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Membranes are thin barriers that permit selective mass 
transport, and form the basis of a number of separation 
processes typically driven by gradients in pressure, elec-

tric potential, concentration or temperature1,2. With the advantages 
of modularity, scalability, compactness and high energy efficiency, 
membrane separations have become pervasive3 in applications 
related to energy4, water5, food6, biotechnology7 and chemical pro-
cessing3. Major applications include water desalination8–10, natural 
gas purification11, production of nitrogen from air1, haemodialysis12, 
bioprocessing7, solvent- and petrochemical-based separations13,14, 
and production of ultrapure water15. Beyond separations, mem-
branes find use in fuel cells4, drug delivery12, bio/chemical sensors16 
and energy harvesting from mixing processes5.

The performance of membrane-based systems (for example, 
energy efficiency, productivity or product recovery) depends on 
the constituent membrane characteristics, which place constraints 
on and define trade-offs in membrane process design. In addi-
tion to being economical and manufacturable, an ideal membrane 
should easily allow flow of the desired species (high permeance), 
reject undesired species (high selectivity) and exhibit robustness 
in operation (high chemical, mechanical and thermal stability, low 
fouling) (see Box 1).

Although remarkable progress has been achieved in membrane 
technology, persistent challenges remain, specifically (1) overcom-
ing the trade-off between selectivity and permeability of the mem-
brane material, (2) mitigation of fouling and (3) robust operation 
under harsh conditions. Specific examples include the need for 
chlorine-resistant membranes for water desalination5,10,17 and high-
permeance membranes for production of oxygen from air1. To 
address these challenges, the past few decades have seen the explora-
tion of various membrane structures and materials, including novel 
polymers1, inorganic membranes (zeolites18, silica, carbon19, ceram-
ics), nanomaterials (metal-organic frameworks20, carbon nano-
tubes21 (CNTs), carbon nanomembranes22) and polymer–inorganic 
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‘mixed-matrix’ membranes1,19, among others. These developments 
seek to achieve improved membrane performance by (1) the use of 
favourable membrane structures, for example, a thin selective layer, 
or (2) the use of materials with favourable properties, for example, 
antifouling properties and frictionless transport in CNTs23, or high 
permeability and selectivity of materials with intrinsic porosity24.

The rise of graphene and other atomically thin materials in the 
past decade25 has opened new possibilities in membrane technol-
ogy. The atomic thickness of these materials makes them the thin-
nest possible barrier26, which, combined with their remarkable 
mechanical strength27, chemical robustness28 and ability to sustain 
selective, nanometre-scale pores29, evokes the possibility — at least 
in principle — of realizing an ideal nanoporous atomically thin 
membrane that could be tailored to a range of applications while 
offering high permeance, high selectivity and high chemical resist-
ance. This review focuses on nanoporous atomically thin mem-
branes (NATMs)30–37 where transport is governed by flow across 
rigid pores in a continuous, atomically thin layer; for a discussion of 
membranes where other mechanisms influence transport, such as 
graphene oxide or carbon nanomembranes, the reader is directed to 
several excellent reviews22,32,38–41.

Transport mechanisms
Membranes achieve selective transport through a variety of mech-
anisms operative over different length scales (Fig. 1a). At the small-
est scale, dense polymeric membranes (without defined pores), 
such as reverse osmosis membranes for water desalination and 
many gas separation membranes, operate by a solution-diffusion 
mechanism1,42. Here, selectivity results from differences in species 
solubilities and diffusivities in the membrane material; solubil-
ity depends on the molecular structure, membrane porosity and 
chemical affinity, whereas diffusivity is governed by thermally acti-
vated rearrangements of the polymer chains that strongly favour 
size-dependent diffusion of smaller molecules. When selectivity 
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Figure 1 | Membrane characteristics and length scales. a, Length-scale dependence of membrane transport mechanisms. Relative scales of gas and 
water molecules, hydrated ions and gas mean free path are depicted on bottom left. Q, flux; D, diffusivity; S, sorption coefficient; m, molecular mass; 
μ, viscosity. b, Membrane structure–thickness map with some illustrative examples. From left to right, the structures change from disordered to 
ordered. Ideal NATMs are the thinnest with a high degree of order. Panel b images adapted from: ref. 193, Elsevier (polyamide reverse osmosis (RO) 
membranes); ref. 194, RSC (carbon molecular sieves (CMS)); ref. 21, AAAS (CNT); ref. 195, IOP (anodized aluminum oxide (AAO)); ref. 40, AAAS 
(graphene oxide (GO)); ref. 196, RSC (metal organic framework (MOF) and zeolite); ref. 197, American Chemical Society (carbon nanomembrane 
(CNM)); ref. 198, Macmillan Publishers Ltd (NATM).

