is positive and maximal, in space, at
the boundaries between different solutions upon inte-
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grating for long enough time. Again, the use of a metric
is needed if more precise and general information is to
be obtained.

Global metric analysis for Lyapunov exponents and Flo-
quet multipliers, along the lines of contraction analysis,
may lead to significant developments in global numeri-
cal analysis of nonlinear systems.

5 Interaction Between Synchronized Groups
and Time-Delayed Teleoperation

5.1 Time-Delayed Communications

In some cases, communications between different sys-
tems involve non-negligible time-delays, as e.g. when us-
ing the Internet. Inspired by the use of passivity [2] and
wave (scattering) variables [42] in force-reflecting tele-
operation, [30] performed a contraction analysis of the
effect of time-delayed transmission channels. As we now
discuss, similar results can be obtained using simplified
forms of transmitted variables [60], an approach we then
apply to group synchronization with communication de-
lays.

delay Ty

delay Tx

x y

x

v x
u y

yvu

Fig. 9. Two interacting systems with delayed communication

Consider two interacting systems (Figure 9),

ẋ= f(x, t) + Gxτx

ẏ = g(y, t) + Gyτy

where Gx, Gy are constant matrices and τx, τy have the
same dimension. Define the variables to be transmitted
as

ux =GT
x x + kxτx vx = GT

x x
uy =GT

y y + kyτy vy = GT
y y

where kx and ky are strictly positive constants. Because
of time-delays, we have

ux(t) = vy(t− Ty) uy(t) = vx(t− Tx)

Now consider a differential length similar to that defined
in [30]

V =
kx

2
δxT δx +

ky

2
δyT δy +

1
2
Ve

where

Ve =
∫ t

t−Tx

δvT
x δvxdτ +

∫ t

t−Ty

δvT
y δvydτ

=−2
∫ t

0

( kxδxT Gxδτx + kyδyT Gyδτy ) dτ

−
∫ t

0

( k2
xδτ

T
x δτx + k2

yδτ
T
y δτy ) dτ

This yields

V̇ = kxδxT ∂f
∂x

δx+kyδyT ∂g
∂y

δy− k2
x

2
δτT

x δτx−
k2

y

2
δτT

y δτy

Applying Barbalat’s lemma [50] shows that δx and δy
will both tend to zero asymptotically for contracting f
and g. This implies that contraction can be preserved
through time-delayed interactions. In the case that both
f and g are time-invariant, the whole system tends to-
wards to an equilibrium point, which is independent of
the explicit values of the delays [49]. The result can be
extended directly to study more general connections be-
tween groups, such as bidirectional meshes or webs of
arbitrary size, and parallel unidirectional rings of arbi-
trary length. Inputs to the overall system can be pro-
vided through any of the subgroup dynamics.

It will not have escaped the reader that the whole sys-
tem’s dynamics is in fact equivalent to

ẋ= f(x, t) +
1
kx

Gx ( GT
y y(t − Ty)− GT

x x(t) )

ẏ= g(y, t) +
1
ky

Gy ( GT
x x(t− Tx)− GT

y y(t) )

i.e., to diffusion-like time-delayed interactions. Assum-
ing that x and y have the same dimension, and choos-
ing Gx = Gy = G, we get the equations of two coupled
systems with standard diffusion couplings

ẋ= f(x, t) +
1
kx

GGT ( y(t − Ty)− x(t) )

ẏ= g(y, t) +
1
ky

GGT ( x(t− Tx)− y(t) )

Thus, contraction as a generalized form of stability is
preserved through time-delayed diffusion couplings.

This conclusion does not contradict the well-known fact
in teleoperation, that even small time-delays in feedback
PD controllers may create stability problems for cou-
pled second-order systems [41,42], which motivates ap-
proaches based on passivity and wave variables. In fact,
a key condition for contraction to be preserved is that
the diffusion coupling gains be positive semi-definite (or
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positive definite) under the same metric. Indeed consider
for instance (with b > 0, ω > 0)

ẍ+ bẋ+ ω2x= kd(ẏ(t− T2)− ẋ(t)) + kp(y(t− T2)− x(t))
ÿ + bẏ + ω2y= kd(ẋ(t− T1)− ẏ(t)) + kp(x(t− T1)− y(t))

If T1, T2 = 0, partial contraction analysis shows that x
and y converge together exponentially regardless of ini-
tial conditions, which makes the origin a stable equilib-
rium point. If T1, T2 > 0, we perform a coordinate trans-
formation and get new equations

[
ẋ1

ẋ2

]
=

[
ωx2 − bx1

−ωx1

]
+ K(

[
y1(t− T2)

y2(t− T2)

]
−

[
x1(t)

x2(t)

]
)

[
ẏ1

ẏ2

]
=

[
ωy2 − by1

−ωy1

]
+ K(

[
x1(t− T1)

x2(t− T1)

]
−

[
y1(t)

y2(t)

]
)

where f =

[
ωx2 − bx1

−ωx1

]
is contracting with an iden-

tity metric [58], but the transformed coupling gain

K =

[
kd 0
kp

ω 0

]
is no longer positive semi-definite, for any

kp �= 0. Contraction cannot be guaranteed in this case,
and coupled systems turn out to be unstable for large
enough delays (Figure 10). This unstability mechanism
is actually very similar to that of Smale’s model [52,58]
(which we alluded to in section 3.1) in which two or more
identical biological cells, inert by themselves, tend to
self-excited oscillations through diffusion interactions.
In both cases, the unstability is caused by a non-identity
metric, which makes the transformed coupling gains
lose positive semi-definiteness. Note that the relative
simplicity with which these two subtle phenomena can
be analyzed makes fundamental use of the notion of
a metric, central to contraction theory. It also points
out further directions for designing feedback controllers
robust to time-delays.

