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Abstract

We describe a simple but general method to analyze networks of coupled identical non-
linear oscillators, and study applications to fast synchronization, locomotion, and schooling.
Specifically, we use nonlinear contraction theory to derive exact and global (rather than lin-
earized) results on synchronization, anti-synchronization and oscillator-death. The method can
be applied to coupled networks of various structures and arbitrary size. For oscillators with
positive-definite diffusion coupling, it can be shown that synchronization always occur globally
for strong enough coupling strengths, and an explicit upper bound on the corresponding thresh-
old can be computed through eigenvalue analysis. The discussion also extends to the case when
network structure varies abruptly and asynchronously, as in “flocks” of oscillators or dynamic
elements.

1 Introduction

Initiated by Huygens in the 17th century, the study of coupled oscillators involves today a variety
of research fields, such as mathematics [13, 58, 74, 75], biology [10, 48, 73], neuroscience [6, 24,
31, 43, 50, 64, 87, 88], robotics [4, 32], and electronics [9], to cite just a few. Theoretical analysis
of coupled oscillators can be performed either in phase-space, as e.g. in the classical Kuramoto
model [33, 75, 85], or in state-space, as e.g. in the fast threshold modulation model [30, 70, 71].
While nonlinear state-space models are much closer to physical reality and apply to arbitrary initial
conditions, there still does not exist a general and explicit analysis tool to study them. In this paper,
a new method is developed based on contraction analysis to study dynamic behaviors of coupled
nonlinear oscillators, with an emphasis on the study of spontaneous synchronization.

Basically, a nonlinear dynamic system is called contracting if initial conditions or temporary
disturbances are forgotten exponentially fast, so that all trajectories converge to a unique trajectory.
After a brief review of key results of contraction theory [40, 41, 39] in Section 2, we introduce
the new concept of partial contraction, which extends contraction analysis to include convergence
to behaviors or to specific properties (such as equality of state components, or convergence to a
manifold). Partial contraction provides a very general analysis tool to investigate the stability of
large-scale systems. It is especially powerful to study synchronization behaviors, and it inherits
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from contraction the feature that convergence and long-term behavior can be analyzed separately,
leading to significant conceptual simplifications.

Section 3 first illustrates the method by analyzing the synchronization behaviors of two coupled
oscillators. Section 4 then generalizes the analysis to coupled networks of various structures and
arbitrary size. For nonlinear systems with positive-definite diffusive couplings, synchronization
will always occur if coupling strengths are strong enough, and an explicit upper bound on the
corresponding threshold can be computed through eigenvalue analysis. The results are exact and
global, rather than linearized, and can be easily extended to study nonlinear couplings, unidirectional
couplings, and positive semi-definite couplings. We relate the synchronization rate to the network’s
geometric properties, such as connectivity, graph diameter or mean distance. A fast inhibition
mechanism is studied. Finally, we build flocking and schooling models by extending the previous
analysis to coupled networks with switching topology, and also build the network models with a
leader-followers structure. Concluding remarks are offered in Section 5.

Most of the results in the paper are illustrated using Van der Pol oscillators, whose relaxation
behavior can be made to resemble closely some standard neuron models, for instance. In contrast
with previous approaches such as e.g., [8, 57, 72], the results are exact and global.

2 Contraction and Partial Contraction

Basically, a nonlinear time-varying dynamic system will be called contracting if initial conditions or
temporary disturbances are forgotten exponentially fast, i.e., if trajectories of the perturbed system
return to their nominal behavior with an exponential convergence rate. The concept of partial
contraction allows one to extend the applications of contraction analysis to include convergence
to behaviors or to specific properties (such as equality of state components, or convergence to a
manifold) rather than trajectories.

2.1 Contraction Theory

We briefly summarize the basic definitions and main results of Contraction Theory here, details of
which can be found in [40]. Consider a nonlinear system

ẋ = f(x, t) (1)

where x ∈ R
m is the state vector and f is an m×1 vector function. Assuming f(x, t) is continuously

differentiable, we have

d

dt
(δxT δx) = 2 δxT δẋ = 2 δxT ∂f

∂x
δx ≤ 2 λmax δxT δx

where δx is a virtual displacement between two neighboring solution trajectories, and λmax(x, t)
is the largest eigenvalue of the symmetric part of the Jacobian J = ∂f

∂x
. Hence, if λmax(x, t) is

uniformly strictly negative, any infinitesimal length ‖δx‖ converges exponentially to zero. By path
integration at fixed time, this implies in turn that all solutions of system (1) converge exponentially
to a single trajectory, independently of the initial conditions. Note that differential analysis yields
global results.

More generally, consider a coordinate transformation

δz = Θδx
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where Θ(x, t) is a uniformly invertible square matrix. One has

d

dt
(δzT δz) = 2 δzT δż = 2 δzT (Θ̇ + Θ

∂f

∂x
)Θ−1 δz

so that exponential convergence of ‖δz‖ to zero is guaranteed if the generalized Jacobian matrix

F = (Θ̇ + Θ
∂f

∂x
)Θ−1

is uniformly negative definite. Again, this implies in turn that all solutions of the original system
(1) converge exponentially to a single trajectory, independently of the initial conditions.

By convention, the system (1) is called contracting, f(x, t) is called a contracting function, and the
absolute value of the largest eigenvalue of the symmetric part of F is called the system’s contraction
rate with respect to the uniformly positive definite metric M = ΘTΘ. Note that in a globally
contracting autonomous system, all trajectories converge exponentially to a unique equilibrium
point [40, 67].

2.2 Feedback Combination of Contracting Systems

One of the main features of contraction is that it is automatically preserved through a variety of
system combinations. Here we extend the study of feedback combination in [40] and derive a result
we will use in section 4.4. Consider two contracting systems and an arbitrary feedback connection
between them. The overall dynamics of the generalized virtual displacements δzi can be written as

d

dt

[

δz1

δz2

]

= F

[

δz1

δz2

]

with the symmetric part of the generalized Jacobian in the form

Fs =
1

2
(F + FT ) =

[

F1s G

GT F2s

]

where the subscript “s” refers to the symmetric part of a matrix. By hypothesis the matrices F1s

and F2s are uniformly negative definite. Thus F is uniformly negative definite if and only if ([25],
page 472)

F2s < GT F−1
1s G

Thus, a sufficient condition for the overall system to be contracting is that

λ(F1s) λ(F2s) > σ2(G) uniformly ∀t ≥ 0 (2)

where λ(Fis) is the contraction rate of Fis and σ(G) is the largest singular value of G. Indeed,
condition (2) is equivalent to

λmax(F2s) < λmin(F−1
1s ) σ2(G)

and, for an arbitrary nonzero vector v,

vT F2s v < λmin(F−1
1s ) σ2(G) vT v ≤ vT GT F−1

1s G v

The result can be applied recursively to larger combinations. Note that, from the eigenvalue
interlacing theorem [25],

λ(Fs) ≤ min
i

λ(Fis) .
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2.3 Partial Contraction

We now introduce the concept of partial contraction, which forms the basis of this paper. It derives
from the very simple but very general result which follows.

Theorem 1 Consider a nonlinear system of the form

ẋ = f(x,x, t)

and assume that the auxiliary system
ẏ = f(y,x, t)

is contracting with respect to y. If a particular solution of the auxiliary y-system verifies a smooth
specific property, then all trajectories of the original x-system verify this property exponentially.
The original system is said to be partially contracting.