Definitions of transport properties

Mass, volume or molar �ow rate across membranePermeance
Membrane area × Pressure di�erence

where ‘pressure difference’ may also refer to a difference in chemi-
cal potential, concentration, electric potential and so on.

Permeance of species ASelectivity
Permeance of species B

Solute concentration in permeate solution
Rejection 1–

Solute concentration in feed solution

Mass, volume or molar �ow rate across porePore permeation
coe�cient Pressure di�erence

Pore permeation coe�cient
Pore e�ective area

Ideal gas �ux (incident on a surface)

Some basic transport equations
Ideal gas flux. 

� 2πMRuT
J

ideal gas = ∆P

ΔP is the gas pressure, M is the molecular weight of the gas, Ru is 
the universal gas constant and T is the absolute temperature.

Permeation coefficient for viscous flow in pore. 
Π = πR4/μ(3πR + 8Lp), where R is the pore radius, μ is the dynamic 
viscosity and Lp (0.535 nm for graphene) is the pore length (from 
ref. 102). Sampson’s model: Π = R3/3μ; obtained for Lp = 0.

Ion conductance of pore. 

+G = σ
Lp

πR2 
1 –1

2R

σ is the bulk ionic conductivity. This relation is valid for neutral pores.

Length scales
Graphene. Carbon atom van der Waals diameter: Dvdw = 3.4 Å. 
Carbon bond length in graphene: a = 1.42 Å. Area of a hexagonal 
ring in graphene is 5.24 Å2.

Pore geometry. Dc is pore diameter defined by centres of edge 
atoms. Dp ≡ Dc − Dvdw/√2 is the pore diameter used for gas trans-
port. Dp,vdw = Dc − Dvdw is the pore diameter adjusted for van der 
Waals size of pore edge atoms, used for water/ion transport.

Gases. Kinetic diameter (Å): He (2.6), H2O (2.65), H2 (2.89), CO2 
(3.3), Ar (3.4), O2 (3.46), N2 (3.64), CH4 (3.8), SF6 (5.5).

Water molecule. Mean van der Waals diameter: 2.8 Å.

Ions. Diameter of hydrated ion (Å): Li+ (7.64), Na+ (7.16), K+ 
(6.62), Mg2+ (8.56), Ca2+ (8.24), F– (7.04), Cl– (6.64), Br– (6.60).

See Supplementary Section I for additional data, units and source 
references.

Box 1 | Definitions, transport equations and length scales for NATMs.
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is governed by diffusion alone (as in many polymeric gas separa-
tion membranes)43, a more permeable material typically provides 
less selectivity and results in a trade-off between permeability 
and selectivity known as the Robeson limit in the context of gas 
separations43,44. Overcoming this trade-off requires incorporation 
of additional mechanisms such as chemical affinity or molecular 
sieving, where smaller molecules pass through while larger ones 
are sterically impeded (for example, in high free-volume polymers 
or carbon molecular sieves)5,24,45.

Due to the small free volume available, gas transport in mem-
branes with pore diameters just beyond the molecular size is gov-
erned by phenomena such as diffusion, surface adsorption and 
condensation of gas molecules in the membrane pores24,43. In pores 
that are much larger than molecular size but smaller than the gas 
mean free path, gas transport is governed by Knudsen diffusion43,46, 
where molecules with lower molecular mass travel faster and have 
higher permeance. In liquid environments, transport in pores that 
are larger than molecules or ions is influenced by differences in 
species diffusivity, steric effects, chemical affinity and electrostatic 
interactions, including surface charge and dielectric effects47.

