
Norvin Richards Phonology Generals Paper

An Optimality-Theoretic Look at Ponapean Reduplication

Ponapean is an Austronesian language spoken on the island of

Ponape. It has a remarkably complicated system of aspectual

reduplication, with the reduplicant taking on a variety of forms

depending on the phonological shape of the root. This system has

been analyzed in a number of works, including Levin (1985) and

McCarthy and Prince (1986). In what follows I will offer an analysis

of Ponapean reduplication in the framework of Optimality Theory. I

will try to show both that Optimality Theory is a very useful tool

for dealing with the variety of reduplicants found in Ponapean, and

that in order to deal with the Ponapean facts we will be forced to

admit the existence of intermediate levels of representation, a move

which optimality theoreticians have thus far traditionally shunned.

1111.... TTTThhhheeee ddddaaaattttaaaa

The patterns of reduplication reported by Rehg and Sohl (1981)

for Ponapean verbs are as follows1:

1 I will be using the standard Ponapean orthography, described in Rehg and Sohl

(1981), for most of the Ponapean examples in this paper. I will provide phonetic

transcriptions of this orthography where necessary, but it is probably worth

noting at the outset that the letter i can stand either for a vowel or for a glide,

and that long vowels are represented by a vowel followed by h (e.g., ah=/a:/).

2

Pattern I: CVC, CVG-->CVC-, CVG-

lal ‘to make a sound’-->lallal

dou ‘to climb’ -->doudou

Pattern II: CV-->C›V-

pa ‘to weave’ -->pahpa /p›apa/

du ‘to dive’ -->duhdu /t›utu/

Pattern III: VC-->VC›VC

el ‘to rub or massage’ -->elehl /el›el/

uk ‘fast’ -->ukuhk /uk›uk/

Pattern IV: ›VC-->Vy-

ahn ‘to be accustomed to’ -->aiahn /ay›an/

ohn ‘hung over’ -->oiohn /oy›on/

Pattern V: GV(C)-->Ge-

was ‘obnoxious’ -->wewas

iang ‘to accompany’ -->ieiang /yeyaˆ/

Pattern VI: heavy syllable base-->CV-

duhp ‘to dive’ -->duduhp /tutfiup/

laud ‘big, old’ -->lalaud

pou ‘cold’ -->popou

mand ‘tame’ -->mamand

Pattern VII: polysyllables beginning with a vowel-->VCi-

alu ‘to walk’ -->alialu /aliyalu/

arekarek ‘gritty’ -->ariarekarek /ariyarekarek/

Pattern VIII: Polysyllables beginning CiyV- or CuwV--->C›i-/Cfiu-

liahn ‘outgoing’ -->lihliahn /l›iliy›an/

luwak ‘jealous’ -->luhluwak /l›uluwak/

Pattern IX: polysyllables beginning with a heavy syllable.

IX.a; ...whose second syllable is also heavy-->CV-

luhmwuhmw ‘to be sick’ -->luluhmwuhmw /lul›umw›umw/

wahntuhke ‘to calculate’ -->wawahntuhke /waw›anch›uke/

IX.b; ...whose second syllable is light-->C›V-

duhpek ‘starved’ -->duhduhpek /t›ut›upek/

mehlel ‘true’ -->mehmehlel /m›em›elel/

Pattern X: NN..., NC...-->NNi-, NCi-

mmed ‘full’ -->mmimmed /mimmet/

mpek ‘to look for lice’ -->mpimpek /¯mpimpek/

Pattern XI: other polysyllables: CVC-

rere ‘to skin or peel’ -->rerrere

deied ‘to eat breakfast’ -->deideied

In looking at these patterns, it looks as though the default

reduplicant is a CVC prefix; this is particularly conspicuous in

3

Pattern XI, where we see that polysyllables not fitting the

descriptions for any of the other patterns reduplicate with a prefix

of this shape.

Still, there are clearly a number of other factors in play in

determining the shape of the reduplicant. Let us see if we can

isolate these, starting with the monosyllables.

2222.... MMMMoooonnnnoooossssyyyyllllllllaaaabbbblllleeeessss

Pattern I: CVC, CVG-->CVC-, CVG-

lal ‘to make a sound’-->lallal

dou ‘to climb’ -->doudou

Pattern II: CV-->C›V-

pa ‘to weave’ -->pahpa /p›apa/

du ‘to dive’ -->duhdu /t›utu/

Pattern III: VC-->VC›VC

el ‘to rub or massage’ -->elehl /el›el/

uk ‘fast’ -->ukuhk /uk›uk/

Pattern IV: ›VC-->Vy-

ahn ‘to be accustomed to’ -->aiahn /ay›an/

ohn ‘hung over’ -->oiohn /oy›on/

Pattern V: GV(C)-->Ge-

was ‘obnoxious’ -->wewas

iang ‘to accompany’ -->ieiang /yeyaˆ/

Pattern VI: heavy syllable base-->CV-

duhp ‘to dive’ -->duduhp /tutfiup/

laud ‘big, old’ -->lalaud

pou ‘cold’ -->popou

mand ‘tame’ -->mamand

2222....1111 PPPPrrrreeeelllliiiimmmmiiiinnnnaaaarrrriiiieeeessss

2222....1111....1111 PPPPaaaatttttttteeeerrrrnnnn VVVV

To begin with, we can eliminate Pattern V from consideration.

Rehg and Sohl (1981) report that this pattern is disappearing from

the language as the verbs that might be expected to undergo it move

over to other patterns.

4

2222....1111....2222 FFFFiiiinnnnaaaallll vvvvoooowwwweeeellll ddddeeeelllleeeettttiiiioooonnnn

The discerning reader may have noticed that no pattern is

listed for roots of the form C›V. This appears not to be an accident.

Rehg and Sohl (1979) list only seven verbs of this shape2:

1. kih- ‘to give’

koh- ‘to come or go’

loh ‘to have something stuck in one’s throat’

luh ‘to be incomplete, as a result of some part being

removed’

mah ‘ripe’

meh ‘to bleat’

mwoh ‘to moo, of a cow’

doh ‘to be distant’

Of these, the first two are bound morphemes, obligatorily occurring

with various kinds of directional suffixes, and meh ‘bleat’ and mwoh

‘moo’ are arguably onomatopoeic. There are thus only four clear

cases of verb stems of the shape C›V.

Furthermore, there are fairly good reasons for believing that

words ending in short vowels are generally derived from underlying

forms ending in long vowels in Ponapean. Rehg and Sohl (1981, 88-

89) note the following forms:

2. kihl ‘skin’ kiliniki ‘having skin’

ngihl ‘voice’ ngileniki ‘having a voice’

dihp ‘sin’ dipaniki ‘having sin’

nta ‘blood’ ntahniki ‘having blood’ (/¯nch›aniki/)

When a consonant-initial suffix is attached to a consonant-final

noun in Ponapean, a vowel generally appears between the two

consonants. Interestingly, the quality of this vowel appears not to

be predictable from the phonological shape of the root; an i is

inserted for kihl ‘skin’, an e for ngihl ‘voice’, and an a for dihp ‘sin’.

These vowels will therefore apparently have to be taken to be part

2 By contrast, there are more than thirty nouns of this shape.

5

of the underlying representation of the root; these words will be

represented as something likekili, ngile, and dipa respectively, and

final vowel loss will eliminate the last vowel when the word stands

in isolation3. Interestingly enough, vowel-final nouns typically

lengthen the final vowel when suffixes are added to them. By parity

of reasoning with the apparently consonant-final cases, then, we

apparently must assume that these words actually end in long

vowels underlyingly, and that the long vowel is shortened when the

word stands in isolation. This assumption will be useful in dealing

with Pattern II; it looks as though we can safely assume that the

vowels in these forms are actually underlyingly long.

2222....1111....3333 FFFFiiiinnnnaaaallll CCCCoooonnnnssssoooonnnnaaaannnntttt EEEExxxxttttrrrraaaammmmeeeettttrrrriiiiccccaaaalllliiiittttyyyy

One of our first difficulties in dealing with the monosyllabic

reduplication patterns will be distinguishing between patterns I and

VI. Pattern VI appears to contain heavy monosyllables, but Pattern I

contains CVC monosyllables, which are metrically heavy in many

languages. Furthermore, the unmarked reduplicant looks like a

bimoraic syllable; that is, like a minimal heavy syllable in many

languages. Thus, it looks as though CVC is a heavy syllable initially

(as a reduplicant, for example) but not finally (since the roots in

Pattern I are not in Pattern VI). We might assume a three-way

weight distinction between light, heavy, and extra-heavy syllables,

as has been typically assumed for Egyptian Arabic, for example.

3 There are a number of technical ways of achieving this, of course. One would be

to assume that the final vowels in these forms are somehow underspecified. If

specification of underspecified vowels carries some “cost” (an intuition which is

trivial to spell out in optimality-theoretic terms), then we should not be

surprised to see these vowels surfacing only when other constraints require them

to (in this case, possibly phonotactic constraints, or a ban on unparsed material

intervening between parsed segments).

6

Here I will follow McCarthy and Prince (1986) in operating under a

different assumption; that final consonants are extrametrical in

Ponapean. McCarthy and Prince (1986) cite the data in 2 as evidence

for this claim. The vowel lengthening in monosyllabic nouns that

surface as consonant-final is taken to be a response to a minimal

word requirement on nouns requiring them to be minimally bimoraic.

Thus, lengthening is triggered by the extrametricality of the final

consonant. As expected, vowels do not lengthen in monosyllabic

nouns ending in consonant clusters (e.g., emp ‘coconut crab’, mall

‘grassy area’, kengk ‘coconut, containing no nut’), since such nouns

are still bimoraic even with final consonant extrametricality.

Similarly, there are many polysyllabic nouns with no long vowels

(kasap ‘frigate bird’, lapwed ‘salt water eel’). Rehg and Sohl (1979)

list more than thirty nouns of the shape C›V, but only one CV noun

root (se ‘sandy place inside a barrier reef’), which is what we

expect, again, if the minimal word requirement on nouns outweighs

the tendency toward final vowel deletion discussed in the previous

section; almost all roots of the shape CV have their vowels

lengthened to conform to the requirement that nouns be at least

bimoraic syllables4. Finally, there are many nouns with long vowels

in both affixed and unaffixed forms, which suggests that the data in

2 are indeed cases of vowel lengthening in the unaffixed form rather

than of vowel shortening in the affixed form:

4 This predicts that some of these C›V nouns should have their vowels shorten in

their possessed forms; I have been unable to find any data bearing on this

prediction.

7

3. rahn ‘day’ rahnin ‘day of’

moahd ‘echo’ moahdin ‘echo of’

kehp ‘yam’ kehpin ‘yam of’

This leads us to the conclusion that CVC syllables should be

metrically light word-finally, and metrically heavy in other

positions in the word. Thus, the unmarked CVC reduplicant is a

minimal metrically heavy syllable, while Pattern I verb stems like

lal ‘to make a noise’ are metrically light.

2222....2222 PPPPaaaatttttttteeeerrrrnnnnssss IIII----IIIIVVVV aaaannnndddd VVVVIIII

Now we are in a position to account for the reduplication facts

having to do with reduplication of monosyllables.

Pattern I: CVC, CVG-->CVC-, CVG-

lal ‘to make a sound’-->lallal

dou ‘to climb’ -->doudou

Pattern II: CV-->C›V-

pa ‘to weave’ -->pahpa /p›apa/

du ‘to dive’ -->duhdu /t›utu/

Pattern III: VC-->VC›VC

el ‘to rub or massage’ -->elehl /el›el/

uk ‘fast’ -->ukuhk /uk›uk/

Pattern IV: ›VC-->Vy-

ahn ‘to be accustomed to’ -->aiahn /ay›an/

ohn ‘hung over’ -->oiohn /oy›on/

Pattern VI: heavy syllable base-->CV-

duhp ‘to dive’ -->duduhp /tutfiup/

laud ‘big, old’ -->lalaud

pou ‘cold’ -->popou

mand ‘tame’ -->mamand

We have already seen that the default reduplicant in Ponapean is

CVC-; that is, somewhere in the constraint ranking there must be a

constraint RED=σµµ5. This reduplicant appears in Patterns I and II.