Proof: The virtual, observer-like y-system has two particular solutions, namely y(t) = x(t) for all
t ≥ 0 and the solution with the specific property. Since all trajectories of the y-system converge
exponentially to a single trajectory, this implies that x(t) verifies the specific property exponentially.
2

Example 2.1: Consider a system of the form

ẋ = c(x, t) + d(x, t)

where function c is contracting in a constant metric1. The auxiliary contracting system may then be
constructed as

ẏ = c(y, t) + d(x, t)

The specific property may consist e.g. a relationship between state variables, or simply of a particular
trajectory. 2

Example 2.2: Consider a convex combination or interpolation between contracting dynamics

ẋ =
X

i

αi(x, t) fi(x, t)

where the individual systems ẋ = fi(x, t) are contracting in a common metric M(x) = ΘT (x)Θ(x) and
have a common trajectory xo(t) (for instance an equilibrium), with all αi(x, t) ≥ 0 and

P

i αi(x, t) = 1.
Then all trajectories of the system globally exponentially converge to the trajectory xo(t). Indeed, the
auxiliary system

ẏ =
X

i

αi(x, t) fi(y, t)

is contracting (with metric M(y) ) and has x(t) and xo(t) as particular solutions. 2

Example 2.3: Recent research in computational neuroscience points out the importance of continuous
attractors [63, 35]. Consider [22] a nonlinear neural network model

τ ẋi + xi = [
X

j

wji xj + bi ]+ i = 1, . . . , n

with [a]+ = max(0, a) and constant τ > 0, or in matrix form

τ ẋ + x = [ Wx + b ]+

1This condition of a constant metric is unduly restrictive and will be omitted in the sequel. One may simply
require of function c that the contraction properties of the auxiliary system do not depend on d(x, t).
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with WT = W = [wij ]. If I − W is positive semi-definite and b is in its range space, a line attractor
exists [22]. To prove global exponential stability of this line attractor, arrange the eigenvalues λi of I−W

in increasing order, with λ2 > λ1 = 0. The corresponding eigenvectors ui represent an orthonormal basis
of the state space. Consider now the auxiliary system

τ ẏ + y = [ Wy + b ]+ + λ2 u1u
T
1 ( x(t) − y )

Note that given positive initial conditions, all components of x and y remain positive. The y-system
can be shown to be contracting with rate λ2/2τ [82] using contraction analysis results for continuously
switching systems [42]. Furthermore, two particular solutions are y = x(t) and y = e + y∞ u1 , where
e is a constant vector satisfying (I− W) e = b and y∞ is a scalar variable defined by

τ ẏ∞ + y∞ = λ2 u
T
1 (x− e)

Thus, x(t) verifies exponentially the specific property that (x(t)−e) is aligned with u1. Hence all solutions
of the original system converge exponentially to a line attractor of the form x = e+x∞ u1, where ẋ∞ = 0
using the original x dynamics. The actual value of x∞ is determined by the initial conditions. 2

Note that contraction may be trivially regarded as a particular case of partial contraction.

3 Two Coupled Oscillators

In this section, we investigate coupled networks composed only by two oscillators, before generalizing
the results in the next section.

3.1 One-Way Coupling Configuration

Consider a pair of one-way (unidirectional) coupled identical oscillators

{

ẋ1 = f(x1, t)

ẋ2 = f(x2, t) + u(x1) − u(x2)
(3)

where x1, x2 ∈ R
m are the state vectors, f(xi, t) the dynamics of the uncoupled oscillators, and

u(x1) − u(x2) the coupling force.

Theorem 2 If the function f−u is contracting in (3), two systems x1 and x2 will reach synchrony
exponentially regardless of the initial conditions.

Proof: The second subsystem, with u(x1) as input, is contracting, and x2(t) = x1(t) is a particular
solution. 2

Example 3.1: Consider two coupled identical Van der Pol oscillators

(

ẍ1 + α(x2
1 − 1)ẋ1 + ω2x1 = 0

ẍ2 + α(x2
2 − 1)ẋ2 + ω2x2 = ακ(ẋ1 − ẋ2)

where α, ω and κ are strictly positive constants (this assumption will apply to all our Van der Pol
examples). Since the system

ẍ + α(x2 + κ − 1)ẋ + ω2x = u(t)

is semi-contracting for κ > 1 (see Appendix), x2 will synchronize to x1 asymptotically. 2
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Note that a typical engineering application with a one-way coupling configuration is observer
design, in which case u(x1) represents the measurement. The result of Theorem 2 can be easily
extended to a network containing n oscillators with a chain structure (or more generally, a tree
structure)



















ẋ1 = f(x1, t)

ẋ2 = f(x2, t) + u(x1) − u(x2)

· · ·

ẋn = f(xn, t) + u(xn−1) − u(xn)

(4)

where the synchronization condition is the same as that for system (3).

3.2 Two-Way Coupling Configuration

The meaning of synchronization may vary in different contexts. In this paper, we define synchro-
nization of two (or more) oscillators x1, x2 as corresponding to a complete match, i.e., x1 = x2.
Similarly, we define anti-synchronization as x1 = −x2. These two behaviors are called in-phase
synchronization and anti-phase synchronization in many communities.

3.2.1 Synchronization

Theorem 3 Consider two coupled systems. If the dynamics equations verify

ẋ1 − h(x1, t) = ẋ2 − h(x2, t)

where the function h is contracting, then x1 and x2 will converge to each other exponentially,
regardless of the initial conditions.

Proof: Given initial conditions x1(0) and x2(0), denote by x1(t) and x2(t) the solutions of the two
coupled systems. Define

g(x1,x2, t) = ẋ1 − h(x1, t) = ẋ2 − h(x2, t)

and construct the auxiliary system

ẏ = h(y, t) + g(x1(t),x2(t), t)

This system is contracting since the function h is contracting, and therefore all solutions of y

converge together exponentially. Since y = x1(t) and y = x2(t) are two particular solutions, this
implies that x1(t) and x2(t) converge together exponentially. 2

Remarks

• Theorem 3 can also be proved by constructing another auxiliary system

{

ẏ1 = h(y1, t) + g(x1,x2, t)

ẏ2 = h(y2, t) + g(x1,x2, t)

which has a particular solution verifying the specific property y1 = y2. Since this auxiliary
system is composed of two independent subsystems driven by the same inputs, the proof can
be simplified as above by using a auxiliary system of reduced dimension.
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• Theorem 2 is a particular case of Theorem 3. So is, for instance, a system of two-way coupled
identical oscillators of the form

{

ẋ1 = f(x1, t) + u(x2) − u(x1)

ẋ2 = f(x2, t) + u(x1) − u(x2)
(5)

In such a system x1 tends to x2 exponentially if f − 2u is contracting. Furthermore, because
the coupling forces vanish exponentially, both oscillators tend to their original limit cycle
behavior, but with a common phase.

• Although contraction properties are central to the analysis, the overall system itself in general
is not contracting, and the common phase of the steady states is determined by the initial
conditions x1(0) and x2(0). This stresses the difference between contraction and partial con-
traction.

• Theorem 3 can be easily extended to coupled discrete-time systems, using discrete versions
[40] of contraction analysis, to coupled hybrid systems, and to coupled systems expressed by
partial-differential-equations.

• Contraction of the auxiliary system also implies that bounded variations in subsystem dynam-
ics lead to bounded synchronisation errors.