Although transport in membranes is complex, a thin selective 
layer with precisely controlled pores and chemical functionality — 
which is potentially realizable with NATMs — is ideal for achieving 
high permeance and high selectivity (Fig. 1b). Realization of NATMs 
requires an understanding of gas- and liquid-phase transport across 
pores in atomically thin materials, which we now discuss.

Gas transport across atomically thin nanopores. In 2008, 
Bunch et al.26 demonstrated that graphene is impermeable to helium 
and other gases, which opened the possibility of creating selectively 
permeable pores in graphene to realize selective membranes26,48. 
In their experiment, exfoliated pristine graphene ‘nanoballoons’ 
suspended over pressurized microcavities retained gases to within 
detection limits (Fig. 2a). This impermeability was attributed to the 
fact that pristine graphene does not have gas-permeable defects, the 
space between the carbon atoms in graphene is too small to allow 
for transport of gases and the contribution of quantum tunnelling 
is negligible26.

A large number of theoretical studies48–51 have explored the trans-
port of different gases (for example, CH4, CO2, H2, N2, CO, H2S, 
O2, noble gases, alkanes and isotopes) through graphene and other 
NATMs with pore edges terminated with atoms including C, H, N, 
F and O (Fig. 2b) (see Supplementary Section II for a detailed list of 
references). The majority of these studies have focused on graphene 
and similar materials with inherent nanoporosity, such as porous gra-
phene with various modifications50,52–56, graphdiyne57,58, graphyne59 
and two-dimensional (2D) polymers based on polypheneylene60–62, 
porphyrin63 and cyclohexa-m-phenylene51; exploration of other 
materials including hexagonal boron nitride (hBN)64 has also begun.

These studies use one of two approaches to compute transport 
properties. (1) The energy barrier for a gas molecule to cross a pore 
is calculated using density functional theory (DFT)51 or other quan-
tum mechanical methods50,62; permeance is then estimated using 
a transition state approach given the gas molecule kinetic energy 
distribution50, whereas selectivity is often estimated as the ratio of 
Arrhenius factors51. (2) The rate of molecules crossing the pore is 
calculated using classical (or first principles48) molecular dynamics 
simulations, which directly yields the permeance49,56,65. These stud-
ies have shed light on transport mechanisms66,67, and revealed that 
permeance and selectivity can depend on differences in molecule 
size, mass, surface adsorption68, interaction with functional groups 
on the pore rim, conformational entropy54 and tunnelling rates62,69,70.

To a good approximation, gas transport across atomically thin 
pores can be understood by comparing the diameters of the gas mol-
ecule (Dm) and the pore (Dp), though one needs to exercise caution as 
diameter definitions vary (Fig. 2d). When the pore is slightly larger 

than the gas molecule, gas transport is similar to effusion, that is, 
molecular flow across a thin aperture smaller than the gas mean free 
path, where the pore presents an effective area Aeff ≈ π/4(Dp − Dm)2 
(see Box 1) that is smaller than the pore area Apore = (π/4)Dp

2. Here, 
transport is dominated by steric considerations. When the pore size 
is approximately equal to or slightly smaller than the size of the gas 
molecule, the pore presents an energetic barrier to transport that 
depends on the molecule–pore repulsive interactions and any com-
pliance due to bond stretching or flexing. We refer to this as the 
activated regime. If we assume a rigid pore with fixed atoms and 
approximate the molecule–pore interaction by the Lennard-Jones 
potential, the barrier height is given by 

E 4ε –≈ 
a

πDc σ
Dc 2

12

a
4πεDc σ

12
σ

6

≈
Dc 2 Dc 2

 
where ε and σ are the Lennard-Jones parameters, Dc/2 is the distance 
from the pore centre to the centre of the atoms constituting the 
pore, a is the distance between adjacent atoms on the pore rim and 
πDc/a gives the average number of atoms on the pore rim (Fig. 2d). 
Assuming that all gas molecules with kinetic energies exceeding this 
value cross the pore, we obtain an Arrhenius-like expression for the 
effective pore size

 
2
1

Apore

Ae� ≈ erfc
kBT
E

where kBT is the Boltzmann factor (see Box 1 and Supplementary 
Section IV).