In Patterns III, IV, and VI, on the other hand, the constraint is

5 For definitions of this and other constraints used here, see Appendix A.

8

violated; we get a light CV syllable. The result, in each case, is an

iambic foot (that is, a foot consisting of a light syllable followed by

a heavy syllable, where light syllables are monomoraic and heavy

syllables contain more than one mora). One way of dealing with this

pattern, then, would be to assume that there is a constraint

preferring iambic feet (call it Iamb) which outranks RED=σµµ, forcing

the use of a non-canonical reduplicant when this will create an

iamb. In patterns I and II, where the base is light (recall that we are

assuming final CVC syllables to be metrically light, following

McCarthy and Prince 1986) and no form of a prefixal reduplicant

could possibly create an iamb, the default heavy reduplicant is used.

Let us now look at each pattern in more detail.

2222....2222....1111 PPPPaaaatttttttteeeerrrrnnnn IIII:::: llllaaaallll-------->>>>llllaaaallllllllaaaallll

Pattern I involves a consonant-initial monosyllabic stem

which, because of final consonant extrasyllabicity, is metrically

light; the reduplicant is a heavy CVC prefix. We have already

hypothesized that Iamb>>RED=σµµ, so if any means for creating an

iamb exist in this case, we will need to rule them out with

constraints that outrank Iamb. In the following tableau the

reduplicant is underlined, and the winning candidate is marked with

a dollar sign:

RRRREEEEDDDD++++llllaaaallll-------->>>>llllaaaallllllllaaaallll

$lallal lalal lalaAl lalaal

Fill √ √ *! √

RED=Prefix √ √ √ *!

Iamb * * √ √

RED=σµµ √ *! * √

9

The first candidate is the one which we want to win; it violates

Iamb and obeys RED=σµµ. The last candidate successfully creates an

iamb by suffixing the reduplicant; there are a number of ways of

ruling this particular candidate out, but I will use a constraint

requiring the reduplicant to be a prefix6, which will be useful later,

as we will see. The third candidate creates an iamb by adding an

extra vowel to the base; apparently this is ruled out in Ponapean as

well, so Fill will need to be highly ranked. Finally, the second

candidate ties with the first on the first three constraints, but fails

to create a heavy reduplicant and thus loses in the end.

2222....2222....2222 PPPPaaaatttttttteeeerrrrnnnn IIIIIIII:::: ppppaaaa-------->>>>ppppaaaahhhhppppaaaa

Pattern II involves a stem which, by hypothesis, underlyingly

consists of a consonant followed by a long vowel. Let us follow the

line suggested in footnote 3 and assume that pa ends in an

underspecified vowel; that is, pa is really /paV/. I will not

investigate the nature of underspecified vowels in this paper in any

detail; all that will be necessary for our purposes will be that Fill

(or whatever version of Fill applies to the addition of vocalic

features to an underspecified vowel; perhaps there is a specific

constraint Fill (V-feature)) outrank Parse and Iamb, while Base-

Dependence for vocalic features is outranked by RED=σµµ. This has

the result that adding features to an underspecified vowel in the

base is more costly than adding features to a copy of an

underspecified vowel in a reduplicant, since Fill outranks Base-

Dependence; that is, it is easier to realize /paV/ as [pfia] as a

6 This could easily be expressed as an Align constraint; I will refer to it as

Prefix simply for clarity’s sake, since we will be using another Align constraint

shortly.

10

reduplicant than as a base. Thus, no iamb can possibly be created,

either by suffixation of the reduplicant (the fourth candidate below)

or by filling in the underspecified vowel in the base (by hypothesis,

Fill outranks Iamb), and the form with a bimoraic reduplicant wins

out.

RRRREEEEDDDD++++ppppaaaa-------->>>>ppppaaaahhhhppppaaaa

$paapa<V> papa<V> papaa papaa

Fill √ √ *! √

RED=Prefix √ √ √ *!

Iamb * * √ √

RED=σµµ √ *! * √

B-D(V-f.) * √ √ *

2222....2222....3333 PPPPaaaatttttttteeeerrrrnnnn IIIIIIIIIIII:::: eeeellll-------->>>>eeeelllleeeehhhhllll

Pattern III involves a short-vowel-initial monosyllabic stem.

We might take this form as involving suffixation, but this would get

us in trouble later (in particular, with patterns involving

polysyllables, which clearly never involve suffixation, even to

create iambs). We will apparently be better off assuming that in a

form like eleel the base is the final -el and the reduplicant is a

prefix ele-, as in 4:

4. V C V C
g g eh g
e l e e l

 z--------m z----m
1 1

Reduplicant Base

Thus, both RED=σµµ and Base-Dependence for Vowels are violated in

this form in order to create an iamb. We have no means of ranking

B-D (V) and RED=σµµ here; we will see later that the ranking is as

shown.

11

RRRREEEEDDDD++++eeeellll-------->>>>eeeelllleeeehhhhllll

$eleel elel eelel

Fill √ √ √

RED=Prefix √ √ √

Iamb √ *! *!

B-D(V) * √ *

RED=σµµ * * √

2222....2222....4444 PPPPaaaatttttttteeeerrrrnnnn VVVVIIII:::: dddduuuuhhhhpppp-------->>>>dddduuuudddduuuuhhhhpppp

Pattern VI is the case of heavy monosyllables; here we see, as

mentioned before, that Iamb outranks RED=σµµ.

RRRREEEEDDDD++++dddduuuuhhhhpppp-------->>>>dddduuuudddduuuuhhhhpppp

$duduup duuduup duupduup

Fill √ √ √

RED=Prefix √ √ √

Iamb √ *! *!

B-D(V) √ √ √

RED=σµµ * √ √

2222....2222....5555 PPPPaaaatttttttteeeerrrrnnnn IIIIVVVV:::: aaaahhhhnnnn-------->>>>aaaaiiiiaaaahhhhnnnn

Pattern IV is the most interesting of the monosyllabic

patterns, showing as it does the lengths to which Ponapean is

willing to go to create iambs. Given a stem like ahn there are in

principle at least three things we could do to create an iamb; we

could copy the first vowel and the consonant, skipping the second

vowel-slot (giving us a reduplicant a<a>n-), or we could skip the

first vowel slot and copy the second vowel and the consonant

(<a>an-), or we could copy only one of the vowels and insert an

epenthetic consonant (a<an>C-). The first of these violates McCarthy

and Prince’s (1994) Contiguity constraint on reduplication, which

12

requires us not to skip segments. The second violates the Anchoring

constraint, again from McCarthy and Prince (1994). The third

violates Base-Dependence for Consonants, as well as involving a

greater violation of McCarthy and Prince’s (1994) Max constraint

than the other two options do. Given that the third option is

preferred, we can see here that Contiguity and Anchoring outrank

both B-D(C) and Max. The fact that we prefer to violate B-D(C) and

Max in order to create an iamb (rather than creating a form *ahnahn,

for example) shows that Iamb outranks these constraints as well.

RRRREEEEDDDD++++aaaahhhhnnnn-------->>>>aaaaiiiiaaaahhhhnnnn

$aiaan _anaan a_naan ahnahn

Cont √ √ *! √

Anch √ *! √ √

Fill √ √ √ √

RED=Prefix √ √ √ √

Iamb √ √ √ *!

B-D(V) √ √ √ √

RED=σµµ * * * √

Max ** * * √

B-D(C) * √ √ √

3333.... PPPPoooollllyyyyssssyyyyllllllllaaaabbbblllleeeessss

When we turn our attention to the polysyllables, we can see

that some other factors must be at work. Vowel-initial

polysyllables, for example, do not typically behave like their

monosyllabic counterparts7:

7 I use % here to indicate the acceptability of a form in certain dialects.

13

5. a. el ‘massage’ -->elehl

b. alu ‘walk’ -->alialu

arekarek ‘gritty’ -->ariarekarek

c. amas ‘raw, sober’ -->%amiamas

-->%amahmas

ewetik ‘abstemious’ -->%ewiewetik

-->%ewehwetik

In 5.a we see what we have seen before; a vowel-initial

monosyllable reduplicates in such a way as to create an iamb,

thereby violating RED=σµµ and B-D(V). In 5.b, however, no iambs are

created. Interestingly, in 5.c we can see a dialect split reported by

Rehg and Sohl (1981); apparently some speakers do create iambs at

the beginnings of vowel-initial polysyllables just in case no

violations of B-D(V) result.

Similarly, polysyllables beginning with heavy syllables do not

always behave like monosyllabic heavy syllables:

6. a. duhp ‘dive’ -->duduhp

b. luhmwuhmw ‘be sick’ -->luluhmwuhmw

wahntuhke ‘calculate’ -->wawahntuhke

c. duhpek ‘starved’ -->duhduhpek

Polysyllables beginning with heavy syllables create iambs at the

beginning apparently just in case the rest of the word can stand on

its own, metrically speaking. If what would be left over if the first

two syllables were parsed as an iambic foot would be a single light

syllable, then an iamb is not created. This is shown in 6.c, where

creation of an initial iamb in the reduplicated form (*(duduh)pek)

would leave a single light syllable at the end of the word. If the

remnant of the word would be a single heavy syllable (as in the first

example in 6.b) or a pair of syllables (as in the second example in

6.b), on the other hand, then an iamb can be created.

14

These examples suggest that the metrical status of the end of

the word is especially important. In 5 we saw that iambs are

created at the ends of words in violation of B-D(V) and RED=σµµ,

while iambs at the beginnings of words are not sufficiently valuable

for these constraints to be violated. In 6, we see that the metrical

status of the end of the word overrides the mechanisms that

conspire to create iambs in similar environments in monosyllables.

Thus far we have been assuming that the word is completely

parsed into feet, a fairly reasonable assumption when we were

looking exclusively at monosyllables. As we begin to look at

polysyllables, however, this assumption is no longer so innocent.

Standard Optimality Theory gives us two mechanisms for forcing

metrical parsing of syllables. One is the constraint Parse (σ, Ft),

and the other involves Align constraints requiring alignment of

edges of various categories with feet. Apparently what we need

here is a comparatively high-ranking constraint Align (Pwd, R, Ft,

R)8 along with a lower-ranking constraint Parse (σ, Ft). This will

give us the desired results; proper metrification of the end of the

word (or the whole word, in the case of monosyllable reduplication)

will be more important than metrification of the rest of the word.

This will be the basic intuition we will pursue in what follows.

3333....1111 PPPPaaaatttttttteeeerrrrnnnnssss VVVVIIIIIIIIIIII aaaannnndddd XXXXIIII:::: lllliiiiaaaahhhhnnnn-------->>>>lllliiiihhhhlllliiiiaaaahhhhnnnn

aaaannnndddd rrrreeeerrrreeee-------->>>>rrrreeeerrrrrrrreeeerrrreeee

Let us begin with two of the less interesting patterns. These

can both be analyzed as CVC reduplication. No initial iambs can be

8 Given that verbal suffixation does not affect reduplication, this is not quite

right; we will need to invoke alignment of some category containing the verb stem

but not the suffixes with a foot (perhaps an Align Stem constraint).

15

created in these cases, since the base words do not begin with heavy

syllables, and the high-ranking Contiguity, Anchoring, and

RED=Prefix constraints forbid us to create final iambs by

suffixation. We therefore give up on creating iambs and simply

prefix a bimoraic syllable. In the case of Pattern VIII (liahn

/liy›an/-->lihliahn /l›iliy›an/), we can either claim that phonetic

effects cause a tautosyllabic high vowel+glide sequence to be

realized as a long vowel (that is, we could say that liahn

reduplicates as /liyliy›an/, and that phonetic effects realize the

first iy sequence as ›i or that some high-ranking constraint rules out

such sequences, forcing reduplication to create a long vowel in order

to satisfy RED=σµµ. I will arbitrarily assume the first of these here,

although nothing depends on this.

RRRREEEEDDDD++++rrrreeeerrrreeee-------->>>>rrrreeeerrrrrrrreeeerrrreeee

$rer(rere) ree(rere) re(rere) (rere-er)

Cont √ √ √ *!