Example 3.2: Consider again two coupled identical Van der Pol oscillators

(

ẍ1 + α(x2
1 − 1)ẋ1 + ω2x1 = ακ1(ẋ2 − ẋ1)

ẍ2 + α(x2
2 − 1)ẋ2 + ω2x2 = ακ2(ẋ1 − ẋ2)

One has
ẍ1 + α(x2

1 + κ1 + κ2 − 1)ẋ1 + ω2x1 = ẍ2 + α(x2
2 + κ1 + κ2 − 1)ẋ2 + ω2x2

From Theorem 3 and the result in the Appendix, we know that these two oscillators will reach synchrony
asymptotically if κ1 + κ2 > 1 for non-zero initial conditions. 2

3.2.2 Anti-Synchronization

In a seminal paper [69] inspired by Turing’s work [48, 80], Smale describes a mathematical model
where two identical biological cells, inert by themselves, can be excited into oscillations through
diffusion interaction across their membranes. Using Theorem 3, we can build a coupled system

{

ẋ1 = h(x1, t) + u(x2, t) − u(x1, t)

ẋ2 = h(x2, t) + u(x1, t) − u(x2, t)
(6)

to describe Smale’s model.

Theorem 4 If the uncoupled dynamics h in (6) is contracting and odd in x, x1 +x2 will converge
to zero exponentially regardless of the initial conditions. Moreover, for non-zero initial conditions,
x1 and x2 will oscillate and reach anti-synchrony if the system

ż = h(z, t) − 2u(z, t)

has a stable limit-cycle.

Proof: Replace x2 by − x2 in Theorem 3. 2
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Example 3.3: Consider specifically Smale’s example [69], where

h(x, t) = A x +

2

6

6

4

−x3
1

0
0
0

3

7

7

5

u(x) =
1

2
K

2

6

6

4

x1

x2

x3

x4

3

7

7

5

with

A =

2

6

6

4

1 + a 1 γa 0
−1 a 0 γa
−γa 0 2a 0

0 −γa 0 2a

3

7

7

5

K =

2

6

6

4

a 0 γa 0
0 a 0 γa

−γa 0 −2a 0
0 −γa 0 −2a

3

7

7

5

For a < −1, h has a negative definite Jacobian and thus is contracting, and h− 2u yields a stable limit-
cycle, so that the two originally stable cells are excited into oscillations for non-zero initial conditions.
Requiring in addition that

√
2 < γ < 3/2 guarantees that all the eigenvalues of K are distinct, real and

strictly positive, so that K can be transformed into a diagonal diffusion matrix through a linear change
of coordinates. 2

3.2.3 Oscillator-Death

Inverse to Smale’s effect, in the phenomenon called oscillator-death (or amplitude-death) [1, 2, 59]
oscillators stop oscillating and stabilize at constant steady states once they are coupled. Oscillator-
death happens if the overall dynamics is contracting and autonomous, since this implies that the
system tends exponentially to a unique equilibrium.

Example 3.4: Couple two Van der Pol oscillators with asymmetric forces

(

ẍ1 + α(x2
1 − 1)ẋ1 + ω2x1 = ακ(ẋ2 − ẋ1)

ẍ2 + α(x2
2 − 1)ẋ2 + ω2x2 = ακ(−ẋ1 − ẋ2)

(7)

where κ > 1. By introducing new variables y1 and y2 as in the Appendix, we get a generalized Jacobian

F =

2

6

6

4

−α(x2
1 + κ − 1) ω ακ 0
−ω 0 0 0
−ακ 0 −α(x2

2 + κ − 1) ω
0 0 −ω 0

3

7

7

5

≤ 0

whose symmetric part is simply that of two uncoupled damped Van der Pol oscillators. Thus both systems
will tend to zero asymptotically. 2

3.3 Van der Pol Oscillators with General Couplings

As a conclusion of this section, we now consider two identical Van der Pol oscillators coupled in a
very general way:

{

ẍ1 + α(x2
1 − 1)ẋ1 + ω2x1 = α (γẋ2 − κẋ1)

ẍ2 + α(x2
2 − 1)ẋ2 + ω2x2 = α (γẋ1 − κẋ2)

(8)

where α is a positive constant. It can be proved as above that, as long as the condition

| γ | > 1 − κ

is satisfied, x1 converges to x2 asymptotically for all γ ≥ 0 while x1 converges to −x2 asymptotically
for all γ ≤ 0. Note that if γ = 0 we get two independent stable subsystems. Both x1 and x2 tend
to the origin, which can be considered as a continuous connection between γ > 0 and γ < 0.
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Next we need to study the stable behavior of the coupled systems in order to make sure that if
they keep oscillating or tend to a stationary equilibrium. Assume first that γ > 0, we have

ẍi + α(x2
i − 1)ẋi + ω2xi → α (γ − κ)ẋi i = 1, 2

which gives the stable dynamics of x1 and x2 as

ẍi + α(x2
i + κ − γ − 1)ẋi + ω2xi = 0.

This dynamic equation has a stable limit cycle if γ > κ − 1 or a stable equilibrium point at origin
otherwise. A similar result can be derived for γ < 0, where x1 and x2 reach anti-synchrony if
γ < 1 − κ or tend to zero otherwise.

Also note that:

• Setting κ = 1, x1 and x2 will keep oscillating for all γ 6= 0. Oscillator-death as a transition
state between synchronized and anti-synchronized solutions does not exist except when γ = 0.

• In general, a positive value of γ represents a force to drive synchrony while a negative value
to drive anti-synchrony. Hence it is easy to understand the behavior of system (7) where the
coupling to the first oscillator tries to synchronize but the coupling to the second tries to
anti-synchronize, with equal strength. A neutral result is thus obtained. In fact, if we look at
a coupled system with non-symmetric couplings

{

ẍ1 + α(x2
1 − 1)ẋ1 + ω2x1 = α (γ1ẋ2 − κ1ẋ1)

ẍ2 + α(x2
2 − 1)ẋ2 + ω2x2 = α (γ2ẋ1 − κ2ẋ2)

the condition for oscillator-death is

κ1 > 1 , κ2 > 1 , (κ1 − 1)(κ2 − 1) ≥ (γ1 + γ2)
2/4.

• If we add extra diffusion coupling associated to the states x1 and x2 to system (8)
{

ẍ1 + α(x2
1 − 1)ẋ1 + ω2x1 = α (γẋ2 − κẋ1) + α (γ̄x2 − κ̄x1)

ẍ2 + α(x2
2 − 1)ẋ2 + ω2x2 = α (γẋ1 − κẋ2) + α (γ̄x1 − κ̄x2)

where κ and κ̄ are both positive, the main result preserves as long as γγ̄ > 0. If the condition
| γ | > 1− κ is satisfied, x1 converges to x2 asymptotically for all γ ≥ 0 while x1 converges to
−x2 asymptotically for all γ ≤ 0. The second coupling term does not change the qualitative
results (but only the amplitude and frequency of the final behavior) as long as

ω2 + α( κ̄ − | γ̄ | ) > 0 .

These results can be regarded as a global generalization of the dynamics analysis of two
identical Van der Pol oscillators in [57, 72].

4 Nonlinear Networked Systems

Most coupled oscillators in the natural world are organized in large networks, such as pacemaker
cells in heart, neural networks in brain, fireflies with synchronized flashes, crickets with synchronized
chirping, etc.[73, 77]. System (4) represents such an instance with a chain structure. There are many
other possible structures, such as e.g. the three symmetric ones illustrated in Figure 1.