The effective pore areas predicted from simulations for different 
gas molecules across pores with different structures and functional 
groups, compiled from 33 literature reports, agree with this model 
and indeed collapse into two regimes (Fig.  2e)48–59,61,63–65,68,69,71–85. 
The steric regime has a high Aeff and a high permeation coefficient, 
with 0.0025 ~< Aeff/Apore < 1 and π/4(Dp − Dm)2 ~> 0.24 Å2. Aeff and the 
permeation coefficient decrease rapidly in the activated regime as 
the pore size is reduced below the molecule size. For the majority 
(~75%) of simulated pores, effective pore areas and the correspond-
ing permeation coefficients (see Box 1) of the most permeable mole-
cule range from 10–4–10 Å2 and 10–23–10–19 mol s−1 Pa−1, respectively, 
which, for a pore density of 1012 cm–2, corresponds to a membrane 
permeance of 10–7–10–3 mol m−2 s−1 Pa−1 (102–106 GPU). For exam-
ple, graphene pores with diameters of 3.6 and 4.8 Å were reported 
to present effective areas of 9.9 × 10–3 and 5.2 Å2 (effective diam-
eters of 0.11 and 2.57 Å), permeation coefficients of 1.8 × 10–23 and 
9.3 × 10–21 mol s−1 Pa−1 and permeance of 5.3 × 102 and 2.8 × 105 
GPU, respectively, to hydrogen75,81 (kinetic diameter 2.89  Å) (see 
Supplementary Section I for equations relating these parameters). 
However, some simulations involve pore densities of up to 8.5 × 1014 
cm−2, resulting in permeances up to 10–1 mol m−2 s−1 Pa−1 (108 GPU).

Given two different gas molecules, there are three possible regimes 
depending on pore size (Fig. 2d). (1) For large pores, transport is in the 
steric regime for both molecules and high selectivity is not possible. 
(2) Selectivity by molecular sieving accompanied by high permeance 
occurs when the pore size lies in between the sizes of the two gas mol-
ecules; transport of the smaller molecule is in the steric regime while 
that of the larger one is in the activated regime. (3) High selectivity at 
very low permeance occurs for small pores when transport of both 
molecules is in the activated regime. Interestingly, this simple steric 
exclusion and activated transport model predicts a trade-off between 
permeance and selectivity, analogous to the Robeson limit, and is con-
sistent with published reports from theoretical studies (Figs 2f and 5f); 
smaller pore sizes lead to higher selectivity and lower permeance due 
to the highly nonlinear dependence of the energy barrier on pore size.
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Molecular dynamics tends to better resolve high permeance, 
but has difficulty quantifying high selectivities (~>103) because of 
the limited number of observable molecule crossings imposed by 
a limited simulation time (<~100  ns). DFT-based approaches can 
resolve higher selectivities with reported values ranging up to 1078, 
but some of these correspond to impractically low permeance.

Although the above model captures the basic dependence of 
permeance and selectivity on molecule size, other phenomena can 
determine selectivity when differences in size are not sufficiently 
large to be the determining factor. For example, permeance of 
gas molecules may be enhanced by adsorption and surface diffu-
sion of the gas molecules towards the pore67 or by interactions with 

