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Abstract

A wide variety of stability and performance questions about linear dynamical systems can be reformulated as convex
optimization problems involving linear matrix inequalities (LMIs). These techniques have been recently extended to nonlinear
systems with polynomial or rational dynamics through the use of sum of squares (SOS) programming.

In this paper we further extend the class of systems that can be analyzed with convexity-based methods. We show how to
analyze the robust stability properties of uncertain nonlinear systems with polynomial or rational dynamics, via contraction
analysis and SOS programming. Since the existence of a global contraction metric is a sufficient condition for global stability
of an autonomous system, we develop an algorithm for finding such contraction metrics using SOS programming. The search
process is made computationally tractable by relaxing matrix definiteness constraints, the feasibility of which indicates the
existence of a contraction metric, to SOS constraints on polynomial matrices. We illustrate our results through examples from
the literature and show how our contraction-based approach offers advantages when compared with traditional Lyapunov
analysis.
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1 Introduction

Computational methods have become increasingly im-
portant in linear and nonlinear system analysis. One im-
portant example is the use of interior point methods to
solve the linear matrix inequalities (LMIs) that arise in
a variety of system stability and performance problems.
Arguably, LMIs first appeared in systems theory in the
1890s with Lyapunov’s characterization of stability of a
linear system. Prior to the development of interior-point
methods, a few types of LMIs could be solved analyti-
cally or by simple graphical criteria, but only within the
last two decades have general LMIs become computa-
tionally tractable.

Originally, LMI-based stability and performance formu-
lations applied to linear systems and the class of non-
linear systems representable as an interconnection of
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a linear system with bounded uncertainty blocks (e.g.,
Boyd et al. (1994)). Recently, Parrilo (2000) extended
the LMI framework to stability and performance meth-
ods for nonlinear systems with polynomial or rational
dynamics by using sum of squares (SOS) programming.
In this work we extend the class of systems that can be
treated within the SOS framework by showing how to
analyze stability of uncertain nonlinear systems via SOS
programming and contraction analysis techniques.

Contraction analysis is a stability theory for nonlinear
systems where stability is defined incrementally between
two arbitrary trajectories (Lohmiller and Slotine, 1998).
The existence of a contraction metric for a nonlinear
system ensures that a suitably defined distance between
nearby trajectories is always decreasing. If a system is
globally contracting, all trajectories converge exponen-
tially to a single trajectory. One application of contrac-
tion analysis given in Wang and Slotine (2005) is its
use in studying the synchronization of nonlinear cou-
pled oscillators. Recent related work to contraction anal-
ysis can be found in Angeli (2002); Fromion, Monaco,
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and Normand-Cyrot (1996); Pogromsky, Santoboni, and
Nijmeijer (2002); Nguyen and Egeland (2004); Pavlov,
Pogromsky, van de Wouw, and Nijmeijer (2004); Aghan-
nan and Rouchon (2003); Pavlov, van de Wouw, and Ni-
jmeijer (2005). Conceptually, approaches closely related
to contraction, although not based on differential anal-
ysis, can be traced back to Hartmann (1964) and even
to Lewis (1949).

In the autonomous case, contraction analysis is closely
related to Krasovskii’s Theorem, since one can interpret
the search for a contraction metric as the search for a
Lyapunov function with a certain structure. We explain
this connection further in Section 2. There are certain
advantages to searching for a contraction metric instead
of a generic Lyapunov function. In general, nonlinear sys-
tems with uncertain parameters can prove quite trouble-
some for Lyapunov techniques, since the uncertainty can
change the location of the equilibrium point in compli-
cated ways. This forces the use of parameter-dependent
Lyapunov functions to prove stability for a range of the
uncertain parameter values. However, in general it may
be impossible to obtain any kind of closed form expres-
sion of the equilibria in terms of the parameters. This
makes the direct parametrization of suitable Lyapunov
functions difficult if not impossible.