In this section, we show that partial contraction analysis can be used to study synchronization
in networks of nonlinear dynamic systems of various structures and arbitrary size. Coupling forces
can be nonlinear as well.
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Figure 1: Networks with different symmetric structures (n = 4)

4.1 Networks with All-To-All Symmetry

Consider first a network with all-to-all symmetry, that is, with each element coupled to all the
others. Such a network can be analyzed using an immediate extension of Theorem 3.

Theorem 5 Consider n coupled systems. If a contracting function h(xi, t) exists such that

ẋ1 − h(x1, t) = · · · = ẋn − h(xn, t)

then all the systems will synchronize exponentially regardless of the initial conditions.

For instance, for identical oscillators coupled with diffusion-type force

ẋi = f(xi, t) +

n
∑

j=1

( u(xj) − u(xi) ) i = 1, 2, . . . , n (9)

contraction of f − nu guarantees synchronization of the whole network.

In [46], Mirollo and Strogatz study an all-to-all network of pulse-coupled integrate-and-fire os-
cillators, and derive a similar result on global synchronization.

4.2 Networks with Less Symmetry

Besides its direct application to all-to-all networks, Theorem 5 may also be used to study networks
with less symmetry.

Example 4.1: Consider an n = 4 network with two-way-ring symmetry (as illustrated in Figure 1(b))

ẋi = f(xi, t) + (u(xi−1) − u(xi)) + (u(xi+1) − u(xi)) i = 1, 2, 3, 4

where the subscripts i − 1 and i + 1 are computed circularly. Combining these four oscillators into two
groups (x1,x2) and (x3,x4), we find

»

ẋ1 − f(x1, t) + 2u(x1)
ẋ2 − f(x2, t) + 2u(x2)

–

=

»

ẋ3 − f(x3, t) + 2u(x3)
ẋ4 − f(x4, t) + 2u(x4)

–

=

»

u(x2) + u(x4)
u(x1) + u(x3)

–

Thus, if the function f − 2u is contracting, (x1,x2) converges to (x3,x4) exponentially, and hence

(

ẋ1 − f(x1, t) + 2u(x1) → 2u(x2)

ẋ2 − f(x2, t) + 2u(x2) → 2u(x1)

so that in turn x1 converges to x2 exponentially if the function f − 4u is contracting. The four oscillators
then reach synchrony exponentially regardless of the initial conditions. 2
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An extended partial contraction analysis can be used to study the example below, the idea of
which will be generalized in the following section.

Definition 1 Consider n square matrices Ki of identical dimensions, and a square symmetric
matrix K. Define

In
Ki

=











K1 0 · · · 0
0 K2 · · · 0
...

...
. . .

...
0 0 · · · Kn











Un
K =











K K · · · K

K K · · · K
...

...
. . .

...
K K · · · K











n×n

One has In
Ki

> 0 if and only if Ki > 0, ∀i, and Un
K ≥ 0 if and only if K ≥ 0 .

Example 4.2: Consider an n = 4 network with one-way-ring symmetry (as illustrated in Figure 1(a))

ẋi = f(xi, t) + K ( xi−1 − xi ) i = 1, 2, 3, 4

where K = KT ≥ 0 and the subscripts are calculated circularly. This system is equivalent to

ẋi = f(xi, t) − K(2xi + xi+1 + xi+2) + K

4
X

j=1

xj

Construct the auxiliary system

ẏi = f(yi, t) −K(2yi + yi+1 + yi+2) + K

4
X

j=1

xj(t) i = 1, 2, 3, 4

The auxiliary system admits the particular solution y1 = y2 = y3 = y4 = y∞ , with

ẏ∞ = f(y∞, t) − 4 K y∞ + K

4
X

j=1

xj(t) (10)

To apply Theorem 1 for the specific property y1 = y2 = y3 = y4 and prove that all xi synchronize
regardless of the initial conditions, there only remains to study the Jacobian matrix

J =

2

6

6

4

J1 − 2K −K −K 0
0 J2 − 2K −K −K

−K 0 J3 − 2K −K

−K −K 0 J4 − 2K

3

7

7

5

where Ji = ∂f
∂y

(yi, t). The symmetric part of the Jacobian is

Js = I
4
(Jis−K) −

1

2
U

4
K − 1

2
J+ where J+ =

2

6

6

4

K 0 K 0
0 K 0 K

K 0 K 0
0 K 0 K

3

7

7

5

We know that if ∀i, Jis − K < 0, then I4(Jis−K) < 0, and if K ≥ 0 then U4
K ≥ 0 and J+ ≥ 0. If both

conditions are satisfied, the Jacobian J is negative definite and synchronization occurs.

Note that dynamics (10) is then contracting as well. This is not surprising since y1 = y2 = y3 = y4

defines both an invariant set and a linear constraint, and linear constraints preserve contraction [40]. 2
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4.3 Networks with General Structure

Let us now move to networked systems under a very general coupling structure. For notational
simplicity, we first assume that coupling forces are linear diffusive with gains Kij (associated with
coupling from node i to j) positive definite, i.e., (Kij)s = Kijs > 0. We further assume that
coupling links are bidirectional and symmetric in different directions, i.e., Kij = Kji. All these
assumptions can be relaxed as we will show later.

Consider a network containing n identical elements

ẋi = f(xi, t) +
∑

j∈Ni

Kji (xj − xi) i = 1, . . . , n (11)

where Ni denotes the set of indices of the active links of element i. It is equivalent to

ẋi = f(xi, t) +
∑

j∈Ni

Kji (xj − xi) − K0

n
∑

j=1

xj + K0

n
∑

j=1

xj

where K0 is chosen to be a constant symmetric positive definite matrix (we will discuss its function
later). Again, construct an auxiliary system

ẏi = f(yi, t) +
∑

j∈Ni

Kji (yj − yi) − K0

n
∑

j=1

yj + K0

n
∑

j=1

xj(t) (12)

which has a particular solution y1 = · · · = yn = y∞ with

ẏ∞ = f(y∞, t) − n K0 y∞ + K0

n
∑

j=1

xj(t)

According to Theorem 1, if the auxiliary system (12) is contracting, then all system trajectories will
verify the independent property x1 = · · · = xn exponentially.

Next, we compute Js, the symmetric part of the Jacobian matrix of the auxiliary system.

Definition 2 Consider a square symmetric matrix K, and define

Tn
K =



















. . .
...

...
· · · K · · · −K · · ·

...
. . .

...
· · · −K · · · K · · ·

...
...

. . .



















n×n

where all the elements in Tn
K are zero except those displayed above at the four intersections of the

ith and jth rows with the ith and jth columns. One has Tn
K ≥ 0 if K ≥ 0.

Letting N = ∪n
i=1Ni denote the set of active links in the network, define LK =

∑

i,j∈N

Tn
Kijs

.

If we view the network as a graph, LK is the symmetric part of the weighted Laplacian matrix [18].
The standard laplacian matrix is denoted as L. We can write

Js = In
Jis

− LK − Un
K0

where Jis = ( ∂f
∂y

(yi, t))s.

12



Lemma 1 Let
Jr = − LK − Un

K0

If K0 > 0 , Kij > 0, ∀(i, j) ∈ N , and the network is connected, then Jr < 0.