Anch √ √ √ √

Fill √ √ √ √

RED=Prefix √ √ √ *

Iamb * * * √

B-D(V) √ *! √ √

RED=σµµ √ √ *! *

Max * ** ** **

B-D(C) √ √ √ √

16

RRRREEEEDDDD++++lllliiiiaaaahhhhnnnn-------->>>>lllliiiihhhhlllliiiiaaaahhhhnnnn

liy(liyaan) li(liyaan)

Cont √ √

Anch √ √

Fill √ √

RED=Prefix √ √

Iamb √ √

B-D(V) √ √

RED=σµµ √ *!

Max *** ****

B-D(C) √ √

3333....2222 PPPPaaaatttttttteeeerrrrnnnn IIIIXXXX:::: lllluuuuhhhhmmmmwwwwuuuuhhhhmmmmwwww-------->>>>lllluuuulllluuuuhhhhmmmmwwwwuuuuhhhhmmmmwwww

dddduuuuhhhhppppeeeekkkk-------->>>>dddduuuuhhhhdddduuuuhhhhppppeeeekkkk

Pattern IX is the case of polysyllables beginning with heavy

syllables. In this case, an iamb is created just in case the remaining

syllables can create a well-formed foot aligned with the right edge

of the word.

In the case where an initial iamb is created, we can see that

the constraint forcing creation of nonfinal feet (namely, Parse

(σ,Ft)) must be higher-ranked than both Max and RED=σµµ, so that the

reduplicant will be smaller than a bimoraic syllable, thus creating

an initial iamb9:

9 I am assuming here that feet consisting of multiple heavy syllables are ruled

out, either by a high-ranking constraint or by properties of Gen.

17

RRRREEEEDDDD++++lllluuuuhhhhmmmmwwwwuuuuhhhhmmmmwwww-------->>>>lllluuuulllluuuuhhhhmmmmwwwwuuuuhhhhmmmmwwww

(luluh)

(mwuhmw)

luhluh

(mwuhmw)

(luh)(luh)

(mwuhmw)

Cont √ √ √

Anch √ √ √

Fill √ √ √

RED=Prefix √ √ √

Iamb √* * ***!

B-D(V) √ √ √

Parse(σ,Ft) √ **! √

RED=σµµ * √ √

Max ***** **** ****

B-D(C) √ √ √

Now we can turn to the cases where an initial iamb is not created,

apparently in order to avoid stranding a single light syllable at the

end of the word. In order to get this effect we will need, first of

all, to have Align (Pwd, R, Ft, R) outrank Iamb, since the winning

form sacrifices initial iamb creation in order to contain a final foot.

We will also have to say that a constraint marking feet consisting of

a single light syllable as ill-formed (FtHd=H) outranks Parse (σ,Ft);

this will have the effect of ruling out the second candidate in the

table below, which is superior to the winning candidate in terms of

foot parsing but contains a foot consisting of a single light

syllable10.

10 Note that I am crucially assuming here that Iamb counts non-iambic feet and

marks them as violations, ignoring iambic feet; otherwise the second candidate,

which does in fact contain an iamb, would beat the first candidate, which does not.

By hypothesis, what is important for Iamb is that the first and the second

candidate each contains one non-iambic foot, and they therefore tie on this

constraint.

18

RRRREEEEDDDD++++dddduuuuhhhhppppeeeekkkk-------->>>>dddduuuuhhhhdddduuuuhhhhppppeeeekkkk

$duh

(duhpek)

(duduh)(pek) (duduh)pek du(duhpek)

Cont √ √ √ √

Anch √ √ √ √

Fill √ √ √ √

RED=Prefix √ √ √ √

Align (Pwd,

R, Ft, R)

√ √ *! √

Iamb * √* √ *

B-D(V) √ √ √ √

FtHd=H √ *! √ √

Parse(σ,Ft) * √ * *

RED=σµµ √ * * *!

Max *** **** **** ****

B-D(C) √ √ √ √

3333....3333 PPPPaaaatttttttteeeerrrrnnnn XXXX:::: mmmmppppeeeekkkk-------->>>>mmmmppppiiiimmmmppppeeeekkkk

mmmmmmmmeeeedddd-------->>>>mmmmmmmmiiiimmmmmmmmeeeedddd

This is one of the two patterns for which an intermediate level

of representation appears to be necessary. Rehg and Sohl (1981, 52-

53) state that forms like mpek are bisyllabic, consisting of a

syllabic nasal followed by a CVC syllable. They also note that this

is the only position in which syllabic nasals are possible; apparently

syllabic nasals cannot have onsets or codas.

Running a form like this through our constraints as they now

stand, we expect to get *¯mp¯mpek (this table crucially assumes that

a syllable containing a syllabic nasal is heavy):

19

RRRREEEEDDDD++++mmmmppppeeeekkkk-------->>>>mmmmppppiiiimmmmppppeeeekkkk

¯m(p¯¯mpek) ¯m(pimpek) ¯m(pempek) ¯mpe(k¯mpek)

Cont √ √ √ √

Anch √ √ √ √

Fill √ √ √ √

RED=Prefix √ √ √ √

Align (Pwd,

R, Ft, R)

√ √ √ √

Iamb * * * *

B-D(V) √ *! √ √

FtHd=H √ √ √ √

Parse(σ,Ft) * * * **!

RED=σµµ √ * *! *

Max ** ** * √

B-D(C) √ √ √ √

In fact, ¯mp¯mpek is not a possible word in Ponapean; as just noted,

syllabic nasals can only appear in word-initial position. Creating a

constraint to rule this form out should therefore be fairly

straightforward. The problem is then how to get the second

candidate in the tableau above to beat the third candidate. As the

tableau shows, these forms are identical with respect to all the

constraints we currently have but two; Base-Dependence (V) and

Max, which mark the attested form as worse than its unattested

competitor *mpempek. It is hard to see what constraint we could

possibly use to get the form which actually occurs. Note that there

is no obvious phonological reason for mpempek to change to

mpimpek; cf. such lexical items as tempel ‘to rhythmically pound a

kava stone’, lempe ‘unripe fallen fruit’, and kempenial ‘bush sp.

(Psychotria carolinensis)’.

20

If we allow ourselves the use of multiple levels, of course, the

problem becomes trivial. The output of the above tableau is in fact

the correct one, and a later process of vowel epenthesis deals with

the illicit syllabic nasal by inserting an i.

3333....4444 PPPPaaaatttttttteeeerrrrnnnn VVVVIIIIIIII:::: aaaalllluuuu-------->>>>aaaalllliiiiaaaalllluuuu

This is the pattern involving polysyllabic vowel-initial roots.

As we noted before, polysyllabic vowel-initial forms, unlike vowel-

initial monosyllables, do not create initial iambs, and this was

taken as evidence that two different constraints are involved in

metrification11.

RRRREEEEDDDD++++aaaalllluuuu-------->>>>aaaalllliiiiaaaalllluuuu

al(yalu) a(lalu) a(laalu) ali(alu) alu(alu)

Cont √ √ √ √ √

Anch √ √ √ √ √

Fill √ √ √ √ √

RED=Prefix √ √ √ √ √

Align (Pwd,

R, Ft, R)

√ √ √ √ √

Iamb * * * * *

B-D(V) √ √ *! *! √

FtHd=H * * √ * *

Parse(σ,Ft) * * * ** **!

RED=σµµ √ *! * * *

Max * * * * √

B-D(C) * √ √ √ √

Again, our constraints as they stand predict a form which is

tantalizingly close to the attested form but is still not correct; we

are getting *al.ya.lu, as opposed to the attested, four-syllable form

11 I am assuming here that the first candidate violates Base-Dependence for

Consonants but not Fill, since the epenthetic consonant is part of the reduplicant.

21

a.li.ya.lu. Furthermore, it seems impossible to correct this

prediction in the Optimality system; doing so would involve finding

some way to prefer the fourth candidate to the fifth, despite the

fact that the two candidates are identical in every way except that

the fourth candidate involves less faithfulness to the base on the

part of the reduplicant. In this case, in fact, we would have the

additional problem of ruling out the second candidate, which is

metrically preferable to the winning candidate in that it contains

fewer unparsed syllables.

Interestingly enough, words like al.ya.lu are unattested in

Ponapean. When clusters consisting of a consonant plus a following

glide are created by affixation, some way of breaking them up is

employed (Rehg and Sohl 1981, 236-7):

7. koh+iei -->kohiei [k›oyey] 'to go out'

lus+iei -->lusiei [lusiyey] 'to jump out'

-->lusehi [lus›ey]

The suffix -iei 'out' begins with a glide when it follows a vowel-

final root such as koh 'go', but this glide is not allowed to

immediately follow another consonant; either a vowel is inserted or

the glide is deleted.

Here, again, the notion of using multiple levels of

representation seems very attractive. We seem to want to say that

the form generated by the above tableau is the right one, and that a

later process of vowel insertion breaks up the illicit consonant

cluster. Note that this is a classic case of the type that motivates

derivational analyses; the glide is being inserted to close the

reduplicant syllable, so that the constraint RED=σµµ can be obeyed,

and a later rule inserts a vowel, destroying the bimoraicity of the

22

reduplicant which was the motivation for inserting the glide in the

first place. This kind of blindness to the motivations of other rules

is quite difficult, perhaps impossible, to model insightfully in a

representational approach. I will discuss this problem again in

section 4, arguing further for the approach proposed here.

3333....5555 DDDDiiiiaaaalllleeeeccccttttiiiiccccaaaallll vvvvaaaarrrriiiiaaaattttiiiioooonnnn iiiinnnn PPPPaaaatttttttteeeerrrrnnnn VVVVIIIIIIII

Rehg and Sohl (1981) note that in cases where Base-

Dependence (V) need not be violated to create a heavy second

syllable in the reduplicated form, such a syllable is created in some

dialects, though not in all:

8. a. alu -->alialu

arekarek -->ariarekarek

b. amas -->%amiamas

-->%amahmas

ewetik -->%ewiewetik

-->%ewehwetik

At this point, we would expect all dialects to choose to create heavy

second syllables:

RRRREEEEDDDD++++aaaammmmaaaassss-------->>>>aaaammmmaaaahhhhmmmmaaaassss

a(mamas) $a(maamas) am(yamas)

Cont √ √ √

Anch √ √ √

Fill √ √ √

RED=Prefix √ √ √

Align (Pwd,

R, Ft, R)

√ √ √

Iamb * * *

B-D(V) √ √ √

FtHd=H *! √ *!

Parse(σ,Ft) * * *

RED=σµµ * * √

Max ** * **

B-D(C) √ √ *

23

RRRREEEEDDDD++++eeeewwwweeeettttiiiikkkk-------->>>>eeeewwwweeeehhhhwwwweeeettttiiiikkkk

ewe(wetik) $(ewee)

(wetik)

ewye(wetik)

Cont √ √ √

Anch √ √ √

Fill √ √ √

RED=Prefix √ √ √

Align (Pwd,

R, Ft, R)

√ √ √

Iamb * *√ *

B-D(V) √ √ √

FtHd=H * √* *

Parse(σ,Ft) **! √ **!

RED=σµµ * * √

Max **** *** ****

B-D(C) √ √ *

We apparently cannot deal with the dialectical variation here

by permuting existing constraints. In order to prefer the third

candidate over the second in the tableau for amas, for example, we

would have to reorder RED=σµµ and FtHd=H. This would have

undesirable effects, however, on Pattern IX; in order to get the

correct result for duhpek, we need FtHd=H to outrank Parse(σ,Ft), and

in order to get the correct result for luhmwuhmw, we need

Parse(σ,Ft) to outrank RED=σµµ. So this kind of solution seems

untenable; we will need a new constraint.

As was noted in the discussion of Pattern III (el-->elehl),

forms such as amahmas are assumed here to have a structure like

that in 9:

24

9. V C V C V C
g g eh g g g
a m a a m a s

 z---------m z------------m
1 1

Reduplicant Base

Such forms, in other words, involve a long vowel half of which is

part of the reduplicant and half of which is part of the base. We

might create a constraint ruling out such configurations:

10. *V=RB

A vowel of the form

V
4
R B

is ill-formed.

There are various ways of making this look more elegant, of course

(for example, we could generalize the constraint so that it bars

vowels which cross morpheme boundaries), but this will do for our

purposes.