Contraction analysis provides a framework for studying
the stability behavior of uncertain nonlinear systems,
which can eliminate some of the restrictions and prob-
lems encountered with traditional linearization tech-
niques or Lyapunov methods. If a nominal system is
contracting with respect to a contraction metric, it is
often the case that the uncertain system with additive
or multiplicative uncertainty is still contracting with
respect to the same metric, even if the perturbation has
changed the position of the equilibrium. This makes it
possible to determine if the system is stable for ranges
of values of an uncertain parameter without explicitly
tracking how the uncertainty changes the location of
the equilibrium.

To translate the theoretical discussion above into ef-
fective practical tools, it is necessary to have efficient
computational methods to obtain contraction metrics
numerically. Sum of squares (SOS) programming pro-
vides one such method. SOS programming is based
on techniques that combine elements of computa-
tional algebra and convex optimization; see Prajna,
Papachristodoulou, Seiler, and Parrilo (2004a) for a
number of control-related applications and references to
the literature. In this paper we show how SOS program-
ming enables the search for contraction metrics for the
class of autonomous nonlinear systems with polynomial
dynamics. We further discuss how to use SOS methods
to find bounds on the maximum allowable uncertainty
such that the system remains contracting with respect to
the same contraction metric as the unperturbed system.

The paper is organized as follows: in Section 2 we
give background material on contraction analysis,
Krasovskii’s Theorem, and their relations to Lyapunov
functions. Section 3 discusses sum of squares (SOS)
programming. Section 4 presents an algorithm for com-
putationally searching for contraction metrics for poly-
nomial systems via SOS programming. We discuss why
and give an example of how contraction analysis is useful
for studying systems with uncertain dynamics in Sec-
tion 5. Finally, in Section 6 we present our conclusions,
and outline possible directions for future work.

2 Contraction Analysis

As mentioned in the introduction, contraction analysis
is a stability theory for nonlinear systems analysis. It
is an approach where stability is defined incrementally
between two arbitrary trajectories, and it attempts to
answer the question of whether the limiting behavior
of a given dynamical system is independent of its ini-
tial conditions. This section summarizes the main ele-
ments of contraction analysis for autonomous systems.
Additional discussion on non-autonomous systems can
be found in Lohmiller and Slotine (1998). Related work
and approaches closely related to contraction are sum-
marized in the introduction.

We consider autonomous dynamical systems of the form

ẋ = f(x(t)), (1)

where f is a nonlinear vector field and x(t) is an n-
dimensional state vector. In our analysis it is assumed
that all quantities are real and smooth and thus that all
required derivatives exist and are continuous. This as-
sumption clearly holds for polynomial vector fields.

Under these assumptions, we can obtain the following
differential relation from equation (1):

δẋ(t) =
∂f

∂x(t)
(x(t))δx(t), (2)

where δx(t) is an infinitesimal displacement at a fixed
time. For notational convenience we write x for x(t) from
here on, but in all calculations it should be noted that x
is a function of time.

The infinitesimal squared distance between two trajec-
tories is δxT δx. Using (2), the following equation for the
rate of change of the infinitesimal squared distance be-
tween two trajectories is obtained:

d

dt
(δxT δx) = 2δxT δẋ = 2δxT ∂f

∂x
δx. (3)

If λ1(x) is the largest eigenvalue of the symmetric
part of the Jacobian ∂f

∂x
, then it follows from (3) that
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d
dt (δx

T δx) ≤ 2λ1(x)δxT δx. Integrating both sides gives

||δx|| ≤ ||δxo|| e

∫

t

0

λ1(x)dt
. (4)

If λ1(x) is uniformly strictly negative, i.e., ( ∂f

∂x
+ ∂f

∂x

T
) <

−ǫ||x||2 ∀ x, it follows that any infinitesimal length ||δx||
converges exponentially to zero as time goes to infinity.

A more general definition of infinitesimal length can be
given by

δxT M(x, t)δx (5)

where M(x, t) is a symmetric, uniformly positive definite
and continuously differentiable metric (formally, this de-
fines a Riemannian manifold). In this work, we only con-
sider metrics M(x) which do not explicitly depend on
time. From the definition of infinitesimal length given in
(5), the equation for its rate of change is

d

dt
(δxT Mδx) = δxT

(

∂f

∂x

T

M + M
∂f

∂x
+ Ṁ

)

δx (6)

where M is shorthand notation for M(x) 1 .