Proof: Note that each of the two parts in Jr is only negative semi-definite. Given an arbitrary
nonzero vector v = [v1, . . . ,vn]T , one has

vT Jr v = −
∑

(i,j)∈N

(vi − vj)
T Kijs (vi − vj) − (

n
∑

i=1

vi)
T K0 (

n
∑

i=1

vi) < 0

because the condition that the network is connected guarantees that

vT Jr v = 0 if and only if v1 = · · · = vn = 0.

Furthermore, the largest eigenvalue of Jr can be calculated as

λmax(Jr) = max
||v||=1

vT Jrv = max
||v||=1

( −vT LKv − vT Un
K0

v )

Since −vT Un
K0

v keeps decreasing as K0 increases except on the set
∑n

i=1 vi = 0, we can choose
K0 large enough and get

λmax(Jr) = − min
||v||=1

Pn
i=1

vi=0

vT LKv = −λm+1(LK)

according to the Courant-Fischer Theorem [25] − note that K0 is a virtual quantity used to make
Jr < 0 in the partial contracting analysis, and thus it cannot affect the real system’s synchronization
rate. Here the eigenvalues are arranged in an increasing order, and λ1(LK) = · · · = λm(LK) = 0,
where m is the dimension of each individual element.

Note that in the particular case that m = 1 and all Kij = 1, eigenvalue λ2(LK) = λ2(L) is a
fundamental quantity in graph theory named algebraic connectivity [16], which is equal to zero if
and only if the graph is not connected. 2

The above results imply immediately

Theorem 6 Regardless of initial conditions, all the elements within a generally coupled network (11)
will reach synchrony or group agreement exponentially if

• the network is connected

• λmax(Jis) is upper bounded

• the couplings are strong enough

Specifically, the auxiliary system (12) is contracting if

λm+1(LK) > max
i

λmax(Jis) uniformly (13)

Remarks
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• The conditions given in Theorem 6 to guarantee synchronization represent requirements both
on the individual systems’ internal dynamics and the network’s geometric structure. A lower
bound on the corresponding threshold of the coupling strength can be computed through
eigenvalue analysis for a specific network.

• Theorem 6 can also be used to find the threshold for symmetric subgroups in a network to
reach synchrony, as in Example 4.1.

• Partial contraction analysis does not add any restriction on the uncoupled dynamics f(x, t)
other than requiring λmax(Jis) to be upper bounded, which is easy to be satisfied if for
instance individual elements are oscillators. As an example, λmax(Jis) = α for the Van der
Pol oscillator. The dynamics f may have various qualitative properties, and it can be an
oscillator, a contracting system, zero, or even a chaotic system [52, 67, 77]. For a group of
contracting systems, if Θ = I, the contraction property of the overall group will be enhanced
by the diffusion couplings, and all the coupled systems are expected to converge to a common
equilibrium point exponentially if f is autonomous. If Θ 6= I, however, the situation is
more complicated, and a transformation must be used before applying contraction analysis.
The coupling gain may lose positivity through the transformation, and the stability of the
equilibrium point may be destroyed with strong enough coupling strengths. This kind of
bifurcation is interesting especially if the otherwise silent systems behave as oscillators after
coupling, a phenomenon of Smale’s cells [38, 69, 80]. A simple example when n = 2 has been
discussed in Section 3.2.2.

• The definition of the “neighbor” sets Ni is quite flexible. While it may be based simply
on position proximity (neighbors within a certain distance of each node), it can be chosen to
reflect many other factors. Gestalt psychology [61], for instance, suggests that in human visual
perception, grouping occurs not only by proximity, but also by similarity, closure, continuity,
common region and connectedness. The coupling strengths can also be specified flexibly. For
instance, using Schoenberg/Micchelli’s theorems on positive definite functions [45], they can
be chosen as smooth functions based on sums of gaussians.

• Partial contraction theory is derived from contraction theory. Thus many results from [40, 66]
apply directly. Consider for instance a coupled network with constraints

ẋi = f(xi, t) + ni +
∑

j∈Ni

Kji (xj − xi) i = 1, . . . , n

where ni represents a superimposed flow normal to the constraint manifold and has the same
form to each system. Construct the corresponding auxiliary system

ẏi = f(yi, t) + ni +
∑

j∈Ni

Kji (yj − yi) − K0

n
∑

j=1

yj + K0

n
∑

j=1

xj (14)

Using [40], contraction of the unconstrained flow (12) implies local contraction of the con-
strained flow (14), which means group agreement can be achieved for constrained network
in a finite region which can be computed explicitly. In same cases, the introduction of the
constraint combined with the specific property of the particular solution implies that the con-
strained original system is actually contracting. Similarly, because the auxiliary system is
contracting, robustness results in [40] apply directly.

4.4 Extensions

Besides the properties discussed above, let us make a few more extensions to Theorem 6, and relax
assumptions made earlier.

14



4.4.1 Nonlinear Couplings

The analysis carries on straightforwardly to nonlinear couplings. For instance,

ẋi = f(xi, t) +
∑

j∈Ni

uji (xj ,xi,x, t)

where the couplings are of the form

uji = uji ( xj − xi, x, t )

with uji ( 0, x, t ) = 0 ∀ i, j, x, t. The whole proof is the same except that we define

Kji =
∂uji ( xj − xi, x, t )

∂(xj − xi)
> 0 uniformly

and assume Kji = Kij .

For instance, one may have

uji = ( Cji(t) + Bji(t) ‖xj − xi‖ ) (xj − xi)

with Cji = Cij > 0 uniformly and Bji = Bij ≥ 0, in which case we can construct a simplified
auxiliary system as

ẏi = f(yi, t) +
∑

j∈Ni

(Cji(t) + Bji(t) ‖xj(t) − xi(t)‖) (yj − yi) − K0

n
∑

j=1

yj + K0

n
∑

j=1

xj(t)

Note that if the network is all-to-all coupled, the coupling forces can be even more general as
we discussed in Section 4.1.

4.4.2 One-way Couplings

The bidirectional coupling assumption on each link is not always necessary. Consider a coupled
network with one-way-ring structure and linear diffusion coupling force

ẋi = f(xi, t) + K ( xi−1 − xi ) i = 1, . . . , n

where by convention i − 1 = n when i = 1. We assume that the coupling gain K = KT > 0 is
identical to all links. Hence,

Jr = −
1

2
LK − Un

K0

is negative definite with

LK =

n
∑

i=1

Tn
K(i, i + 1)

Since

λm+1(
1

2

n
∑

i=1

Tn
K(i, i + 1) ) =

1

2
λmin(K) λ2(

n
∑

i=1

Tn
1 (i, i + 1) ) = λmin(K) (1 − cos

2π

n
) ,

the threshold to reach synchrony exponentially is

λmin(K) (1 − cos
2π

n
) > max

i
λmax(Jis) uniformly (15)

15



A special case was given in Example 4.2 with n = 4.

Thus, Theorem 6 can be extended to networks whose links are either bidirectional with Kji = Kij

or unidirectional but formed as rings with KT = K (where K is identical within the same ring
but may differ between different rings). Synchronized groups with increasing complexity can be
generated through accumulation of smaller groups.

Throughout the remainder of the paper, all results on bidirectionally coupled networks will apply
to unidirectional rings as well.

4.4.3 Positive Semi-Definite Couplings

Theorem 6 requires definite coupling gains. If the Kij are only positive semi-definite, additional
conditions must be added to the uncoupled system dynamics to guarantee globally stable synchro-
nization.

