MIT High-Temperature (700°C) Salt-Coolant Power Projects

Salt-Cooled High-Temperature Reactor Project

High-Temperature Fuel (Fail >1650°C)

High-Temperature,
Low-Pressure
Transparent LiquidSalt Coolant

- Goal: Develop new nuclear reactor concept to decision point to build test reactor.
- Potential reactor advantages:
 - No potential for core melt accident
 - Economic
 - High-Temperature (Efficient)
- MIT lead with U. of California (Berkeley) and U. of Wisconsin partners
- \$7.5 x 10⁶ 3-year project

Concentrated Solar Power On Demand (CSPonD)

Mirrors Focus Light on Collector

Light Absorbed in Liquid Salt Bath

- Goal: High efficiency (>40%) solar collector with dry powercycle cooling and heat storage
- Sunlight tightly focused with very high flux through open window in insulated building
- Sunlight absorbed going through transparent liquid salt

High-Temperature Heat Storage

- Goal: Efficient high-temperature heat storage to match energy production and demand. Three single-tank options:
 - Hot fluid on top of cold fluid
 - Floating insulated separator plate between hot and cold fluid
 - Internal low-cost fill

High-Temperature Salts for Solar Thermal Electricity Production and High-Temperature Nuclear Heat Storage

Charles Forsberg, Tom McKrell, Jacopo Buongiorno, Jong Won Kim, and Stefano Passerini

Optical Properties of Molten Salts are Central to All Applications

- Optical properties (index of refraction and extinction coefficient) are largely unknown for molten salts
- For all applications radiative heat transfer can only be modelled if the optical properties are known.
- For the solar application the absorption of the sunlight with depth is required for the design of the receiver/pond.

From: Concentrated Solar Power on Demand, Solar Energy 85 (2011) 1519–1529.

We are Experimentally Measuring the Attenuation of light with Salt Depth, Temperature, and Wavelength

Goal: Use a custom built experimental apparatus to measure absorption of light with temperature and wavelength.

Initial candidates:

- Ternary chloride salt, NaCl-KCl-MgCl₂ (eutectic 30-20-50 mol %, melting point 396°C)
- Binary chloride salt, NaCl-KCl (eutectic 50-50 wt%, melting point 657°C)
- Ternary carbonate salt, Li₂CO₃-Na₂CO₃-K₂CO₃ "cartecsal" (eutectic 32-33-35 wt%, melting point 397°C)
- Binary nitrate mixture, KNO₃-NaNO₃, (eutectic 40-60 wt%, melting point 222°C);

Experimental Measurements Enable Models of Salt System Performance

Optical properties (Refractive index and Extinction coefficient) of liquid salt from transmittance from two different path lengths