If M(x) is a matrix function of x, we use the nota-
tion M(x) ≻ 0 to denote uniform positive definiteness,
i.e., M(x) � ǫI for all x and some positive ǫ. Similarly
M(x) ≺ 0 indicates uniform negative definiteness.

Definition 1 Given the n-dimensional autonomous
system ẋ = f(x), a contraction metric is an n × n ma-
trix M(x) that is uniformly positive definite and such

that ∂f

∂x

T
M(x) + M(x) ∂f

∂x
+ Ṁ is uniformly negative

definite. If the system satisfies the stronger condition,
∂f

∂x

T
M(x)+M(x) ∂f

∂x
+Ṁ ≺ −βM(x) where β > 0 then

the system is said to be exponentially contracting.

As the following theorem shows, contraction metrics can
be used to prove convergence to a single trajectory, and
thus existence and/or uniquess of equilibria.

Theorem 1 Consider the autonomous system ẋ =
f(x). If a contraction metric exists for the system over
the entire state-space and a finite equilibrium exists,
then this equilibrium is unique and all trajectories con-
verge to this equilibrium. If the system is exponentially
contracting, there exists a unique finite equilibrium, and
all trajectories converge to this equilibrium.

We outline the proof the theorem below. A concise proof
of convergence of trajectories for an exponentially con-
tracting system is presented in Aghannan and Rouchon
(2003). Existence of a finite equilibrium in this case can

1 Note that Ṁij = Ṁij(x) =
“

∂Mij(x)

∂x

”T

f(x).

be obtained by combining these results with the Con-
traction Mapping Theorem. First let X(x, t) be the flow
associated with ẋ = f(x). That is,

d

dt
X(x, t) = f(X(x, t)), X(x, 0) = x.

Next, consider any two points x0 and x1. If a global con-
traction metric M(x) exists that satisfies the conditions
for exponential contraction in Definition 1, then by the
explicit estimates in Theorem 2 of Aghannan and Rou-
chon (2003),

dM (X(x0, t),X(x1, t)) ≤ e(−β/2)tdM (x0,x1),

where dM is the geodesic distance associated to the met-
ric M(x). In this case, for any fixed positive t0 the map-
ping x 7→ X(x, t0) is a strict contraction, and thus by the
Contraction Mapping Theorem (e.g. Kolmogorov and
Fomin (1970)), there is a unique fixed point.

Convergence of trajectories for a contracting, but not
exponentially contracting system can be proven by us-
ing the positive definiteness of M(x) and the negative

definiteness of ∂f

∂x

T
M(x) + M(x) ∂f

∂x
+ Ṁ to obtain the

relation

d

dt
dM (t) ≤ −ǫ · dE(t), ǫ > 0,

where dM (t) := dM (X(x0, t),X(x1, t)) is the distance
between trajectories in the metric M(x) and dE(t) is
the distance between trajectories in the Euclidean met-
ric. Since dE(t) is always nonnegative, dM (t) is nonin-
creasing, and by an argument similar to that in LaSalle’s
Theorem, it follows that the trajectories must converge
to the set where dE(t) vanishes, i.e., their Euclidean dis-
tance goes to zero. If we have convergence of trajectories
for a system and an equilibrium of that system exists,
then it is necessarily unique.

2.1 Relations to Krasovskii’s Method and Lyapunov
Functions

For a constant metric M(x) = M , this type of analysis
reduces to Krasovskii’s Method (Khalil, 1992). If addi-
tionally the system dynamics are linear, then the condi-
tions above reduce to those in standard Lyapunov anal-
ysis. Lyapunov’s indirect method shows that the system
ẋ(t) = Ax(t) is stable if and only if there exists a posi-
tive definite matrix M such that ATM +MA ≺ 0.