For those dialects in which the behavior of words in pattern

VII is completely consistent, then, we will want *V=RB to outrank

FtHd=H, thus ruling out the second candidate in each of the following

tableaux:

25

RRRREEEEDDDD++++aaaammmmaaaassss-------->>>>aaaammmmiiiiaaaammmmaaaassss

a(mamas) a(maamas) $am(yamas)

Cont √ √ √

Anch √ √ √

Fill √ √ √

RED=Prefix √ √ √

Align (Pwd,

R, Ft, R)

√ √ √

Iamb * * *

B-D(V) √ √ √

*V=RB √ *! √

FtHd=H * √ *

Parse(σ,Ft) * * *

RED=σµµ *! * √

Max ** * **

B-D(C) √ √ *

RRRREEEEDDDD++++eeeewwwweeeettttiiiikkkk-------->>>>eeeewwwwiiiieeeewwwweeeettttiiiikkkk

ewe(wetik) (ewee)

(wetik)

$ewye

(wetik)

Cont √ √ √

Anch √ √ √

Fill √ √ √

RED=Prefix √ √ √

Align (Pwd,

R, Ft, R)

√ √ √

Iamb * *√ *

B-D(V) √ √ √

*V=RB √ *! √

FtHd=H * √* *

Parse(σ,Ft) ** √ **

RED=σµµ *! * √

Max **** *** ****

B-D(C) √ √ *

Thus, the dialect in which the reduplicated forms of amas and

ewetik are amiamas and ewiewetik might be taken to have some

26

constraint like *V=RB outranking FtHd=H (and thus also Parse(σ,Ft)).

Note that this will not affect our analysis of Pattern III (el-->elehl);

in this form *V=RB is violated in order to better satisfy the higher-

ranking constraints Align (Pwd, R, Ft, R) and Iamb.

Having postulated the constraint *V=RB, we need to decide

where to place it for the dialect in which it is violated in these

forms (that is, in which the reduplicated forms of amas and ewetik

are amahmas and ewehwetik). Interestingly enough, it must be

outranked by Parse(σ,Ft); that is, it must move down two

constraints, from above FtHd=H to below Parse(σ,Ft):

RRRREEEEDDDD++++aaaammmmaaaassss-------->>>>aaaammmmaaaahhhhmmmmaaaassss

a(mamas) $a(maamas) am(yamas)

Cont √ √ √

Anch √ √ √

Fill √ √ √

RED=Prefix √ √ √

Align (Pwd,

R, Ft, R)

√ √ √

Iamb * * *

B-D(V) √ √ √

FtHd=H *! √ *!

Parse(σ,Ft) * * *

*V=RB √ * √

RED=σµµ * * √

Max ** * **

B-D(C) √ √ *

27

RRRREEEEDDDD++++eeeewwwweeeettttiiiikkkk-------->>>>eeeewwwweeeehhhhwwwweeeettttiiiikkkk

ewe(wetik) $(ewee)

(wetik)

ewye(wetik)

Cont √ √ √

Anch √ √ √

Fill √ √ √

RED=Prefix √ √ √

Align (Pwd,

R, Ft, R)

√ √ √

Iamb * *√ *

B-D(V) √ √ √

FtHd=H * √* *

Parse(σ,Ft) **! √ **!

*V=RB √ * √

RED=σµµ * * √

Max **** *** ****

B-D(C) √ √ *

Since there are two different constraints involved in making the

long vowels in these reduplicated forms desirable (namely, FtHd=H

for amas and Parse(σ,Ft) for ewetik), *V=RB must be ranked above

both of these constraints for a dialect in which long vowels are not

created in either case, and below both for a dialect in which long

vowels are created in both cases. If we think of dialect variation as

involving strictly local permutation of constraints (an attractive,

though certainly not a necessary way of thinking), we may find this

mildly unsettling.

There are at least three possible solutions to this problem.

One would involve showing that there are in fact three dialects: the

two discussed above along with a third for which the reduplicated

forms are ewiewetik and amahmas12. This third dialect would have

12Since FtHd=H outranks Parse(σ, Ft), the prediction would be that no dialect could

exist for which the correct forms are ewehwetik and amiamas.

28

*V=RB ranked between FtHd=H and Parse(σ,Ft), and would allow us to

describe the dialect variations in terms of strictly local

permutation of constraints. Another possibility is that FtHd=H is

crucially unlike Iamb (cf. footnote 10) in that it counts obedient

feet rather than violating feet. I have been assuming that FtHd=H is

like Iamb in this regard, and on this assumption FtHd=H fails to make

any distinction among the candidates in the tableau for ewetik, as

they all violate the constraint once. If FtHd=H counts obedient feet,

however, then it will choose the second candidate in the ewetik

tableau, as this candidate, unlike the other two, obeys FtHd=H once.

Then FtHd=H will be the relevant constraint marking long-vowel

creation as desirable for both amas and ewetik, and local

permutation of FtHd=H and *V=RB will be sufficient to describe the

dialects. Finally, we might describe the two dialects in terms of

presence versus absence of the *V=RB constraint, rather than

attempting to rerank it, as it does no work in any paradigms other

than the one seen here. This runs counter to most current work in

Optimality Theory, as far as I know, which assumes that the set of

constraints is universal (modulo possible parametric variation of

certain constraint types; cf. e.g. Everett (1994))

4444.... PPPPaaaatttttttteeeerrrrnnnnssss VVVVIIIIIIII aaaannnndddd XXXX;;;; tttthhhheeee aaaarrrrgggguuuummmmeeeennnntttt ffffoooorrrr mmmmuuuullllttttiiiipppplllleeee lllleeeevvvveeeellllssss

In sections 3.3-3.4 we saw an argument for multiple levels of

representation based on the forms in 11:

29

11. a. alu -->alialu /aliyalu/

arekarek -->ariarekarek /ariyarekarek/

b. mpek -->mpimpek /¯mpimpek/

Our constraints as they stand generate the following forms without

the inserted /i/; that is, they give alyalu as the reduplicated form of

alu and mpmpek as the reduplicated form of mpek. I wanted to claim

that this was in fact the correct result; that these are the outputs

of the optimality system, and that /i/ is later inserted in response

to phonotactic constraints. The presence of the phonotactic

constraints in question is not at issue, since in fact words like

alyalu and mpmpek are not well-formed in Ponapean. The only

question is whether to represent them as applying at a later level of

representation, as I have claimed, or as applying in the same level of

representation as the rest of the processes involved in

reduplication, as a more orthodox optimality-theoretic stance would

lead us to assume. I have argued that the former approach is the

better one. Let us consider the tableau for alialu again:

RRRREEEEDDDD++++aaaalllluuuu-------->>>>aaaalllliiiiaaaalllluuuu

al(yalu) a(lalu) a(laalu) ali(alu) alu(alu)

Cont √ √ √ √ √

Anch √ √ √ √ √

Fill √ √ √ √ √

RED=Prefix √ √ √ √ √

Align (Pwd,

R, Ft, R)

√ √ √ √ √

Iamb * * * * *

B-D(V) √ √ *! *! √

FtHd=H * * √ * *

Parse(σ,Ft) * * * ** **!

RED=σµµ √ *! * * *

Max * * * * √

B-D(C) * √ √ √ √

30

There are at least two problems facing an account that tries to get

the attested outputalialu from a single level. Even if phonotactic

constraints are added to the above tableau to knock out the first

candidate (an uncontroversial move, as we have seen, since the first

candidate is in fact phonotactically ill-formed in Ponapean), some

way of getting alialu to beatalualu and alalu must still be found.

alualu is superior to alialu by virtue of being more faithful to the

base, and alalu is preferable because it has fewer unparsed

syllables. In what follows I will try to show that any account we

might construct to deal with the first of these difficulties will be

awkward at best, and that the second is probably insuperable. First,

I will demonstrate that the general behavior of reduplication in

Ponapean leads us to expect that alualu should at least be an option,

as "overcopying" of this type is attested in the language as a means

of dealing with phonotactic constraints. I will then discuss the

metrical constraints that lead us to prefer alalu to alialu, and show

that any alteration of the constraints that might solve this problem

would have undesirable effects on other reduplication patterns.

4444....1111 RRRRuuuulllliiiinnnngggg oooouuuutttt aaaalllluuuuaaaalllluuuu

4444....1111....1111 PPPPhhhhoooonnnnoooottttaaaaccccttttiiiiccccssss

Ponapean phonotactics are both fairly strict and fairly

complicated, and a detailed analysis of them is beyond the scope of

this paper. I will do no more than sketch an outline of the relevant

facts here.

31

Apparently the only consonant clusters allowed in Ponapean

are homorganic nasal + C clusters and geminate sonorants13 (cf. Itô

1988). Clusters which do not fall into these categories are done

away either by changing one of the consonants or by inserting a

vowel.

Consonant shifts apparently take place in reduplicated forms

whenever the first consonant can change [nasal] or [lateral] features

to get a well-formed cluster:

12. kak -->kangkak ‘able’

sel -->sensel ‘tied’

lirohro -->lillirohro ‘overprotective’

This mechanism will not be important for our concerns, and I list it

here only for completeness’ sake.

Rehg and Sohl (1981) then identify three distinct types of

vowel insertion to break up illicit clusters that cannot be made licit

by consonant shifts. They refer to these as copy vowels, epenthetic

vowels, and base vowels, and to minimize confusion I will simply

adopt their terminology here.

Copy vowels involving copying of a following vowel:

13. a. ak+pwung -->akupwung ‘petty’

ak+tantat -->akatantat ‘to abhor’

b. tang+da -->tangada ‘run up’

tang+do -->tangodo ‘run here’

tang+wei -->tangewei ‘run there’

Epenthetic vowels are high vowels whose roundedness is

determined by harmony with the following vowel or consonant (that

is, the epenthetic vowel is /u/ before the labialized consonants pw

13Geminate obstruents are also found, in such loanwords as nappa 'Chinese

cabbage' and kiassi 'catcher'.

32

and mw or before a syllable containing a rounded vowel, and /i/

otherwise)

14. pwihk+men -->pwihkimen ‘a pig’

ak+suwei -->akusuwei ‘boastful’

loang+loange -->loangiloange ‘cross over’

ngkoal -->ungkoal ‘make sennit’

skuhl -->sukuhl ‘school’

silk -->silik ‘silk’

Rehg and Sohl (1981) note that these vowels are generally optional

and never stressed, and that their quality is hard to determine. This

last fact is particularly visible in their example loangiloange, which

is given as an example of an epenthetic vowel although it apparently

violates their rule determining epenthetic vowel quality (the digraph

oa represents the rounded vowel /Á/, and we would therefore expect

an epenthetic vowel u). This is not simply a matter of their having

given us the wrong rule, as their example ungkoal ‘make sennit’

shows; rather, the difficulty of determining the vowel quality of an

epenthetic vowel is apparently in play here. This will be worth

bearing in mind as we look at vowel epenthesis in monosyllabic

reduplication.

Finally, there are some cases of what Rehg and Sohl (1981)

refer to as base vowels. They claim that base vowels are part of the

underlying representation:

15. kihl+niki -->kiliniki ‘to have skin’

ngihl+niki -->ngileniki ‘to have a voice’

dihp+niki -->dipaniki ‘to have sin’

Here there appears to be no way to predict the form of the inserted

vowel from the phonological shape of the noun, so Rehg and Sohl

claim that the underlying forms of these nouns are actually kili,

33

ngile, and dipa, with obligatory deletion of the last vowel in word-

final position.