partial charges on the pore edge. In porous graphene, permeance 
is enhanced in the order (1) SO2 (ref. 60) > CO2 (refs 56,60,77) > 
CH4 (refs 56,60,68) > H2O (ref. 60) > N2 (refs 49,56,60,68,77,79) 
/ O2 (refs  56,60) > H2 (refs  49,68,79) > He (ref.  68) (permeance 
enhancements in the case of N2 and O2 are comparable); (2) H2S 
(ref.  60) > CH4; and (3) paraffins > olefins54. Similar effects have 
been reported for variations of porous graphene54,56 and 2D poly-
phenylene60, and are also implicated in enhanced CO2 transport 
in graphene oxide membranes32. Entropic barriers arising from 
constrained conformations of molecules passing through the pore 
can lead to selective transport of shorter hydrocarbon molecules 
compared with longer ones54. Quantum tunnelling can dominate 
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Figure 2 | Gas transport across NATM pores. a, Schematic of a graphene nanoballoon experiment26 in which graphene suspended over a cavity retained 
pressurized helium. b, Visualization from simulations55 of a hydrogen-functionalized graphene pore along with H2, N2, CO and CH4 molecules. H, C, N and 
O atoms are shown in white, grey, blue and red, respectively, and the 0.02 Å–3 electron density isosurface is shown in yellow. c, Permeation coefficient 
of pristine and ultraviolet/ozone etched bilayer graphene measured in ref. 29 showing molecular sieving through a graphene nanopore, with H2 and CO2 
preferentially effusing through the etched graphene. Inset: small gas molecules (in red) escape through the selective pore while big molecules (in green) 
cannot enter, leading to a measurable membrane deflection. d, Illustration of transport model and mechanism of steric/activated gas transport. Carbon 
centres located at Dc with pore diameter defined as Dp = Dc − Dvdw/√2, where Dvdw is the van der Waals diameter of a carbon atom. e,f, Compilation of 
simulation and experimental data of gas flow through NATM pores for different gas molecules and pore sizes qualitatively agrees with scaling model and 
illustrates the steric/activated transport regimes (see Supplementary Section III for data extraction and Supplementary Section IV for scaling model). 
Marker border colour indicates the source. e, Pore effective area decreases sharply when the pore size falls below the molecule size. Marker fill colour 
indicates the simulation method used. ‘Measured upper bound’ indicates an experimentally measured upper bound on permeance, where the flow rate 
through the graphene pore was below the measurement resolution. ‘Ab initio / MD’ indicates that the reported effective area is based on a permeance 
(for gas B), which was computed as the ratio of the permeance of a more permeable gas species (gas A), determined by classical molecular dynamics 
(MD), and the selectivity (A/B), determined by ab initio calculations. f, Selectivity versus effective pore area. For clarity, the curve predicted by the model is 
shown for H2/CH4 since curves for other gas pairs (shown in Fig. S3) are qualitatively similar. Marker fill colour identifies the gas pair. Shaded area bounds 
the model predictions for all gas pairs. Note the double-log scale on the y axis. Panels adapted from: a, ref. 26, American Chemical Society; b, ref. 55, 
American Chemical Society; c, ref. 29, Macmillan Publishers Ltd.
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transport62,69,70 at low temperatures where the kinetic energy of gas 
molecules is much smaller than the energy barrier, which has been 
proposed for separating helium isotopes69.

Experimental evidence of molecular sieving through NATMs 
was first reported in 2012 by Koenig et al.29 (Fig. 2c). Gas perme-
ance of initially impermeable bilayer graphene nanoballoon mem-
branes was monitored as nanopores were created in the graphene by 
ultraviolet/ozone etching, where a single pore is likely to dominate 
transport86. One graphene membrane permitted selective transport 
of H2 and CO2 over the larger Ar, N2 and CH4 molecules (~3.4 Å 
pore) (Fig.  2c) and another membrane permitted transport of 
the above molecules but not that of larger SF6 (~4.9 Å pore), with 
observed selectivities exceeding 10,000 (ref.  29). In subsequent 
studies with a single-layer graphene membrane, permeance was 
observed to decrease with increasing kinetic diameter for He, Ne, 
H2 and Ar, but was anomalously high for N2O and CO2 (ref.  86), 
consistent with flux enhancement due to polar interactions56,60,77. 
The permeation coefficients in these experiments were in the range 
of 10–23–10–21 mol s−1 Pa−1 (pore effective area 5 × 10–3–0.4 Å2) in rea-
sonable agreement with theoretical studies (Fig. 2e,f).