Sometimes it is useful to consider the Lyapunov-like
function

V (x) = fT (x)M(x)f(x),

where M(x) is a contraction metric for the system ẋ =
f(x). If an equilibrium for this system exists and the
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function V (x) is radially unbounded, this system is glob-
ally stable and all trajectories converge to this equilib-
rium point. If M(x) is a contraction metric, V (x) is pos-
itive for all points in the state space where f(x) 6= 0,

V̇ (x) = fT (x)(
∂f

∂x

T

M(x) + M(x)
∂f

∂x
+ Ṁ)f(x) < 0

for all points where f(x) 6= 0, and Lyapunov’s Theorem
shows the system is globally stable. 2 When dealing with
systems with uncertainty it is often convenient to search
for a contraction metric M(x) instead of a Lyapunov
function of a fixed form. We further expand on these
reasons in Section 5.

The problem of finding a time-invariant contraction met-
ric thus reduces to the search for a matrix function M(x).
SOS techniques will provide a computationally conve-
nient approach to this task.

3 Sum of Squares Programming

The main computational difficulty of problems involving
multivariate nonnegativity conditions is the lack of ef-
ficient computational methods. A convenient approach
for this, originally introduced in Parrilo (2000), is the use
of sum of squares relaxations as a suitable replacement
for nonnegativity. We present below the basic elements
of these techniques.

A multivariate polynomial p(x1, x2, ..., xn) = p(x) ∈
R[x], where R[x] is the set of all polynomials in x1, ..., xn,
is a sum of squares (SOS) if there exist polynomials
f1(x), ..., fm(x) ∈ R[x] such that

p(x) =
m
∑

i=1

f2
i (x). (7)

The existence of an SOS representation for a given poly-
nomial is a sufficient condition for its global nonnega-
tivity, i.e., equation (7) implies that p(x) ≥ 0 ∀ x ∈ R

n.
The SOS condition (7) is equivalent to the existence of
a positive semidefinite matrix Q such that

p(x) = ZT (x)QZ(x) (8)

where Z(x) is a vector of monomials of degree less than
or equal to deg(p)/2. This equivalence of descriptions
makes finding an SOS decomposition a computationally
tractable procedure because, as shown by Parrilo (2000),
finding a symmetric positive semidefinite Q subject to
the affine constraint (8) is a semidefinite programming
problem. There has recently been much interest in SOS

2 If the vector field ||f(x)|| → ∞ as ||x|| → ∞, then V (x) is
radially unbounded.

programming and SOS optimization as these techniques
provide convex relaxations for various computationally
hard optimization and control problems; see e.g. Parrilo
(2000, 2003); Lasserre (2001); Prajna et al. (2004a) and
the volume Henrion and Garulli (2005).

An SOS decomposition provides an explicit certificate
of the nonnegativity of a scalar polynomial for all values
of the indeterminates. In order to design an algorithmic
procedure to use SOS techniques to search for contrac-
tion metrics with polynomial entries, we need to intro-
duce a similar idea to ensure that a polynomial matrix
is positive definite for every value of the indeterminates.
A natural definition is as follows:

Definition 2 (Gatermann and Parrilo (2004))
Consider a symmetric matrix with polynomial entries
S(x) ∈ R[x]m×m, and let y = [y1, . . . , ym]T be a vector
of new indeterminates. Then S(x) is a sum of squares
matrix if the scalar polynomial yT S(x)y is a sum of
squares in R[x,y].

For notational convenience, we define a stricter notion:

Definition 3 A matrix S(x) is a strict SOS matrix if
S(x) − ǫI is an SOS matrix for some ǫ > 0.

Thus, a strict SOS matrix is a matrix with polynomial
entries that is strictly positive definite for every value of
the indeterminates. An equivalent definition of an SOS
matrix can be given in terms of the existence of a poly-
nomial factorization: S(x) is an SOS matrix if and only
if it can be decomposed as S(x) = T(x)T T(x) where
T(x) ∈ R[x]p×m. SOS matrices have also been used re-
cently by Hol and Scherer (2005) and Kojima (2003)
to produce relaxations of polynomial optimization prob-
lems with matrix definiteness constraints.