Without loss of generality, we assume

Kijs =

[

K̄ijs 0
0 0

]

where K̄ijs is positive definite and has a common dimension for all links. Thus, we can divide the
uncoupled dynamics Jis into the form

Jis =

[

J11s J12

JT
12 J22s

]

i

with each component having the same dimension as that of the corresponding one in Kijs. A
sufficient condition to guarantee globally stable synchronization behavior in the region beyond a
coupling strength threshold is that, ∀i, J22s is contracting and both λmax(J11s) and σmax(J12) are
upper bounded.

Indeed, given an arbitrary vector v = (v1, . . . ,vn), one has

vT Jsv =

n
∑

i=1

vT
i Jisvi + vT Jr v ≤

n
∑

i=1

vT
i

[

0 J12

JT
12 J22s

]

i

vi +

n
∑

i=1

vT
i

[

λI 0
0 0

]

vi

=

n
∑

i=1

vT
i

[

λI J12

JT
12 J22s

]

i

vi

where
λ = λmax(J̄r) + max

i
λmax(J11s)

and J̄r is a new matrix by ruling out the rows and columns containing only zero in Jr (we set K0

to be positive semi-definite and have the same form as Kijs) and hence is negative definite. From
feedback combination condition (2), we know that a negative λ with absolute value large enough,
a contracting J22s and a bounded σ(J12) for all i guarantee the contracting of Js. In fact, global
contraction of J22s is a very important necessary condition, without which the synchronization can
not occur in an unbounded parameter region. Pecora first pointed this out in [3, 53, 54] using
a new concept called desynchronizing bifurcation. Recently, [56] independently studied a similar
phenomenon.

Example 4.3: Consider a network composed of identical Van der Pol oscillators in a general structure.
The dynamics of the ith oscillator is given as

ẍi + α(x2
i − 1)ẋi + ω2xi =

X

j∈Ni

ακ(ẋj − ẋi)
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Using partial contracting analysis, we have

Js = I
n
Jis

+ Jr = I
n
Jis

− LK − U
n
K0

with

Jis =

»

α(1 − x2
i ) 0

0 0

–

Kij = Kijs =

»

ακ 0
0 0

–

.

By ruling out the even rows and even columns in Js where the components are all zero, we get a new
result

J̄s = I
n
J̄is

− LK̄ − U
n
K̄0

with
J̄is = α(1 − x2

i ), K̄ij = K̄ijs = ακ.

The condition for J̄s to be negative definite is

1

κ
< λ2(

X

i,j∈N

T
n
1 ) = λ2(L)

which guarantees simultaneously that Js is negative semi-definite. Using semi-contracting analysis, we
know that synchrony will happen asymptotically.

An important application of coupled nonlinear oscillators is the modeling of central pattern generators [10,
11, 19, 20, 21]. Consider a two-way-ring neural network composed of four identical Van der Pol oscillators
as given in Figure 1(b). Assume that the first oscillator is connected to the left front leg while the third
to the right back one. The system dynamics is given as

ẍi + α(x2
i − 1)ẋi + ω2xi = ακ( γ(i−1)i ẋi−1 − ẋi ) + ακ( γ(i+1)i ẋi+1 − ẋi )

with i = 1, 2, 3, 4. Choosing different values of coupling coefficient γij , this model is able to generate
rhythmic signals to drive different quadrupedal gaits. We set γij = γji = 1 if we want the oscillators i
and j to synchronize while set γij = γji = −1 if we want them to anti-synchronize. Thus, following the
description of animal gaits in [10], we are able to realize the pace, trot, bound and pronk, the quadrupedal
gaits which are highly symmetric and robust with relative phase lags of zero or half a period. For instance,
the pace gait(left/right pairing) is achieved by setting

γ41 = γ14 = −1, γ21 = γ12 = 1, γ32 = γ23 = −1, γ43 = γ34 = 1

and coupling gain κ > 1
2
. The convergence from one gait to another is global. Once all the γij are set to

be zero, we get the stand.

A similar model can be used to study the locomotion of other numbers of legs. For instance, consider a
two-way-ring network composed of six oscillators. By setting κ > 1 and all the γij to be −1, we are able
to generate the tripod gait, a common hexapodal gait in which the front and rear legs on one side, and
the middle leg on the other, move together, followed by the remaining three legs half a period later [11].
2

Example 4.4: The FitzHugh-Nagumo (FN) model [17, 49] is a well-known spiking-neuron model.
Consider a diffusion-coupled network with n identical FitzHugh-Nagumo neurons

8

>

<

>

:

v̇i = c(vi + wi − 1

3
v3

i + I) +
X

j∈Ni

kji (vj − vi)

ẇi = − 1
c
(vi − a + bwi) i = 1, . . . , n

(16)

where a, b, c are strictly positive constants. Defining a transformation matrix Θ =

»

1 0
0 c

–

, which

leaves the coupling gain unchanged, yields the generalized Jacobian of the uncoupled dynamics

Fi =

»

c(1 − v2
i ) 1

−1 − b
c

–

Thus the whole network will synchronize exponentially if

λ2(
X

(i,j)∈N

T
n
kij

) = λ2(LK̄) > c

Note that the model can be generalized using a linear state transformation to a dimensionless system [48],
with partial contraction analysis yielding a similar result. 2
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4.5 Algebraic Connectivity

For a coupled network with given structure, increasing the coupling gain for a link or adding an
extra link will both improve the synchronization process. In fact, these two operations are the same
in a general understanding by adding an extra term −Tn

Kijs
to the matrix Js. According to Weyl’s

Theorem [25], if square matrices A and B are Hermitian and the eigenvalues λi(A), λi(B) and
λi(A + B) are arranged in increasing order, for each k = 1, 2, . . ., n, we have

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B)

which means immediately
λk(Js − Tn

Kijs
) ≤ λk(Js)

since λmax(−Tn
Kijs

) = 0.

In fact, connecting each node to more neighbors is an effective way for large-size networks to lower
the synchronization threshold. To see this in more detail, let us assume that all the links within
the network are bidirectional (the corresponding graph is called undirected graph) with identical
coupling gain K = KT > 0. Thus, according to [26] λm+1(LK) = λ2 λmin(K) where λ2 is the
algebraic connectivity of the standard Laplacian matrix. Denote

λ̄ =
maxi λmax(Jis)

λmin(K)

If both the individual element’s uncoupled dynamics and the coupling gains are fixed, the synchro-
nization condition (13) can be written as

λ2 > λ̄ uniformly

We can further transform this condition to the ones based on more explicit properties in geometry.
Given a graph G of order n, there exist lower bounds on its diameter2 d(G) and its mean distance3

ρ̄(G) [47]

d(G) ≥
4

nλ2

(n − 1)ρ̄(G) ≥
2

λ2
+

n − 2

2

(these bounds are most informative when λ2 is small) which in turn gives us lower bounds on
algebraic connectivity

λ2 ≥
4

n · d(G)

λ2 ≥
2

(n − 1)ρ̄(G) − n−2
2

Thus, a sufficient condition to guarantee exponential network synchronization is

d(G) <
4

nλ̄

or

ρ̄(G) <
2

λ̄(n − 1)
+

n − 2

2(n − 1)

2Maximum number of links between two distinct vertices [18]
3Average number of links between distinct vertices [47]

18



These results quantify the fact that different coupling links or nodes can make different contri-
butions to synchronization, because they play different roles in network structure. In this sense,
links between far-separated nodes contribute more than those between close neighbors, a fact also
central to Small World models [83].