Although experimentally measured gas permeance generally 
agreed with simulations, transport through single-layer graphene 
pores was observed to fluctuate on a timescale of minutes, which 
was postulated to originate from thermally activated rearrangement 
of molecular bonds at the pore86,87. Similar observations in multiple 
pores86 and in liquid environments88 suggest that dynamic fluctua-
tions in transport across NATM pores may be common, although 
understanding their origin remains elusive. This also highlights the 
need for more controlled experiments and more realistic simula-
tions that complement those on idealized model pores. For exam-
ple, the majority of simulations fix the 2D lattice or the position and 
orientation of the gas molecules in calculating the energy barrier, 
although some studies take these into account52,56,64,68,73,78,79,82,83. DFT 
calculations that permit lattice deformation82 or molecular dynam-
ics simulations using the adaptive intermolecular reactive empiri-
cal bond order (AIREBO) potential that allows for deformation and 
thermal fluctuations56,68,73,78,79 indicate that assuming a fixed lattice 
can greatly over-predict selectivities79,82.

Gas transport in larger pores is less complicated, but permeance 
is still very high owing to the atomic thickness of the membrane. 
Celebi et al.46 showed that graphene bilayer membranes with an array 
of 7.6-nm-diameter pores machined by a focused ion beam exhib-
ited H2/CO2 selectivity consistent with effusion, but had more than 
three orders of magnitude higher permeance (~10–2 mol m−2 s−1 Pa−1, 
based on graphene area) than existing gas separation membranes 
with similar selectivity. Gas flow followed free-molecular effusion 
theory for small pores (<~50 nm) and a modified Sampson’s model 
(Box 1) for large pores.

Water and ion transport across atomically thin nanopores. 
Motivated by applications in water desalination and purification, 
theoretical studies using classical molecular dynamics (or other 
methods89–91) have focused on transport of water and ions driven 
by pressure89,90,92–102, osmosis103–106 and electric fields107–111 across gra-
phene with different pore terminations (C (refs 95,100,102,110,111), 
H (refs  96,98,99,103,106,109,112), hydroxyl95,96,103,106, carbonyl107, 
carboxyl95,106,107, amine95, F (refs 99,103,105,109), N (refs 105,109), 
O (ref. 108)), variants of graphyne89–92,101,104,113,114, MoS2 (refs 93,97) 
and covalent organic frameworks94.

Transport of water molecules (~2.8  Å van der Waals diam-
eter) through NATM pores is largely determined by pore size. 
Graphyne-2 pores with ~2.9  Å diameter present a small barrier 
to water transport91; pores larger than ~3  Å (which corresponds 
to atom centre-to-centre diameters, Dc, of ~6  Å) easily permit 
transport of water95,103,105. When the pore size is below ~2  nm, 
transport of water is also influenced by hydrogen bonding and 

structuring of water molecules, which depends on the pore geom-
etry and functional groups95,96,98,100,102,103,105,112,115. The smallest pores 
in graphene95,100,102,103, graphyne89,90,113 and MoS2

93 that permit water 
transport can accommodate only a single water molecule in their 
cross-section and therefore exhibit single-file movement of water 
molecules. In pores with diameter ~<1.5 nm (ref. 112), water mole-
cules adopt certain preferential configurations as they pass through 
the pores95,101,112 (Fig. 3a,b); similar effects are also observed in other 
nanoscale conduits such as CNTs116. In NATM pores, a significant 
fraction of the pressure drop occurs in the entrance and exit regions 
outside the pore102. As, in many cases, entrance and exit resistance 
dominates transport in CNTs, flow rates through NATM pores are 
comparable to those in CNTs of similar diameter100,102,113 (Fig. 3e). 
These flow rates are, in fact, predicted reasonably accurately (within 
an order of magnitude) by continuum no-slip hydrodynamics 
(see Box 1) for NATM pores102. Flow enhancement is observed in 
molybdenum-terminated MoS2 pores that mimic the conical shape 
of biological aquaporin channels and reduce the flow resistance 
at the entrance and exit93. The effect of pore functional groups on 
water flow tends to be modest, with hydrophilic groups (for exam-
ple, –OH, Mo, –N) reported to enhance permeation of water by up 
to twofold93,94,96,99,105,106 by attracting water molecules to the pore, 
compared with hydrophobic groups (for example, –H), which can 
present an entropic barrier to transport96.