4444....1111....2222 OOOOvvvveeeerrrrccccooooppppyyyyiiiinnnngggg iiiinnnn ppppoooollllyyyyssssyyyyllllllllaaaabbbblllleeeessss

In polysyllable reduplication we can definitely see cases of

copy vowels and epenthetic vowels used to break up impermissible

clusters:

16. a. kadek-->kadakadek ‘kind’

masukun -->masamasukun ‘blind’

b. katohre -->katikatohre ‘subtract’

rese -->resirese ‘saw’

In fact, however, we also have the option of overcopying (Rehg 1984,

319):

17. sapeng -->sapesapeng ‘answer’

sakone -->sakosakone ‘force’

marep -->maremarep ‘blink’

It is not clear what drives the choice among these options; there are

a few near-minimal pairs such as sapesapeng ‘answer’ (with

overcopying) vs. sipisiped ‘brush off’ (with either a copy vowel or an

epenthetic vowel). Still, it is fairly clear that overcopying is among

our options for dealing with phonotactic problems created by

polysyllable reduplication. On the unmarked assumption that

reduplication of alu and mpek is just like reduplication of any other

polysyllable, then, we ought to see all three of these options

surfacing in dealing with phonotactic problems; that is, these

patterns ought to contain roots which involve overlong copying,

roots which involve copy vowels, and roots with epenthetic vowels,

just as the Pattern XI roots above do:

18. alu -->*aluwalu (overlong copying)

-->*alaalu (copy vowel)

-->aliyalu (epenthetic vowel)

34

But in fact we have only the last option. Let us take another look at

the tables for alu and mpek:

¯m(p¯¯mpek) ¯m(pimpek) ¯m(pempek) ¯mpe(k¯mpek)

Cont √ √ √ √

Anch √ √ √ √

Fill √ √ √ √

RED=Prefix √ √ √ √

Align (Pwd,

R, Ft, R)

√ √ √ √

Iamb * * * *

B-D(V) √ *! √ √

FtHd=H √ √ √ √

Parse(σ,Ft) * * * **!

RED=σµµ √ * *! *

Max ** ** * √

B-D(C) √ √ √ √

al(yalu) a(lalu) a(laalu) ali(alu) alu(alu)

Cont √ √ √ √ √

Anch √ √ √ √ √

Fill √ √ √ √ √

RED=Prefix √ √ √ √ √

Align (Pwd,

R, Ft, R)

√ √ √ √ √

Iamb * * * * *

B-D(V) √ √ *! *! √

FtHd=H * * √ * *

Parse(σ,Ft) * * * ** **!

RED=σµµ √ *! * * *

Max * * * * √

B-D(C) * √ √ √ √

We have seen that our tableaux as they stand predict phonotactically

ill-formed reduplicated forms for these verbs; alyalu and mpmpek.

However, it now seems clear that we cannot solve this problem by

simply adding a phonotactic constraint to rule out the winning

candidate in these tableaux. Such a move would force us to come up

35

with some way of ruling out forms which are metrically identical to

the attested forms but which involve overcopying as a means of

dealing with phonotactic problems. We have just seen that any

constraint we might invent to rule out such overcopying would be

undesirable, since overcopying is indeed attested in Ponapean as a

means of dealing with phonotactic problems. In the next section we

will see that overcopying is available not only in polysyllables, but

in apparent monosyllables as well; overcopying is thus quite

generally an available option for dealing with phonotactic problems,

and we should not create a constraint to rule it out.

4444....1111....3333 OOOOvvvveeeerrrrccccooooppppyyyyiiiinnnngggg iiiinnnn mmmmoooonnnnoooossssyyyyllllllllaaaabbbblllleeeessss

In this section I will try to show that overcopying is an option

in monosyllables as well; that is, that there are lexical differences

between monosyllabic roots having to do with some structure at the

right edge of the root, and that this structure is sometimes copied

in reduplication in order to avoid phonotactic problems. In

monosyllable reduplication there are numerous fairly clear cases of

the use of copy (19) and epenthetic (20) vowels to break up

impermissible clusters:

19. tang -->tangatang ‘run’

rot -->rotorot ‘dark’

tep -->tepetep ‘kick’

kos -->kosokos ‘throw’

20. seng -->sengiseng ‘cry’

ped -->pediped ‘be squeezed’

tep -->tepitep ‘begin’

net -->netinet ‘sell’

There are also a couple of verb stems in the available data which

bear what might be considered base vowels:

21. lop-->lopilop ‘cut’

kos-->kosikos ‘bent’

36

The inserted i in these forms is clearly not a copy vowel, and is

apparently not an epenthetic vowel, either, since it fails to

harmonize in roundedness with the following vowel. On the other

hand, we have seen that there is at least one case in Rehg and Sohl

(1981) which is identified as an epenthetic vowel but transcribed as

failing to harmonize in roundedness with the following vowel

(namely, loangiloange ‘cross over’, which we would expect to

surface as loanguloange). Thus, these are either base vowels or non-

harmonizing epenthetic vowels.

The decision as to whether a monosyllabic stem will use copy

vowels or epenthetic vowels is apparently lexically determined. We

can find minimal pairs such as those in 22:

22. a. tep-->tepitep ‘begin’

tep-->tepetep ‘kick’

b. kos-->kosikos ‘bent’

kos-->kosokos ‘throw’

Furthermore, roots are consistent in their use of one or another of

these strategies:

23. a. tangewei ‘run there’

tangodo ‘run here’

tangada ‘run up’

tangatang ‘running’

b. rotada ‘get dark’

rotorot ‘being dark’

c. lusida ‘jump up’

lusisang ‘jump from’

lusulus ‘jumping’

Thus, roots can apparently be divided reliably into “copy-vowel

roots” (such as tang and rot) and “epenthetic-vowel roots” (such as

lus); there are no roots that use epenthetic vowels for reduplication

and copy vowels for suffixation, for example. Furthermore, the

lexical difference between roots apparently has something to do

37

with the right edge, since the rules for determining which type of

vowel insertion is used to break up consonant clusters created by

prefixes is quite different (see Rehg and Sohl 1981, 92 for

discussion), so that a root may use copy vowels for suffixes and

epenthetic vowels for prefixes, as below:

24. tikitik+la -->tikitikala ‘become small’

ak+tikitik -->ak(i)tikitik ‘humble’

These facts seem to suggest that monosyllabic roots are lexically

distinguished in some way which has to do with the right edge of the

root; perhaps some roots end in an underspecified vowel and others

do not. Given this, the fact that the vowel appearing in reduplication

is identical to that appearing in suffixation for a given root (cf. the

data in 23) suggests that reduplication involves overcopying; the

quality of the right edge that determines which type of vowel is

inserted is being copied in the prefixal reduplicant, giving rise to a

reduplicant that is more than one syllable in length.

Thus, overcopying is apparently also an option in

monosyllables, though less transparently than in polysyllables. The

fact that overcopying appears to quite generally be an option in

dealing with phonotactic constraints suggests strongly that we

cannot rule out overcopying in principle in dealing with the

phonotactic problems raised by Patterns VII and X. It seems that we

are better off, then, allowing the phonotactically problematic forms

predicted by the tableaux above to be generated, and breaking up the

illicit clusters at a later level.

38

4444....1111....4444 PPPPaaaarrrriiiinnnngggg aaaawwwwaaaayyyy uuuunnnnwwwwaaaannnntttteeeedddd ooooppppttttiiiioooonnnnssss

We have seen that we might expect to find vowel-initial

polysyllabic roots to have any of three options for dealing with

phonotactic problems, as consonant-initial polysyllabic roots do:

25. alu -->*aluwalu (overlong copying)

-->*alaalu (copy vowel)

-->aliyalu (epenthetic vowel)

Michael Kenstowicz (p.c.) has suggested an alternative way of ruling

out the first two options above. He proposes a phonotactic

constraint on contact between vowels, requiring them not to differ

in place. The reduplicant in this case, then, is alV-, with an

underspecified final vowel lacking a place feature. The proposed

constraint is then met; the final vowel of the reduplicant and the

first vowel of the base do not differ in place, since the first vowel

is unspecified for place. The underspecified vowel is then realized

as [i] by default. Thus, a violation of whatever requirement drives

copying of vocalic features (presumably Max, or perhaps a more

specific version of Max pertaining exclusively to vocalic features) is

incurred in order to avoid a violation of a phonotactic constraint on

vowels14.

This solution seems to me to still involve the use of multiple

levels. Depending on our assumptions about the nature of default

vowels, it looks as though the phonotactic constraint that forces

underparsing of the second vowel of the reduplicant may be violated

at the end of the derivation, when the vowel becomes specified for

place by default.

14 Rehg's (1984) discussion of epenthetic vowels as "reduced" or incompletely

copied versions of full vowels is similar in spirit.

39

More importantly, even if we adopt this account we will still

need to come up with some way of ruling out alalu. Let us turn to

this problem.

4444....2222 RRRRuuuulllliiiinnnngggg oooouuuutttt aaaallllaaaalllluuuu

Let us look again at the tableau for alu:

RRRREEEEDDDD++++aaaalllluuuu-------->>>>aaaalllliiiiaaaalllluuuu

al(yalu) a(lalu) a(laalu) ali(alu) alu(alu)

Cont √ √ √ √ √

Anch √ √ √ √ √

Fill √ √ √ √ √

RED=Prefix √ √ √ √ √

Align (Pwd,

R, Ft, R)

√ √ √ √ √

Iamb * * * * *

B-D(V) √ √ *! *! √

FtHd=H * * √ * *

Parse(σ,Ft) * * * ** **!

RED=σµµ √ *! * * *

Max * * * * √

B-D(C) * √ √ √ √

Suppose we add a phonotactic constraint to rule out the first

candidate. Even if we can find some way of explaining the

discrepancies between the fifth candidate and the actual output

(perhaps following Kenstowicz' suggestion), we will still need to

rule out the second candidate, which is superior to the fifth with

regard to Parse. Thus, we will need to have some constraint that

outranks Parse and prefers alValu to alalu.

It seems to me that accounts along these lines will generally

have difficulties dealing simultaneously with alialu and with

luluhmwuhmw:

40

RRRREEEEDDDD++++lllluuuuhhhhmmmmwwwwuuuuhhhhmmmmwwww-------->>>>lllluuuulllluuuuhhhhmmmmwwwwuuuuhhhhmmmmwwww

$(luluh)

(mwuhmw)

luhluh

(mwuhmw)

(luh)(luh)

(mwuhmw)

Cont √ √ √

Anch √ √ √

Fill √ √ √

RED=Prefix √ √ √

Align R √ √ √

Iamb √* * ***!

B-D(V) √ √ √

*V=RB √ √ √

FtHd=H √ √ √

Parse(σ,Ft) √ **! √

RED=σµµ * √ √

Max ***** **** ****

B-D(C) √ √ √

The behavior of luhmwuhmw shows that Ponapean reduplicants may

be made smaller than a bimoraic syllable in order to minimize Parse

violations; that is, Parse outranks both RED=σµµ and Max. This leaves

us with the question of why we may not minimize Parse violations

in the case of alu by prefixing a monomoraic syllable to get alalu.

We cannot create a new constraint preferring reduplicants

consisting of two light syllables to ones consisting of one light

syllable (RED=σµ σµ). As we have seen, the constraint in question

will have to outrank Parse, and Parse outranks RED=σµµ, so such a

move would have undesirable effects on patterns like XI (rere 'skin,

peel'-->rerrere), where the reduplicant cannot create an iamb and

thus appears as a single bimoraic syllable. We would expect the

form to obey the hypothetical new constraint RED=σµ σµ, giving

*rererere.

Given that obedience to RED=σµµ is possible for rere and

impossible (for phonotactic reasons) for alu, we might try getting

41

around this by having a constraint outranking Parse which is obeyed

by both rer- and ali-. For example, we might divide RED=σµµ into

RED=µµ (obeyed by bimoraic syllables and pairs of monomoraic

syllables) and a lower-ranked RED=σ (obeyed by monomoraic and

bimoraic syllables)15. RED=µµ could outrank Parse without adversely

affecting rere, since the attested reduplicant rer- obeys RED=µµ.

But now we run into the difficulty mentioned above with

luhmwuhmw. Apparently Ponapean allows the reduplicant to be a

monomoraic syllable in order to minimize Parse violations; thus,

RED=µµ cannot outrank Parse.

Another possibility would involve altering the metrical

constraints to favor parsing of bisyllabic non-iambic feet over

failure to parse, while still preferring iambs over non-iambs. This

could be accomplished fairly straightforwardly by dividing Iamb into

two constraints, one requiring that feet be binary and the other that

they be right-headed. Thus, (ali)(alu) would be preferred over

(alalu), a(lalu) or (a)(lalu). However, we can see that the behavior of

Pattern VII is not driven simply by a need to create words with even

numbers of syllables, since words like ewetik 'abstemious', which

ought to surface as *ewewetik (metrically identical to alialu), in

fact yield the five-syllable form ewiewetik. We would need to

create a new constraint, then, to rule out the metrically preferable

*ewewetik, and this constraint will have to outrank Parse, since in

a system that allows bisyllabic non-iambic feet (ewe)(wetik) will

15 Something like this may be necessary in any event to ensure that phonotactic

problems are dealt with by overcopying rather than undercopying;

marep 'blink'-->maremarep, not *mamarep. Thus, it is apparently more important

that the reduplicant be bimoraic than that it be a syllable.