4 Computational Search for Contraction Met-
rics via SOS Programming

As explained in Section 2, given a autonomous dynam-
ical system, the conditions for global contraction (and
thus stability of a single equilibrium point) are given by
a pair of matrix inequalities. For systems with polyno-
mial metrics and polynomial dynamics, relaxing the ma-
trix definiteness conditions of Theorem 1 to SOS matrix-
based tests makes this search computationally tractable.
More specifically, the matrix definiteness constraints on
M(x) (and R(x)) can be relaxed to SOS matrix con-
straints by changing the inequality M(x)−ǫI � 0 to the
weaker condition that M(x) be a strict SOS matrix. We
formalize this as follows:

Lemma 1 If there exist strict SOS matrices M(x) and

−R(x) = −( ∂f

∂x

T
M + M ∂f

∂x
+ Ṁ), then all trajectories

of the autonomous system ẋ = f(x) converge to a finite
equilibrium point.
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This lemma can easily be extended to contraction with
convergence rate β, by considering instead the expres-

sion ∂f

∂x

T
M + M ∂f

∂x
+ Ṁ + βM.

Using the characterization in Lemma 1, we can use SOS
optimization to algorithmically search for time-invariant
contraction metrics for nonlinear systems with polyno-
mial dynamics. After relaxing the matrix definiteness
constraints to SOS, the corresponding feasibility prob-
lem can then be formulated as finding M(x) and −R(x)
that are strict SOS matrices. The detailed steps in the al-
gorithmic search of contraction metrics for systems with
polynomial dynamics are as follows:

(1) Choose the degree of the polynomials in the con-
traction metric, and write an affine parametrization
of symmetric matrices of that degree. For instance,
if the degree is two and the dynamical system is
two-dimensional, the general form of M(x) is

2

4

P

aijx
i
1x

j
2

P

bijx
i
1x

j
2

P

bijx
i
1x

j
2

P

cijx
i
1x

j
2

3

5 ,

where 0 ≤ i+j ≤ 2 and aij , bij , and cij are unknown
coefficients.

(2) Calculate ∂f

∂x
and define R(x) , ∂f

∂x

T
M + M ∂f

∂x
+

Ṁ. R(x) is a symmetric matrix with entries that
depend affinely on the same unknown coefficients
aij , bij , and cij .

(3) Impose strict SOS constraints on the scalar poly-
nomials yT M(x)y and −yTR(x)y, and solve the
associated SOS feasibility problem. If a solution ex-
ists, the SOS solver will find values for the unknown
coefficients which satisfy the constraints.

(4) Use the obtained coefficients aij , bij , cij to con-
struct the contraction metric M(x) and the corre-
sponding R(x).

(5) If the system converges exponentially, an ex-
plicit lower bound on an exponential convergence
rate may be found by using bisection to com-
pute the largest β for which M(x) ≻ 0 and

Rβ(x) , ∂f

∂x

T
M + M ∂f

∂x
+ Ṁ + βM ≺ 0.

For the specific examples presented later in the paper,
we have used SOSTOOLS, an SOS toolbox for MAT-
LAB. developed by Prajna, Papachristodoulou, Seiler,
and Parrilo (2004b) for the specification and solution of
SOS programs. We present next an example of the appli-
cation of this procedure. The system studied is a model
of a jet engine with controller.

4.1 Example: Moore-Greitzer Jet Engine Model

The algorithm described was tested on the following dy-
namics, corresponding to the Moore-Greitzer model of
a jet engine with stabilizing feedback operating in the
no-stall mode (Krstić, Kanellakopoulos, and Kokotović
(1995)). In this model, a desired no-stall equilibrium is

Table 1
Contraction metric search results of jet engine dynamics.

Deg. of polynomials in M(x) 0 2 4 6

M ≻ 0, and R ≺ 0? no no yes yes

Converg. rate lower bound-β n/a n/a 0.78 1.45

translated to the origin. The state variables correspond
to φ = Φ − 1, ψ = Ψ − Ψco − 2, where Φ is the mass
flow, Ψ is the pressure rise and Ψco is a constant. The
dynamic equations take the form:

[

φ̇

ψ̇

]

=

[

−ψ − 3
2φ

2 − 1
2φ

3

3φ− ψ

]

(9)

The only real-valued equilibrium of the system is φ = 0,
ψ = 0. This equilibrium is stable.