Example 4.5: In [29], Kopell and Ermentrout show that closed rings of oscillators will reliably syn-
chronize with nearest-neighbor coupling, while open chains require nearest and next-nearest neighbor
coupling. This result can be explained by assuming all gains are identical and expressing the synchro-
nization condition (13) as

λmin(K) >
maxi λmax(Jis)

λ2
uniformly

Assuming n extremely large, for a graph with two-way-chain structure

λ2 = 2 ( 1 − cos(
π

n
) ) ≈ 2 (

π

n
)2

while for a graph with two-way-ring structure

λ2 = 2 ( 1 − cos(
2π

n
) ) ≈ 8 (

π

n
)2

As illustrated in Figure 2, although the number of links only differ by one in these two cases, the effort
to synchronize an open chain network is four times of that to a closed one. 2
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Figure 2: Comparison of a chain network and a ring.

Example 4.6: Consider a ring network, a star network and an all-to-all network (Figure 3) as network
size n tends to ∞. For the ring network, the coupling strength threshold for synchronization tends to
infinity. For the star network it only needs to be of order 1, and for the all-to-all network it actually
tends to 0.

Thus, predictably, it is much easier to synchronize the star network than the ring. This is because the
central node in the star network performs a global role, which keeps the graph diameter constant no
matter how big the network size is. Such a star-liked structure is common. The internet, for instance, is
composed of many connected subnetworks with star structures. 2
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Figure 3: Comparison of three different kinds of networks.

This result is closely related to the Small World problem. Strogatz and Watts [76, 83, 84] showed
that the average distance between nodes decreases with the increasing of the probability of adding
short paths to each node. They also conjectured that synchronizability will be enhanced if the node
is endowed with dynamics, which Barahona and Pecora showed numerically in [3].
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4.6 Fast Inhibition

The dynamics of a large network of synchronized elements can be completely transformed by the
addition of a single inhibitory coupling link. Start for instance with the synchronized network (11)
and add a single inhibitory link between two arbitrary elements a and b

ẋa = f(xa, t) +
∑

j∈Na

Kja (xj − xa) + K (−xb − xa)

ẋb = f(xb, t) +
∑

j∈Nb

Kjb (xj − xb) + K (−xa − xb)

The symmetric part of the Jacobian matrix is

Js = In
Jis

− LK − T̄n
K

where T̄n
K is composed of zeroes except for four identical blocks

T̄n
K =



















. . .
...

...
· · · K · · · K · · ·

...
. . .

...
· · · K · · · K · · ·

...
...

. . .



















n×n

The matrix J∗
r = −LK − T̄n

K is negative definite, since ∀v 6= 0

vT J∗
r v = −

∑

(i,j)∈N

(vi − vj)
T Kijs (vi − vj) − (va + vb)

T K (va + vb) < 0

Thus, the network is contracting for strong enough coupling strengths. Hence, the n elements
will be inhibited. If the function f is autonomous, they will tend to equilibrium points. If the
coupling strengths are not very strong, the inhibitory link will still have the ability to destroy the
synchrony, and may then generate a desynchronized spiking sequence. Adding more inhibitory
couplings preserves the result.

Such inhibition properties may be useful in pattern recognition to achieve rapid desynchroniza-
tion between different objects. They may also be used as simplified models of minimal mechanisms
for turning off unwanted synchronization, as e.g. in epileptic seizures or oscillations in internet
traffic. In such applications, small and localized inhibition may also allow one to destroy unwanted
synchronization while only introducing a small disturbance to the nominal behavior of the system.
Cascades of inhibition are common in the brain, in a way perhaps reminiscent of NAND-based logic.

Note that the same effect can be achieved if we add self-inhibition to one (or more) arbitrary
element. For instance,

ẋa = f(xa, t) +
∑

j∈Na

Kja (xj − xa) − K xa

In this case T̄n
K is composed of zeroes except for one diagonal block

T̄n
K =









. . . 0

K

0
. . .









n×n
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4.7 Switching Networks

Closely related to oscillator synchronization, topics of collective behavior and group cooperation
have also been the object of extensive recent research [7, 27, 34, 36, 37, 51, 60, 62, 68, 78, 79, 81].
A fundamental understanding of aggregate motions in the natural world, such as bird flocks, fish
schools, animal herds, or bee swarms, for instance, would greatly help in achieving desired collective
behaviors of artificial multi-agent systems, such as vehicles with distributed cooperative control
rules. Since such networks are composed of moving units and each moving unit can only couple to
its current neighbors, the network structure may change abruptly and asynchronously.

Consider such a network

ẋi = f(xi, t) +
∑

j∈Ni(t)

Kji (xj − xi) i = 1, . . . , n

where Ni(t) denotes the set of the active links associated with element i at time t. Apply partial
contraction analysis to each time interval during which the network structure N (t) is fixed. If

λm+1(LK) > max
i

λmax(Jis) uniformly ∀N (t) , (17)

the auxiliary system (12) is always contracting, since δyT δy with δy = [δy1, . . . , δyn]T is contin-
uous in time and upper bounded by a vanishing exponential (though its time-derivative can be
discontinuous at discrete instants). Since the particular solution of the auxiliary system in each
time interval is y1 = · · · = yn = y∞, these n elements will reach synchrony exponentially as they
tend to y1 = · · · = yn which is a constant region in the state-space. The threshold phenomenon de-
scribed by inequality (17) is also reminiscent of phase transitions in physics [55] and of Bose-Einstein
condensation [28] .

Example 4.7: Consider a simplified model of schooling or flocking in continuous-time with f = 0

ẋi =
X

j∈Ni(t)

Kji (xj − xi) i = 1, . . . , n (18)

where xi ∈ R
m denotes the states needed to reach agreements such as a vehicle’s heading, attitude,

velocity, etc. Ni(t) is defined for instance as the set of the nearest neighbors within a certain distance
around element i at current time t. The coupling gain Kji satisfies those assumptions proposed in
Section 4.3 and 4.4, i.e., the links are either bidirectional or unidirectional formed in rings. Since Jis = 0
here, condition (17) is satisfied if only the network is connected. Therefore ∀i, xi converges exponentially
to a particular solution, which in this case is a constant value x̄ = 1

n

Pn

i=1 xi(0) . In fact, the network
(18) need not be connected for any t ≥ 0. A generalized condition can be derived [68] which is the same
as that obtained in [27] for a discrete-time model.

Note that in the case of heading agreement based on spatial proximity, the issue of chattering is immaterial
since switching cannot occur infinitely fast, while in the general case it can be avoided simply by using
smooth transitions in time or space.

Finally note that, transposed to a neural network context, the overall convergence to x̄ can be interpreted
as implementing a type of population coding. 2

4.8 Leader-Followers Network

In a network composed of peers, the phase of the collective behavior is hard to predict, since it
depends on the initial conditions of all the coupled elements. To let the whole network converge to
a specific trajectory, a “leader” can be added [27, 36].
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Consider the dynamics of a coupled network

ẋ0 = f(x0, t) (19)

ẋi = f(xi, t) +
∑

j∈Ni

Kji (xj − xi) + γi K0i (x0 − xi) i = 1, . . . , n

where x0 is the state of the leader, whose dynamics is independent, and xi the state of the ith
follower. γi is equal to either 0 or 1 and represents the connection from the leader to the followers.
Ni denotes the set of peer-neighbors of element i, i.e., it does not include the possible link from x0

to xi.