42

be preferable to (ewi)e(wetik) with regard to Parse. It is difficult

to see what form such a constraint might take. The forms in

question differ, for example, in that the first foot of (ewe)(wetik)

consists partly of the reduplicant and partly of the base, while the

first foot of (ewi)e(wetik) consists entirely of the reduplicant; we

might consider creating a constraint *Ft=RB, parallel to *V=RB, to

take advantage of this fact. But we have just seen that *Ft=RB will

have to outrank Parse, and it will therefore rule out

(luluh)(mwuhmw) in favor of *luhluh(mwuhmw).

What we have seen is that some constraint that outranks Parse

and prefers alialu to alalu needs to be in play, or else Parse needs to

be interpreted in such a way that it does not prefer alalu to alialu,

as it currently does. It is difficult to see how this can be

accomplished without adversely affecting the accounts of other

patterns. The behavior of luhmwuhmw, in particular, shows us that

a monomoraic reduplicant may be employed to minimize Parse

violations, and this is similar enough to the procedure involved in

constructing the unattested alalu that specifying a constraint to

rule out the latter while allowing the former is not a trivial matter.

The problem is exacerbated somewhat by the standard

optimality-theoretic methodology for dealing with metrification,

which involves separating the constraints driving syllable parsing

(e.g., Parse, Align (Pwd, R, Ft, R), etc.) from those constraining the

possible forms of feet (e.g., Iamb, FtBin) (cf. Buckley (1994), Cohn

and McCarthy (1994), Kenstowicz (1994), and McCarthy and Prince

(1993), among many others, for accounts pursuing this line). This

approach makes it impossible to make the creation of an initial iamb

43

in luhmwuhmw-->luluhmwuhmw especially "valuable"; if the

constraint we use to rule out alalu outranks Parse, it will rule out

creation of an initial iamb in the case of luhmwuhmw, even though

iamb creation is not at issue in the case of alu. If we were to

separate Parse into constraints Parseiamb, Parsetrochee, etc., each

of which would drive parsing into specific kinds of feet, the problem

would be comparatively simple to solve, since we could order a new

constraint with respect to the Parse constraint relevant to alu

without necessarily affecting luhmwuhmw. I will not explore this

option further here, since it involves considerable complications of

the OT approach to metrification which I am not in a position to

independently motivate.

5555.... TTTThhhheeee aaaaddddddddiiiittttiiiioooonnnnaaaallll lllleeeevvvveeeellll

The theory developed above generates alyalu as the

reduplicated form of alu 'walk'. I have argued above that this is the

correct result, and that vowel epenthesis to yield alialu should be

handled at a subsequent level of representation. In this section I

will briefly explore the nature of this level.

It seems clear that the new level cannot simply be a result of

passing the output of the old level through the same constraints in

the same order. Consider the tableau for alu again:

44

RRRREEEEDDDD++++aaaalllluuuu-------->>>>aaaalllliiiiaaaalllluuuu

al(yalu) a(lalu) a(laalu) ali(alu) alu(alu)

Cont √ √ √ √ √

Anch √ √ √ √ √

Fill √ √ √ √ √

RED=Prefix √ √ √ √ √

Align (Pwd,

R, Ft, R)

√ √ √ √ √

Iamb * * * * *

B-D(V) √ √ *! *! √

FtHd=H * * √ * *

Parse(σ,Ft) * * * ** **!

RED=σµµ √ *! * * *

Max * * * * √

B-D(C) * √ √ √ √

The conclusion of the arguments above was that the first candidate

should win, as shown. Any phonotactic constraint ruling out forms

like alyalu, then, will have to be ordered below RED=σµµ. If alyalu is

simply passed through the constraints again, no epenthesis will

occur, since RED=σµµ will still favor alyalu over alialu, and RED=σµµ,

by hypothesis, outranks the phonotactic constraint that prefers

alialu over alyalu.

There are at least two possible ways of avoiding this result.

One is to simply reorder the constraints on the new level so that the

phonotactic constraint driving epenthesis outranks RED=σµµ. This

seems like an undesirable step, since it would increase the power of

the theory considerably to allow distinct levels to have different

constraint orderings.

Another possible move would be to introduce some equivalent

of bracket erasure; to assume, that is, that alyalu is not

"recognizable" as a reduplicated form on the new level. As a result,

45

the constraint RED=σµµ is irrelevant on the new level, and is

satisfied vacuously. The phonotactic constraint can then trigger

epenthesis, and the correct output form is derived. This move is

consistent with Kenstowicz' (1994) conclusion, based on

investigation of metrical phenomena in Carib, that a given level

generally fails to make distinctions between underlyingly present

structure and structure inserted at the previous level. This move

seems to be the most conservative way of dealing with the data

discussed here, since we can now maintain the claim that constraint

orderings are constant for a given language, rather than allowing

them to be differently ranked on different levels.

One difficulty facing this solution concerns the status of Fill.

Vowel epenthesis will violate Fill, after all, and we have seen that

Fill is quite highly ranked in this language; certainly it outranks

RED=σµµ, which appears to outrank the phonotactic constraint that

drives epenthesis.

One way out of this would involve postulating two distinct Fill

constraints. The types of Fill violations that have been relevant

thus far have involved adding a mora to an existing syllable in order

to improve the representation with respect to Iamb. Thus, Fill was

highly ranked in order to avoid forms like lalaAl as the reduplicated

form of lal; adding an additional mora to the base in order to make it

into a heavy syllable had to be impermissible.

In this case of vowel epenthesis in alialu, on the other hand,

we are constructing a new syllable. We might exploit this by

splitting Fill into a high-ranking Fillµ which outranks Iamb and rules

out lalaAl and a lower-ranking Fillσ which militates against

46

constructing a new syllable in alialu but is overridden by a

phonotactic constraint.

It is interesting to note that insertion of i and u to break up

illicit clusters may conform to the general characteristics of the

Word Level of Lexical Phonology (cf. Booij and Rubach 1987,

Borowsky 1992). The phenomenon appears not to be cyclic, since, as

we have seen, it applies to illicit clusters in foreign borrowings:

26. skuhl -->sukuhl ‘school’

skru -->sukuru ‘screw’

sdamp -->sidamp ‘stamp’

silk -->silik ‘silk’

Whether vowels are inserted between consonants brought together

by contact between words is less clear. Rehg and Sohl (1981, 62-

63) do mention that such clusters can be made acceptable by nasal

substitution in some cases:

27. a. E kalap pahn soupisek

[e kalam pahn soupisek]

‘He will always be busy’

b. E saik kengwini

[e saing kengwini]

‘He hasn’t yet taken medicine’

They then point out that nasal substitution of this kind does not

occur with coronals:

28. Ke meid dangahnga

[ke meid dangahnga]

*[ke mein dangahnga]

‘Aren’t you lazy!’

47

Finally, they note that coronal clusters are broken up by vowel

insertion within a word:

29. a. wied+da-->wiedida ‘proceed upward’

b. lus+sang-->lusisang ‘jump from’

This seems to suggest that vowel insertion is not employed between

words; if it were, Rehg and Sohl would presumably mention this at

this point, rather than specifically noting that vowel insertion is

employed to break up coronal clusters within a word.

The framework of Lexical Phonology, then, would be able to

predict that insertion of i or u takes place after reduplication, since

Word Level rules are claimed in that framework to apply after cyclic

lexical rules. Replicating this kind of result will be difficult, it

seems to me, in Optimality Theory. We might try to capture the

basic insight of Lexical Phonology, that non-cyclic rules will always

follow cyclic ones, by postulating a set of constraints that make

reference to morphological boundaries of various kinds16. Such

constraints will have the effect of rules that apply only in derived

contexts, since they require the presence of a morphological

boundary in order to have any effect. Coupled with the notion of

“bracket erasure” described above, such constraints will always

have their effects on the level of representation at which

morphemes are concatenated, since at later levels of representation

the morphological boundaries that appear in the structural

descriptions of the constraints will have been erased.

On the other hand, phenomena triggered by the constraints that

make no reference to morphological boundaries (the “noncyclic”

16 Thanks to Martha McGinnis for suggesting this to me.

48

constraints) can take place at any level. Consider a case in which a

“noncyclic” constraint N and a “cyclic” constraint C make

conflicting demands on GEN; only one of the constraints can be

satisfied. Suppose further that N outranks C. Then the operation in

GEN triggered by C will not appear if this would violate N; rather,

GEN will alter the structure in whatever way is necessary to satisfy

N. Translating this into a rule-based framework, this means that

the rule simulated by N would bleed the one simulated by C; to put it

another way, the noncyclic rule N would precede the cyclic rule C.

Optimality Theory has no principled way of avoiding this result, it

seems to me, apart from extrinsically ordering all “cyclic”

constraints above “noncyclic” ones.

6666.... CCCCoooonnnncccclllluuuussssiiiioooonnnn

I have tried to show that the Ponapean reduplication system

can be fairly straightforwardly analyzed in Optimality-theoretic

terms, simply by assuming a particular ordering of mostly familiar

constraints. What makes Ponapean reduplication unusual, in this

framework, is the relatively high ranking of various metrical

constraints which override constraints on the shape of the

reduplicant and on the intrusion of new material into the reduplicant

which fails to correspond to anything in the base. Given the

particular constraints assumed in this framework, in fact, we

effectively predict the existence of a language like Ponapean.

I have also tried to show that the best optimality-theoretic

analysis of Ponapean reduplication will involve multiple levels of

representation. If my analysis is correct, Optimality Theory will

49

apparently have to retreat from a stance of forbidding intermediate

levels of representation altogether to one of minimizing their role.

50

Bibliography

Booij, Geert, and Jerzy Rubach. 1987. Postcyclic versus Postlexical

Rules in Lexical Phonology. Linguistic Inquiry 18.1-44.

Borowsky, Toni. 1992. On the Word-Level. Studies in Lexical

Phonology, ed. by S. Hargus and E. Kaisse. San Diego: Academic

Press.

Buckley, Eugene. 1994. Alignment in Manam Stress. ms., University

of Pennsylvania.

Cohn, Abigail, and John McCarthy. 1994. Alignment and Parallelism

in Indonesian Phonology. ms., Cornell University and University

of Massachusetts at Amherst.

Everett, Daniel. 1994. Quantity, Sonority, and Alignment

Constraints in Arawan Prosody. handout of talk given at MIT.

Itô, Junko. 1988. Syllable Theory in Prosodic Phonology. New York:

Garland Publishing, Inc.

Kenstowicz, Michael. 1994. Cyclic vs. Noncyclic Constraint

Evaluation. Papers on Phonology and Morphology. MIT Working

Papers in Linguistics, v. 21.

Levin, Juliette. 1985. A Metrical Theory of Syllabicity. Ph.D.

Dissertation, MIT.

McCarthy, John, and Alan Prince. 1986. Prosodic Morphology. ms., U

Mass Amherst and Brandeis University.

McCarthy, John, and Alan Prince. 1993. Generalized Alignment. ms.,

U Mass Amherst and Rutgers University.

McCarthy, John, and Alan Prince. 1994. The Emergence of the

Unmarked: Optimality in Prosodic Morphology. ms., U Mass

Amherst and Rutgers University.

51

Rehg, Kenneth. 1984. Nasal Substitution Rules in Ponapean. in

Byron W. Bender, ed., Studies in Micronesian Linguistics.

Pacific Linguistics Series C, no. 80. Canberra: The Australian

National University.

Rehg, Kenneth, and Damian Sohl. 1979. Ponapean-English Dictionary.

Honolulu: The University Press of Hawaii.

Rehg, Kenneth, and Damian Sohl. 1981. Ponapean Reference

Grammar. Honolulu: The University Press of Hawaii.

52

Appendix A: Constraint Definitions

AAAAlllliiiiggggnnnn ((((PPPPwwwwdddd,,,, RRRR,,,, FFFFtttt,,,, RRRR))))--(see McCarthy and Prince 1993 for

discussion) All phonological words must end in a foot.