The results of the algorithmic search for strict SOS ma-
trices M(x) and −R(x) of various orders are given in
Table 1. As shown there, for this system no contraction
metric with polynomial entries of degree zero or two ex-
ists (this is certified by the solution of the dual optimiza-
tion problem). Increasing the degree of M(x) to four
or higher, we can easily find valid contraction metrics.
Explicit lower bounds for the rate of exponential con-
vergence of the trajectories, i.e., the largest value β for
which M(x) ≻ 0 and Rβ(x) ≺ 0, were β = 0.78 for the
4th degree metric and β = 1.45 for the 6th degree metric.

For this system, it is also possible to prove stability us-
ing standard Lyapunov analysis techniques. However,
the contraction viewpoint is interesting because it allows
us to study this system when there is parametric uncer-
tainty in the plant dynamics or feedback equations. We
elaborate on this in the next section.

5 Uncertainty Analysis with Contraction Met-
rics and SOS Programming

From the robust control perspective, one of the most ap-
pealing features of contraction analysis is that it provides
a nice framework in which to study uncertain nonlinear
systems where the parametric uncertainty changes the
location of the equilibrium points. In general, standard
Lyapunov analysis does not handle this situation par-
ticularly well, since the Lyapunov function must track
the changes in the location of the steady-state solutions.
This forces the use of parameter-dependent Lyapunov
functions. However, in general it may be impossible to
obtain any kind of closed form expression of the equi-
libria in terms of the parameters, thus complicating the
direct parametrization of possible Lyapunov functions.

Much attention has been given to robust stability anal-
ysis of linear systems (e.g., Haddad and Bernstein
(1995); Gahinet et al. (1996); Feron et al. (1996) Boyd,
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Ghaoui, Feron, and Balakrishnan (1994); Zhou, Doyle,
and Glover (1996)). Less attention, however, has been
paid to nonlinear systems with moving equilibria. If a
linear model is being used to study a nonlinear system
around an equilibrium point, changing the equilibrium
of the nonlinear system necessitates relinearization
around the new equilibrium. If the actual position of
the equilibrium (in addition to its stability properties)
depends on the uncertainty, it may be impossible to
obtain a of closed-form expression for the equilibrium
in terms of the uncertain parameters. Thus, parameter-
izing the linearization in terms of the uncertainty may
not be an option.

Two earlier works addressing nonlinear systems with
moving equilibria are by Michel and Wang (1993) and
Andersson and Rantzer (1999). The approach in Michel
and Wang (1993) is to consider systems described by the
equations

ẋ = f(x) + h(x), (10)

where f and h are continuously differentiable functions,
and h(x) represents the uncertainties or perturbation
terms. Given an exponentially stable equilibrium xe,
Michel and Wang (1993) establish sufficient conditions
for existence and local exponential stability of an equilib-
rium x̃e for (10) with the property |xe − x̃e| < ε where ε
is sufficiently small. They do this by using the lineariza-
tion of the system to produce Lyapunov functions.

Since the method in Michel and Wang (1993) is essen-
tially based on a fixed Lyapunov function, it is more lim-
ited than our approach, and can prove stability only un-
der quite conservative ranges of allowable uncertainty.
A quantitative measure of this conservativeness will be
given in Section 5.3 where we discuss the results of ap-
plying both techniques to a specific example.

The method in Andersson and Rantzer (1999) is to first
linearize the dynamics around an equilibrium x0 that is a
function of the uncertain parameter, i.e., x0 = g(δ), δ ∈
Ω where Ω is the uncertainty set, and to use structured
singular values to determine the eigenvalues of the lin-
earized system dz

dt = A(δ)z. In this approach the Jaco-
bian A(δ) must be rational in δ. If A(δ) is marginally
stable, no conclusions can be made about the stability
of the nonlinear system.