Synchronization can also be preserved through time-
delayed diffusion couplings. Consider a power-based
leader-followers network

ẋi =
∑
j∈Ni

Kji (xj(t− Tji)− xi(t)) + γi K0i (x0 − xi)

where i = 1, . . . , n+m, x0 is constant, and time-delays
are involved in communication channels between the fol-
lowers. For notational simplicity, assume there is only
one time-delayed link, which connects nodes n and n+1,
and separates the whole network into two subgroups
x = (x1 , . . . , xn) and y = (xn+1 , . . . , xn+m). The
leader x0 does not connect directly to the nodes in the
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Fig. 10. Simulation of two coupled mass-spring-damper sys-
tems with PD control (left) and D control (right). Param-
eters are b = 0.5, ω2 = 5, T1 = 2s, T2 = 4s, kd = 1,
kp = 5(left)/0(right). Initial conditions, chosen randomly,
are identical for the two plots.

group y. Thus, V̇ now contains

∂f
∂x

= −L1
K − In

γiK0is
< 0

and
∂g
∂y

= −L2
K

Applying Barbalat’s lemma, V̇ will tend to zero, which
implies that δx, δτx and δτy will tend to zero, while δy
will verify δxn+1 = . . . = δxn+m . Since

GT
y δy = δuy − kyδτy

it can be proved directly that δxn+1, and therefore the
overall δy, will tend to zero as well. All states xi will con-
verge to the common value x0 asymptotically, regard-
less of time-delays. The result can be extended easily to
more complex cases.

Different simplifications of the original wave variable de-
sign can be made based on the same choice of V , yielding
different qualitative properties. For instance, the trans-
mitted signals can be defined as

ux =GT
x x + kxτx vx = −kxτx

uy =GT
y y + kyτy vy = −kyτy

which leads to

V̇ = kxδxT ∂f
∂x

δx+ kyδyT ∂g
∂y

δy

−1
2
δxT GxGT

x δx − 1
2
δyT GyGT

y δy (10)

and thus also preserves contraction through time-
delayed connections. If f and g are both time-invariant,
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the whole system tends towards an equilibrium point,
with

ux(∞) = vy(∞) uy(∞) = vx(∞)

at steady state, which immediately implies that

GT
x x(∞) = GT

y y(∞)

and, in the case that Gx = Gy = G with G of full
rank, that x(∞) = y(∞). Thus, contrary to the case
of diffusion-like coupling, the remote tracking ability of
wave variables is preserved. Finally note that if Gx or
Gy has full rank, the corresponding subsytem needs only
have upper bounded Jacobian rather than be contract-
ing, since from (10) δx and δy will both tend to zero
asymptotically for appropriate choices of gains.

Extensions to communication with time-varying de-
lays [41,40,5] can be handled in a very similar way.

5.2 Mutual Pertubation

In a large population, groups may not communicate
tightly. For instance, the signals between groups may
not contain explicit state information, but only infor-
mation on group synchronization. Consider two such
groups, with coupled elements xi (i = 1, . . . , n) and yi

(i = 1, . . . ,m), respectively. Elements in the different
groups could have different dynamics. In each group, we
assume there is one (or a few) particular element, node 1
for instance, which has the ability to communicate with
other groups (see Figure 11 as an illustration), with dy-
namics given as

delay Ty

delay Tx

x

1y1x

v x
u y

yvu

Fig. 11. Synchronized groups perturb each other through
mutual communication.

ẋ1 = f(x1, t) +
∑

j∈N1

Kj1 (xj − x1) + Gxτx

ẏ1 = g(y1, t) +
∑

j∈M1

Hj1 (yj − y1) + Gyτy

where

τx =
1
kx

( GT
y py(t− Ty)− GT

x px(t) )

τy =
1
ky

( GT
x px(t− Tx)− GT

y py(t) )

and px,py represent synchronization error in each
group, as seen from its node 1,

px =
∑

j∈N1

Kj1 (xj − x1)

py =
∑

j∈M1

Hj1 (yj − y1)

Using a similar proof as in the last section, define a
Lyapunov-like function

V =
kx

2
xT LKx +

ky

2
yT LHy +

1
2
(

∫ t

t−Tx

vT
x vxdτ +

∫ t

t−Ty

vT
y vydτ )

with
vx = GT

x px vy = GT
y py

Then

V̇ = kxxT ( LKΛ − L2
K ) x + kyyT ( LHΛ − L2

H ) y

and it is negative semi-definite under conditions simi-
lar to those derived in Section 3.5. This implies that,
for loosely-tied groups, synchronization depends only on
each individual group’s property, although a small dis-
turbance in a single group may cause big uncertainty in
the entire population, so that it may take a long time for
the whole population to finally settle down. Again the
result can be extended directly to more general connec-
tions between groups, such as bidirectional meshes or
parallel unidirectional rings. Similar phenomena can be
found e.g. in human psychology and macro-economics.
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