Violated by phonological words ending in unparsed syllables.

AAAAnnnncccchhhhoooorrrriiiinnnngggg--(McCarthy and Prince 1994, 8) Correspondence

preserves alignment in the following sense: the left (right)

peripheral element of R[eduplicant] corresponds to the left

(right) peripheral element of B[ase], if R is to the left (right)

of B. For prefixal reduplicants, this is violated by reduplicants

whose first segment does not correspond to the first segment

of the base, e.g., bratu-->ratu-bratu.

BBBBaaaasssseeee----DDDDeeeeppppeeeennnnddddeeeennnncccceeee ((((VVVV,,,, CCCC))))--(based on McCarthy and Prince 1994, 9)

Every (vocalic, consonantal) element of R has a correspondent

in B. Violated by reduplicants containing vowels or consonants

with no correspondent in the base, e.g. Ponapean ahn-->aiahn,

where /i/ has no correspondent in the base.

CCCCoooonnnnttttiiiigggguuuuiiiittttyyyy--(from McCarthy and Prince 1994, 8) The portion of the

base standing in correspondence forms a contiguous string, as

does the correspondent portion of the reduplicant. Violated by

reduplication that skips segments of the base, e.g. Tagalog

blowawt-->boblowawt.

FFFFiiiillllllll--(McCarthy and Prince 1994, 11)

Epenthetic structure is prohibited.

FFFFttttHHHHdddd====HHHH--The head of a foot must be a metrically heavy syllable.

53

IIIIaaaammmmbbbb--(adapted from McCarthy and Prince 1993, 10)

Ft-->σW σR

Violated by feet that do not consist of a light syllable

followed by a heavy syllable.

MMMMaaaaxxxx--(McCarthy and Prince 1994, 9) Every element of B has a

correspondent in R. Violated by reduplicants which do not

contain correspondents for every element in the base, e.g.

Ponapean duhp-->duduhp.

PPPPaaaarrrrsssseeee ((((σ,,,,FFFFtttt))))--(McCarthy and Prince 1993, 10) All syllables must

be parsed by feet.

RRRREEEEDDDD====σµµ--(based on McCarthy and Prince 1994, 18) The reduplicant

is a bimoraic syllable. Violated by reduplicants which are

larger or smaller than a bimoraic syllable, e.g., Ponapean

duhp-->duduhp.

RRRREEEEDDDD====PPPPrrrreeeeffffiiiixxxx (equivalent to the Align (R, Left, Stem, Left) constraint

of McCarthy and Prince 1994, 14) R is a prefix.

****VVVV====RRRRBBBB--(defined in this paper, p. 22)

A vowel of the form

V
4
R B

is ill-formed.

54

Appendix B: Full tableaux and constraint orderings

In the preceding paper I have tried to sketch a general outline of my

proposal for dealing with Ponapean aspectual reduplication within

an Optimality framework. Here I show in more detail the crucial

constraint orderings involved.

PPPPaaaatttttttteeeerrrrnnnn IIII:::: llllaaaallll-------->>>>llllaaaallllllllaaaallll

$(lallal) (lalal) (lalaAl) (lalaal)

Cont √ √ √ √

Anch √ √ √ *!

Fill √ √ *! √

RED=Prefix √ √ √ *

Align R √ √ √ √

Iamb * * √ √

B-D(V) √ √ √ *

*V=RB √ √ √ √

FtHd=H √ *! √ √

Parse(σ,Ft) √ √ √ √

RED=σµµ √ * * √

Max √ * * *

B-D(C) √ √ √ √

Fill, Max, or RED=σµµ>>Iamb

Iamb>>Max (Pattern IV)

Iamb>>RED=σµµ (Pattern III)

˚ FFFFiiiillllllll>>>>>>>>IIIIaaaammmmbbbb

Anch, RED=Prefix, B-D(V), or Max>>Iamb

Iamb>>Max (Pattern IV)

Iamb>>B-D(V) (Pattern III)

˚AAAAnnnncccchhhh oooorrrr RRRREEEEDDDD====PPPPrrrreeeeffffiiiixxxx>>>>>>>>IIIIaaaammmmbbbb

55

PPPPaaaatttttttteeeerrrrnnnn IIIIIIII:::: ppppaaaa-------->>>>ppppaaaahhhhppppaaaa

$(paapa<V>) (papa<V>) (papaa) (papaa)

Cont √ √ √ √

Anch √ √ √ √

Fill √ √ *! √

RED=Prefix √ √ √ *!

Align R √ √ √ √

Iamb * * √ √

B-D(V) √ √ √ √

*V=RB √ √ √ √

FtHd=H √ *! √ √

Parse(σ,Ft) √ √ √ √

RED=σµµ √ * * √

Max √ * * √

B-D(C) √ √ √ √

RRRREEEEDDDD====PPPPrrrreeeeffff>>>>>>>>IIIIaaaammmmbbbb

PPPPaaaatttttttteeeerrrrnnnn IIIIIIIIIIII:::: eeeellll-------->>>>eeeelllleeeehhhhllll

$(eleel) (elel) (eelel)

Cont √ √ *!

Anch √ √ √

Fill √ √ √

RED=Prefix √ √ √

Align R √ √ √

Iamb √ *! *

B-D(V) * √ *

*V=RB * √ √

FtHd=H √ * √

Parse(σ,Ft) √ √ √

RED=σµµ * * √

Max √ √ √

B-D(C) √ √ √

Iamb or FtHd=H>>B-D(V) and *V=RB

*V=RB>>FtHd=H (Pattern VII, amiamas dialect)

˚̊̊̊IIIIaaaammmmbbbb>>>>>>>>****VVVV====RRRRBBBB

B-D(V)>>FtHd=H (Pattern VII, alialu)

˚̊̊̊IIIIaaaammmmbbbb>>>>>>>>BBBB----DDDD((((VVVV))))

CCCCoooonnnntttt oooorrrr IIIIaaaammmmbbbb>>>>>>>>****VVVV====RRRRBBBB aaaannnndddd RRRREEEEDDDD====σµµ

56

PPPPaaaatttttttteeeerrrrnnnn IIIIVVVV:::: aaaahhhhnnnn-------->>>>aaaaiiiiaaaahhhhnnnn

$(aiaan) (_anaan) (a_naan) (aan)(aan)

Cont √ √ *! √

Anch √ *! √ √

Fill √ √ √ √

RED=Prefix √ √ √ √

Align R √ √ √ √

Iamb √ √ √ **!

B-D(V) √ √ √ √

*V=RB √ √ √ √

FtHd=H √ √ √ √

Parse(σ,Ft) √ √ √ √

RED=σµµ * * * √

Max ** * * √

B-D(C) * √ √ √

AAAAnnnncccchhhh>>>>>>>>MMMMaaaaxxxx aaaannnndddd BBBB----DDDD((((CCCC))))

CCCCoooonnnntttt>>>>>>>>MMMMaaaaxxxx aaaannnndddd BBBB----DDDD((((CCCC))))

IIIIaaaammmmbbbb>>>>>>>>RRRREEEEDDDD====σµµ,,,, MMMMaaaaxxxx,,,, aaaannnndddd BBBB----DDDD((((CCCC))))

PPPPaaaatttttttteeeerrrrnnnn VVVVIIII:::: dddduuuuhhhhpppp-------->>>>dddduuuudddduuuuhhhhpppp

$(duduup) (duu)(duup) (duup)(duup)

Cont √ √ √

Anch √ √ √

Fill √ √ √

RED=Prefix √ √ √

Align R √ √ √

Iamb √ *! **!

B-D(V) √ √ √

*V=RB √ √ √

FtHd=H √ √ √

Parse(σ,Ft) √ √ √

RED=σµµ * √ √

Max ** * √

B-D(C) √ √ √

IIIIaaaammmmbbbb>>>>>>>>RRRREEEEDDDD====σµµ,,,, MMMMaaaaxxxx

57

PPPPaaaatttttttteeeerrrrnnnn VVVVIIIIIIII:::: aaaalllluuuu-------->>>>aaaalllliiiiaaaalllluuuu

$al(yalu) a(lalu) a(laalu) ali(alu) alu(alu)

Cont √ √ √ √ √

Anch √ √ √ √ √

Fill √ √ √ √ √

RED=Prefix √ √ √ √ √

Align (Pwd,

R, Ft, R)

√ √ √ √ √

Iamb * * * * *

B-D(V) √ √ *! *! √

*V=RB √ √ * √ √

FtHd=H * * √ * *

Parse(σ,Ft) * * * ** **!

RED=σµµ √ *! * * *

Max * * * * √

B-D(C) * √ √ √ √

RRRREEEEDDDD====σµµ>>>>>>>>BBBB----DDDD((((CCCC))))

B-D(V), *V=RB, or RED=σµµ>>FtHd=H and B-D(C)

FtHd=H>>Parse(σ,Ft) (Pattern IX, duhpek)

Parse(σ,Ft)>>RED=σµµ (Pattern IX, luhmwuhmw)

˚FtHd=H>>RED=σµµ
˚̊̊̊BBBB----DDDD((((VVVV)))) oooorrrr ****VVVV====RRRRBBBB>>>>>>>>FFFFttttHHHHdddd====HHHH

B-D(V)>>Parse(σ,Ft) (Pattern VII, arekarek)

Parse(σ,Ft)>>*V=RB (Pattern VII, ewehwetik)

˚B-D(V)>>*V=RB

˚̊̊̊BBBB----DDDD((((VVVV))))>>>>>>>>FFFFttttHHHHdddd====HHHH

BBBB----DDDD((((VVVV)))) oooorrrr RRRREEEEDDDD====σµµ>>>>>>>>BBBB----DDDD((((CCCC))))

B-D(V)>>Parse(σ,Ft) (Pattern VII, arekarek)

Parse(σ,Ft)>>RED=σµµ (Pattern IX, luhmwuhmw)

˚B-D(V)>>RED=σµµ
˚̊̊̊BBBB----DDDD((((VVVV))))>>>>>>>>BBBB----DDDD((((CCCC))))

BBBB----DDDD((((VVVV)))),,,, PPPPaaaarrrrsssseeee((((σ,,,,FFFFtttt)))),,,, oooorrrr RRRREEEEDDDD====σµµ>>>>>>>>BBBB----DDDD((((CCCC))))

PPPPaaaarrrrsssseeee((((σ,,,,FFFFtttt)))) oooorrrr RRRREEEEDDDD====σµµ>>>>>>>>MMMMaaaaxxxx aaaannnndddd BBBB----DDDD((((CCCC))))

Parse(σ,Ft)>>RED=σµµ (Pattern IX, luhmwuhmw)

˚̊̊̊PPPPaaaarrrrsssseeee((((σ,,,,FFFFtttt))))>>>>>>>>MMMMaaaaxxxx aaaannnndddd BBBB----DDDD((((CCCC))))

58

PPPPaaaatttttttteeeerrrrnnnn VVVVIIIIIIII:::: aaaarrrreeeekkkkaaaarrrreeeekkkk-------->>>>aaaarrrriiiiaaaarrrreeeekkkkaaaarrrreeeekkkk

$aryare

(karek)

arare

(karek)

(araa)re

(karek)

ariare

(karek)

areare

(karek)

Cont √ √ √ √ √

Anch √ √ √ √ √

Fill √ √ √ √ √

RED=Prefix √ √ √ √ √

Align (Pwd,

R, Ft, R)

√ √ √ √ √

Iamb * * *√ * *

B-D(V) √ √ *! *! √

FtHd=H * * √* * *

Parse(σ,Ft) *** *** * **** ****!