The contraction analysis framework eliminates the need
for linearization, and even the need to know the exact
location of the equilibrium, in order to analyze stability
robustness in uncertain nonlinear systems. In contrast
to the Lyapunov situation, when certain classes of para-
metric uncertainty are added to the system, a contrac-
tion metric for the nominal system will often remain a
contraction metric for the system with uncertainty, even
if the perturbation has changed the equilibrium of the
nonlinear system.

As noted in Section 2, if a global time-invariant con-
traction metric exists for an autonomous system, all tra-
jectories converge to a unique equilibrium point, and
we can produce a Lyapunov-like function of the form
V (x) = f(x)T M(x)f(x). When a system contains para-
metric uncertainty, this formula yields the parameter-
dependent function V (x, δ) = f(x, δ)T M(x)f(x, δ) for
ranges of the uncertainty δ where the contraction metric
for the nominal system is still a contraction metric for
the system with perturbed dynamics. Thus, if a contrac-
tion metric can be found for the system under a range of
uncertainty, we can construct a Lyapunov-like function
which tracks the uncertainty for that range.

5.1 Bounds on uncertainty range where the system re-
mains contractive with respect to nominal metric.

If the uncertainty δ enters the dynamics affinely (i.e.,
f(x) = f1(x)+δ f2(x)), we can use SOS programming to
estimate the range of uncertainty under which the con-
traction metric for the nominal system is still a contrac-
tion metric for the perturbed system. To calculate this
range, we can write an SOS program to minimize or max-
imize the amount of uncertainty allowed subject to the

constraint ∂fδ

∂x

T
Mnom + Mnom

∂fδ

∂x
+ Ṁnom(fδ(x)) ≺ 0,

where fδ(x) are the dynamics for the system with para-
metric uncertainty and Mnom is the contraction metric
for the nominal system.. The uncertainty bound is a de-
cision variable in the SOS program and appears affinely
in the constraint above in the ∂fδ

∂x
and fδ(x) terms.

If we have more than one uncertain parameter in the
system, we can also find polytopic inner approximations
of the set of allowable uncertainties. For instance, for
the case of two uncertain parameters, substitute the four
points (δ1, δ2) = (±γ,±γ) into fδ=[δ1,δ2]T (x) and then
maximize γ subject to the metric contractiveness con-
straint. The resulting values define a polytope over which
stability is guaranteed.

5.2 Largest symmetric uncertainty interval for which
the system is contracting.

Alternatively, rather than use the nominal M(x), we can
find a metric that provides the largest symmetric uncer-
tainty interval for which we can prove the uncertain sys-
tem is contracting. If the scalar uncertainty δ enters the
system dynamics affinely, we can perform this optimiza-
tion as follows. First write R(x, δ) = R0(x) + δR1(x).
To find the largest interval (−γ, γ) such that for all δ
that satisfy −γ < δ < γ the system is contracting, in-
troduce the following constraints into an SOS program:

M(x) ≻ 0, R0(x)+γR1(x) ≺ 0, R0(x)−γR1(x) ≺ 0.

Notice that γ multiplies the scalar decision coefficients
ai, bi, and ci in R1(x) and thus we must use a bisection
procedure to find the maximum value of γ.
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Deg. of polys. in M(x) 4 6

δ range (-0.126,0.630) ( -0.070, 0.635)

Table 2
Range of perturbations for which the system (11) is con-
tracting with respect to the nominal metric.

A similar scheme applies in the case of more uncertain
affine parameters. In the two-dimensional case, to find
the largest uncertainty square with width and height γ
such that for all δ1 and δ2 that satisfy −γ < δ1 < γ
and −γ < δ2 < γ the system is contracting, first write
R(x, δ1, δ2) = R0(x) + δ1R1(x) + δ2R2(x). Then, in-
troduce the following constraints into an SOS program:
M(x) ≻ 0, R(x,±γ,±γ) ≺ 0. As in the scalar uncer-
tainty case, we use bisection procedure to find the max-
imum value of γ for which the constraints are feasible.
In the case of a large number of uncertain parameters,
standard relaxation and robust control techniques can
be used to avoid an exponential number of constraints.