Theorem 7 Regardless of initial conditions, the states of all the followers within a generally coupled
network (19) will converge exponentially to the state of the leader if

λmin(LK + In
γiK0is

) > max
i

λmax(Jis) uniformly. (20)

Proof: Since the dynamics of x0 is independent, we can treat it as an external input to the rest of
the network, whose Jacobian matrix has the symmetric part

Js = In
Jis

− LK − In
γiK0is

The matrix J∗
r = −LK − In

γiK0is
is negative definite if the augmented network with n + 1 elements

is connected. In fact, ∀v 6= 0,

vT J∗
r v = −

∑

(i,j)∈N

(vi − vj)
T Kijs (vi − vj) −

n
∑

i=1

γi (vT
i K0is vi) < 0

Thus the system [x1, . . . ,xn]T is contracting if the coupling strengths are so strong that the condi-
tion (20) is true. Therefore, all solutions will converge to the particular one

x1 = · · · = xn = x0

exponentially regardless of the initial conditions. This result can be viewed as a generalization of
Theorem 2. 2

Remarks

• For nonnegative max
i

λmax(Jis), a necessary condition to realize leader-following is that the

whole network of n + 1 elements is connected. Thus the n followers x1, . . . ,xn could be either
connected together, or there could be isolated subgroups all connected to the leader. Similar
to the result in the previous section, the network structure of a leader-followers group does
not have to be fixed during the whole time, neither.

• Comparing conditions (13) and (20) shows that, predictably, the existence of an additional
leader does not always help the followers’ network to reach agreement. But it does so if

λmin(LK + In
γiK0is

) > λm+1(LK)

Example 4.8: Consider for instance the case when the leader has identical connections to all other
elements, ∀i, K0i = kI, k > 0. Then

λmin(LK + I
n
γiK0is

) = min
||v||=1

v
T ( LK + I

n
kI )v = k

This means the connections between the leader and the followers do promote the convergence within the
followers’ network if λm+1(LK) < k , which is more likely to occur in a network with less connectivity.
2
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• The connectivity of the followers’ network helps the following process, which can be seen by
applying Weyl’s Theorem [25],

λi( LK + In
γiK0is

) ≥ λi( In
γiK0is

) i = 1, . . . , mn

• The leader does not have to be single, but it can be a group of leading elements. In addition,
in some cases it may receive feedback from the followers as well. This is the case in synchro-
nization propagation, where the node density is unevenly distributed through the network.
Since the synchronization rate depends on network connectivity, a high-density region will
synchronize very quickly despite disturbances from other parts of the network. The inputs
from these leaders then facilitate synchronization in low-density regions, where the elements
may not be able to synchronize by themselves. A simple simulation was given in [68], and [88]
observed a similar phenomenon by setting different interior connection weights inside different
subgroups. Note that the leaders group here is very similar to the concept of core group in
infectious disease dynamics [44], which is a group of the most active individuals. A small
change in the core group will make a big difference in whether or not an epidemic can occur
in the whole population.

• Synchronization can be made to propagate from the center outward in a more active way,
for instance, through diffusion of a chemical produced by leaders or high-level elements and
having the ability to expand the communication channels it passes through, i.e., to increase
the gains through diffusion. Such a mechanism represents a hierarchical combination with
gain dynamics. By extending the state, the analysis tools provided here can apply more
generally to combinations where the gain dynamics are coupled to each other (with arbitrary
connectivity) and to the xi .

• Different leaders x
j
0 of arbitrary dynamics can define different primitives which can be

combined. Contraction of the followers’ dynamics (i = 1, . . . , n)

ẋi = f(xi, t) +
∑

j∈Ni

Kji (xj − xi) +
∑

j

αj(t) γj
i K

j
0i (xj

0 − xi)

is preserved if
∑

j αj(t) ≥ 1, ∀t ≥ 0.

• Besides its dubious moral implications, Theorem 7 also means that it is easy to detract a
group from its nominal behavior by introducing a “covert” element, with possible applications
to group control games, ethology, and animal and plant mimicry.

• Having a leader in a moving formation may yield other advantages, such as energy saving in
aerodynamics [14, 62].

5 Concluding Remarks

We present a general method to analyze the dynamics of coupled nonlinear oscillators. Compared
to previous studies (most of which were based on linearized models for coupled networks with
limited size or particular structure), the results here are exact and global. The method can be used
to study coupled networks with various structure and arbitrary size. An explicit synchronization
condition is given for a generalized distributed network with diffusive couplings. The effect of a
network’s geometric property on its synchronization rate is discussed. Synchronizations condition
for switching networks and for leader-followers networks are also provided. In fact, the results are
not just limited to coupled oscillators, but apply to any coupled identical dynamic systems.

We introduce the concept of partial contraction, which investigates stability with respect to a
specific behavior or property, and therefore can be very powerful to analyze large-scale systems.
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Based on contraction and/or partial contraction properties, synchronization analysis is greatly sim-
plified by isolating the desired convergence behavior from the overall system dynamics. Furthermore,
because it is virtual, the auxiliary, meta-system y can actually be centralized. Although this paper
focuses mainly on identical properties of subsystem states, future applications of partial contraction
to synchronization should investigate convergence to more general properties, such as phase locking
in locomotion systems. The main limitation of the method is that the construction of the auxiliary
system itself is not systematic.

Our current work includes the analysis of time-delayed communications in coupled networks,
and of global convergence through local adaptation in networks of disparate dynamic elements.

Partial contraction analysis could also be applied in the context of discrete-time systems, hybrid
systems or switching systems. It could allow one to study, for instance, the synchronization of
pulse-coupled neurons in a distributed network, a widely-used model in computational neuroscience
which still lacks a complete theoretical explanation.

Finally, the results presented in this paper could be extended to study systems described by
nonlinear partial differential equations such as reaction-diffusion equations, and to the case when
connections occur stochastically. The principle of a virtual centralized system may also have appli-
cations in quantum physics.
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Appendix: Driven damped Van der Pol oscillator

Consider the second-order system

ẍ + (β + αx2)ẋ + ω2x = u(t) (21)

driven by an external input u(t), where α, β, ω are strictly positive constants. Introducing a new
variable y, this system can be written

{

ẋ = ωy − α
3 x3 − βx

ẏ = −ωx + u(t)
ω

The corresponding Jacobian matrix

F =

[

−(β + αx2) ω
−ω 0

]

is negative semi-definite [12]. Therefore,

d

dt
(δzT δz) = 2 δzT F δz ≤ 0

where δz = [δx, δy]T is the generalized virtual displacement. Thus δzT δz tends to a lower limit
asymptotically. Now check its higher-order Taylor expansion:
if δx 6= 0,

δzT δz(t + dt) − δzT δz(t) = −2 (β + αx2)(δx)2 dt + O((dt)2)

while if δx = 0,

δzT δz(t + dt) − δzT δz(t) = −4 (β + αx2)(δẋ)2
(dt)3

3!
+ O((dt)4)
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So the fact that δzT δz tends to a lower limit implies that δx and δẋ both tend to 0. System (21)
is called semi-contracting, and for any external input all its solutions converge asymptotically to a
single trajectory, independent of the initial conditions. Note that if β < 0 and u(t) = 0, system (21)
has a unique, stable limit cycle.
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