RED=σµµ √ *! * * *

Max ****** ****** ****** ****** *****

B-D(C) * √ √ √ √

RRRREEEEDDDD====σµµ>>>>>>>>BBBB----DDDD((((CCCC))))

B-D(V) or RED=σµµ>>Parse(σ,Ft) and B-D(C)

Parse(σ,Ft)>>RED=σµµ (Pattern IX, luhmwuhmw)

BBBB----DDDD((((VVVV))))>>>>>>>>PPPPaaaarrrrsssseeee((((σ,,,,FFFFtttt)))) aaaannnndddd BBBB----DDDD((((CCCC))))

PPPPaaaarrrrsssseeee((((σ,,,,FFFFtttt)))) oooorrrr RRRREEEEDDDD====σµµ>>>>>>>>MMMMaaaaxxxx aaaannnndddd BBBB----DDDD((((CCCC))))

Parse(σ,Ft)>>RED=σµµ (Pattern IX, luhmwuhmw)

˚̊̊̊PPPPaaaarrrrsssseeee((((σ,,,,FFFFtttt))))>>>>>>>>MMMMaaaaxxxx aaaannnndddd BBBB----DDDD((((CCCC))))

59

PPPPaaaatttttttteeeerrrrnnnn VVVVIIIIIIII,,,, aaaammmmiiiiaaaammmmaaaassss ddddiiiiaaaalllleeeecccctttt:::: aaaammmmaaaassss-------->>>>aaaammmmiiiiaaaammmmaaaassss

a(mamas) a(maamas) $am(yamas)

Cont √ √ √

Anch √ √ √

Fill √ √ √

RED=Prefix √ √ √

Align (Pwd,

R, Ft, R)

√ √ √

Iamb * * *

B-D(V) √ √ √

*V=RB √ *! √

FtHd=H * √ *

Parse(σ,Ft) * * *

RED=σµµ *! * √

Max ** * **

B-D(C) √ √ *

RRRREEEEDDDD====σµµ>>>>>>>>BBBB----DDDD((((CCCC))))

*V=RB or RED=σµµ>>FtHd=H, Max, and B-D(C)

FtHd=H>>Parse(σ,Ft) (Pattern IX, duhpek)

Parse(σ,Ft)>>RED=σµµ (Pattern IX, luhmwuhmw)

˚̊̊̊****VVVV====RRRRBBBB>>>>>>>>FFFFttttHHHHdddd====HHHH,,,, MMMMaaaaxxxx,,,, aaaannnndddd BBBB----DDDD((((CCCC))))

60

PPPPaaaatttttttteeeerrrrnnnn VVVVIIIIIIII,,,, eeeewwwwiiiieeeewwwweeeettttiiiikkkk ddddiiiiaaaalllleeeecccctttt:::: eeeewwwweeeettttiiiikkkk-------->>>>eeeewwwwiiiieeeewwwweeeettttiiiikkkk

ewe(wetik) (ewee)

(wetik)

$ewye

(wetik)

Cont √ √ √

Anch √ √ √

Fill √ √ √

RED=Prefix √ √ √

Align (Pwd,

R, Ft, R)

√ √ √

Iamb * *√ *

B-D(V) √ √ √

*V=RB √ *! √

FtHd=H * √* *

Parse(σ,Ft) ** √ **

RED=σµµ *! * √

Max **** *** ****

B-D(C) √ √ *

RRRREEEEDDDD====σµµ>>>>>>>>BBBB----DDDD((((CCCC))))

*V=RB or RED=σµµ>>Parse(σ,Ft), Max, and B-D(C)

Parse(σ,Ft)>>RED=σµµ (Pattern IX: luhmwuhmw)

˚̊̊̊****VVVV====RRRRBBBB>>>>>>>>PPPPaaaarrrrsssseeee((((σ,,,,FFFFtttt)))),,,, MMMMaaaaxxxx,,,, aaaannnndddd BBBB----DDDD((((CCCC))))

61

PPPPaaaatttttttteeeerrrrnnnn VVVVIIIIIIII,,,, aaaammmmaaaahhhhmmmmaaaassss ddddiiiiaaaalllleeeecccctttt:::: aaaammmmaaaassss-------->>>>aaaammmmaaaahhhhmmmmaaaassss

a(mamas) $a(maamas) am(yamas)

Cont √ √ √

Anch √ √ √

Fill √ √ √

RED=Prefix √ √ √

Align (Pwd,

R, Ft, R)

√ √ √

Iamb * * *

B-D(V) √ √ √

FtHd=H *! √ *!

Parse(σ,Ft) * * *

*V=RB √ * √

RED=σµµ * * √

Max ** * **

B-D(C) √ √ *

FFFFttttHHHHdddd====HHHH oooorrrr MMMMaaaaxxxx>>>>>>>>****VVVV====RRRRBBBB

FtHd=H, Max, or B-D(C)>>*V=RB and RED=σµµ
RED=σµµ>>Max (Pattern X)

RED=σµµ>>B-D(C) (Pattern VII: alu)

˚̊̊̊FFFFttttHHHHdddd====HHHH>>>>>>>>****VVVV====RRRRBBBB aaaannnndddd RRRREEEEDDDD====σµµ

62

PPPPaaaatttttttteeeerrrrnnnn VVVVIIIIIIII,,,, eeeewwwweeeehhhhwwwweeeettttiiiikkkk ddddiiiiaaaalllleeeecccctttt:::: eeeewwwweeeettttiiiikkkk-------->>>>eeeewwwweeeehhhhwwwweeeettttiiiikkkk

ewe(wetik) $(ewee)

(wetik)

ewye(wetik)

Cont √ √ √

Anch √ √ √

Fill √ √ √

RED=Prefix √ √ √

Align (Pwd,

R, Ft, R)

√ √ √

Iamb * *√ *

B-D(V) √ √ √

FtHd=H * √* *

Parse(σ,Ft) **! √ **!

*V=RB √ * √

RED=σµµ * * √

Max **** *** ****

B-D(C) √ √ *

PPPPaaaarrrrsssseeee((((σ,,,,FFFFtttt)))) oooorrrr MMMMaaaaxxxx>>>>>>>>****VVVV====RRRRBBBB

Parse(σ,Ft)>>Max (Pattern IX, luhmwuhmw)

˚̊̊̊PPPPaaaarrrrsssseeee((((σ,,,,FFFFtttt))))>>>>>>>>****VVVV====RRRRBBBB
Parse(σ,Ft), Max, or B-D(C)>>*V=RB and RED=σµµ

RED=σµµ>>B-D(C) (Pattern VII, alu)

˚̊̊̊PPPPaaaarrrrsssseeee((((σ,,,,FFFFtttt)))) oooorrrr MMMMaaaaxxxx>>>>>>>>****VVVV====RRRRBBBB aaaannnndddd RRRREEEEDDDD====σµµ
Parse(σ,Ft)>>Max (Pattern IX, luhmwuhmw)

˚̊̊̊PPPPaaaarrrrsssseeee((((σ,,,,FFFFtttt))))>>>>>>>>****VVVV====RRRRBBBB aaaannnndddd RRRREEEEDDDD====σµµ

63

PPPPaaaatttttttteeeerrrrnnnn VVVVIIIIIIIIIIII:::: lllliiiiaaaahhhhnnnn-------->>>>lllliiiihhhhlllliiiiaaaahhhhnnnn

$liy(liyaan) li(liyaan)

Cont √ √

Anch √ √

Fill √ √

RED=Prefix √ √

Align R √ √

Iamb √ √

B-D(V) √ √

*V=RB √ √

FtHd=H √ √

Parse(σ,Ft) * *

RED=σµµ √ *!

Max *** ****

B-D(C) √ √

PPPPaaaatttttttteeeerrrrnnnn IIIIXXXX:::: lllluuuuhhhhmmmmwwwwuuuuhhhhmmmmwwww-------->>>>lllluuuulllluuuuhhhhmmmmwwwwuuuuhhhhmmmmwwww

$(luluh)

(mwuhmw)

luhluh

(mwuhmw)

(luh)(luh)

(mwuhmw)

Cont √ √ √

Anch √ √ √

Fill √ √ √

RED=Prefix √ √ √

Align R √ √ √

Iamb √* * ***!

B-D(V) √ √ √

*V=RB √ √ √

FtHd=H √ √ √

Parse(σ,Ft) √ **! √

RED=σµµ * √ √

Max ***** **** ****

B-D(C) √ √ √

PPPPaaaarrrrsssseeee((((σ,,,,FFFFtttt))))>>>>>>>>RRRREEEEDDDD====σµµ aaaannnndddd MMMMaaaaxxxx

IIIIaaaammmmbbbb>>>>>>>>RRRREEEEDDDD====σµµ aaaannnndddd MMMMaaaaxxxx

64

PPPPaaaatttttttteeeerrrrnnnn IIIIXXXX:::: dddduuuuhhhhppppeeeekkkk-------->>>>dddduuuuhhhhdddduuuuhhhhppppeeeekkkk

$duh

(duhpek)

(duduh)(pek) (duduh)pek du(duhpek)

Cont √ √ √ √

Anch √ √ √ √

Fill √ √ √ √

RED=Prefix √ √ √ √

Align (Pwd,

R, Ft, R)

√ √ *! √

Iamb * √* √ *

B-D(V) √ √ √ √

*V=RB √ √ √ √

FtHd=H √ *! √ √

Parse(σ,Ft) * √ * *

RED=σµµ √ * * *!

Max *** **** **** ****

B-D(C) √ √ √ √

FtHd=H, RED=σµµ, or Max>>Parse(σ,Ft)
Parse(σ,Ft)>>RED=σµµ and Max (Pattern IX: luhmwuhmw)

˚̊̊̊FFFFttttHHHHdddd====HHHH>>>>>>>>PPPPaaaarrrrsssseeee((((σ,,,,FFFFtttt))))
Align R, RED=σµµ, or Max>>Iamb

Iamb>>RED=σµµ and Max (Pattern VI)

˚̊̊̊AAAAlllliiiiggggnnnn RRRR>>>>>>>>IIIIaaaammmmbbbb

65

PPPPaaaatttttttteeeerrrrnnnn XXXX:::: mmmmppppeeeekkkk-------->>>>mmmmppppiiiimmmmppppeeeekkkk

$¯m(p¯¯mpek) ¯m(pimpek) ¯m(pempek) ¯mpe(k¯mpek)

Cont √ √ √ √

Anch √ √ √ √

Fill √ √ √ √

RED=Prefix √ √ √ √

Align (Pwd,

R, Ft, R)

√ √ √ √

Iamb * * * *

B-D(V) √ *! √ √

FtHd=H √ √ √ √

Parse(σ,Ft) * * * **!

RED=σµµ √ * *! *

Max ** ** * √

B-D(C) √ √ √ √

RRRREEEEDDDD====σµµ>>>>>>>>MMMMaaaaxxxx

PPPPaaaarrrrsssseeee((((σ,,,,FFFFtttt)))) oooorrrr RRRREEEEDDDD====σµµ>>>>>>>>MMMMaaaaxxxx

PPPPaaaatttttttteeeerrrrnnnn XXXXIIII:::: rrrreeeerrrreeee-------->>>>rrrreeeerrrrrrrreeeerrrreeee

$rer(rere) ree(rere) re(rere) (rere-er)

Cont √ √ √ *!

Anch √ √ √ √

Fill √ √ √ √

RED=Prefix √ √ √ *

Align R √ √ √ √

Iamb * * * √

B-D(V) √ *! √ √

*V=RB √ √ √ *

FtHd=H * * * √

Parse(σ,Ft) * * * √

RED=σµµ √ √ *! *

Max * ** ** **

B-D(C) √ √ √ √

CCCCoooonnnntttt,,,, RRRREEEEDDDD====PPPPrrrreeeeffffiiiixxxx,,,, ****VVVV====RRRRBBBB,,,, RRRREEEEDDDD====σµµ,,,, oooorrrr MMMMaaaaxxxx>>>>>>>>FFFFttttHHHHdddd====HHHH aaaannnndddd

PPPPaaaarrrrsssseeee((((σ,,,,FFFFtttt))))

66

amiamas, ewiewetik dialect:

{Cont, Anch, {{Fill, RED=Pref, Align (Ft,R, Pwd, R)}>>Iamb>>

{*V=RB, B-D(V)}>>FtHd=H>>Parse(σ,Ft)>>RED=σµµ}}>>{Max, B-D(C)}

amahmas, ewehwetik dialect17:

{Cont, Anch, {{Fill, RED=Pref, Align (Ft,R, Pwd, R)}>>Iamb>>

B-D(V)>>FtHd=H>>Parse(σ,Ft)>>RED=σµµ}}>>{Max, B-D(C)}

17 Here I assume that this dialect is distinguished by the absence of *V=RB.

Nothing crucial hinges on this.