5.3 Ex: Moore-Greitzer Jet Engine with Uncertainty

As described above, SOS programming can be used to
find ranges of uncertainty under which a system with
uncertain perturbations is still contracting with respect
to the original contraction metric. The contraction met-
ric found for the deterministic system continues to be a
metric for the perturbed system over a range of uncer-
tainty even if the uncertainty shifts the equilibrium point
and trajectories of the system. For the Moore-Greitzer
jet engine model, the dynamics in (9) were perturbed by
adding a constant term δ to the first equation:

[

φ̇

ψ̇

]

=

[

−ψ − 3
2φ

2 − 1
2φ

3 + δ

3φ− ψ

]

. (11)

In Table 2 we display the ranges of δ for which the
system was still contracting with the original metric for
4th and 6th degree contraction metrics. Notice that the
range of allowable uncertainty is not symmetric.

When we instead optimized the contraction metric
search to get the largest symmetric δ interval we ob-
tained the results listed in Table 3. A 6th degree contrac-
tion function yields the uncertainty range |δ| ≤ 1.023.
Because a Hopf bifurcation occurs in this system at
δ ≈ 1.023, making the system unstable for δ > 1.023,
we can conclude that the 6th degree contraction metric
is the highest degree necessary to find the maximum
range of uncertainty for which the system is contract-
ing. The Hopf bifurcation is shown in Figure 1. Using
the techniques in Michel and Wang (1993) we computed
the allowable uncertainty range for system (11) to be
|δ| ≤ 5.1×10−3. 3 The allowable range |δ| ≤ 1.023 com-

3 We calculated the other parameters in Assumption 1 of

(a) δ = −0.5 (b) δ = −1.01 (c) δ = −1.1

Fig. 1. Hopf bifurcation in uncertain jet dynamics.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

δ 2

δ 
1

Fig. 2. Polytopic region of uncertainty over which system
(9) with additive uncertainty in each equation is contracting
with respect to nominal metric.

Deg. of polys. in M(x) 4 6 8

length of allowed uncert. box 0.7093 0.7321 0.7346

Table 4
Symmetric range of perturbations for which system (9) with
additive uncertainty in each equation is contracting.

puted via contraction analysis and SOS programming
is much larger.

For the case of multiple uncertain coefficients, consider
the system that results from introducing an additive
uncertainty δ1 to the top equation and an additive
uncertainty δ2 to the bottom equation of the right
hand side of (9). We computed an uncertainty polytope
(shown in Figure 2) for which this system is guaranteed
to be contracting with respect to the original metric.
Alternatively, Table 4 shows the results of optimizing
the contraction metric to find the largest uncertainty
square with width and height γ such that for all δ1
and δ2 that satisfy |δ1| ≤ γ and |δ2| ≤ γ, the system is
contracting.

6 Conclusions

In this paper we have described how SOS programming
enables an algorithmic search for contraction metrics for
nonlinear systems with polynomial dynamics. We also
have illustrated the results through several examples.
These examples also exhibit how contraction analysis

Michel and Wang (1993) as (in their notation): h = [δ, 0]T ,
|A−1|∞ = 1, |Dh(xe)|∞ = 0, a = 1

30
, and |h(xe)|∞ = |δ|,

where δ is the perturbation term in (11).

7



Degree of polynomials in M(x) 4 6 8

δ range |δ| ≤ 0.938 |δ| ≤ 1.023 |δ| ≤ 1.023

Table 3
Symmetric range of perturbations for which the uncertain system (11) is contracting.

sometimes offers advantages when compared with tra-
ditional Lyapunov analysis. The contraction approach
is particularly useful in the analysis of nonlinear sys-
tems with uncertain parameters where the uncertainty
changes the location of the equilibrium points of the
system. In addition, a slightly modified version of the
standard algorithmic search allows us to obtain a con-
traction metric that provides the largest uncertainty in-
terval for which the system is provably contracting. For
a globally contracting autonomous system, the system
remains globally stable for parameters in the allowable
uncertainty range.

Subjects of future research include a careful evaluation
of how the computational resources needed by the algo-
rithm scale with system size, as well as the benefits and
limitations of this approach in the context of other non-
linear system analysis techniques.
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