Transport of hydrated ions across atomically thin pores is influ-
enced by electrostatic interactions, coordination with functional 
groups or charges at pore edges, and steric exclusion of the ion hydra-
tion shell37,96,105,109–111 (Fig. 3c,d,f). The diameters of the first hydration 
shell for Na+, K+ and Cl– are ~6.6–7.2 Å, which require pore diam-
eters exceeding ~7 Å (Dc exceeding ~10 Å) for ions to pass through 
with an intact hydration shell95. Neutrally charged pores smaller than 
the ion hydration size therefore present a barrier to ion transport 
that depends on the energy required for dehydration and the elec-
tric polarizability of the NATM material47. For example, Zhao et al.111 
observed that 4-Å-diameter neutrally charged graphene pores com-
pletely excluded both K+ and Cl–, but 8 Å pores permitted passage of 
both ions. Ionic transport across larger, neutral pores is dominated 
by the ‘access resistance’ associated with the pore entrance and exit 
that is approximated well by continuum theory110 (Box 1 and Fig. 3f).

Pore functionalization can radically alter ionic transport, espe-
cially if the pore is smaller than the size of the hydrated ion. Charged 
or partially charged functional groups along the pore edge can lower 
the energy barrier for ions of opposite charge and increase the barrier 
for ions of like charge95, leading to cation/anion selectivity. For exam-
ple, Sint et al.109 showed that a ~5-Å-diameter graphene pore could 
be made cation selective by functionalizing the pore with electron-
egative F or N atoms. Similarly, Zhao et al.111 observed that negatively 
charged, 4-Å- and 8-Å-diameter graphene pores permitted selective 
transport of K+, but the ionic flux increased nonlinearly with volt-
age as higher voltages facilitated partial dehydration of the K+ ion 
(Fig.  3c). Counterintuitively, by partially shedding their hydration 
shells, larger ions with lower hydration energies traverse pores more 
easily than smaller ions with tightly bound hydration shells109. Ion 
transport can also drive fluid flow under an applied potential dif-
ference111, a phenomenon called electroosmosis that finds use in 
fluidic pumping. Functionalized atomically thin pores that structur-
ally resemble biological ion channels (Fig. 3d) show some similar 
behaviours, such as voltage gating and cation/cation selectivity107,108, 
although the pores are much thinner than their biological counter-
parts. This raises the intriguing question as to what extent atomically 
thin pores can be tailored to achieve high ion selectivity, voltage sen-
sitivity and other functionalities of biological channels.

The smaller size of water molecules compared with that of hydrated 
ions enables their separation when NATM pores are large enough 
to pass water, but small enough to block hydrated ions (Fig.  3g). 
Cohen-Tanugi and Grossman96 demonstrated rejection of Na+ and 
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Cl– ions for hydrogen- and hydroxyl-terminated graphene pores 
with diameters below 5.5 Å, even at realistic operating pressures for 
reverse osmosis (10–100 bar)98. Heiranian et al.93 showed that MoS2 
pores below 6 Å could reject NaCl while supporting high water flux. 
Pressure-driven separation has also been shown for trihalomethanes 
in 6 Å graphene pores99, NaCl in graphyne-3 (~4 Å)89,90,92,101, NaCl 
in graphyne-4 (~6 Å) with a fixed lattice89 (<100% rejection90,92,101,104 
with a non-fixed lattice), CuSO4, benzene and CCl4 in graphyne-3 
(ref. 101), and Mg++, Ca++, K+, Na+ and Cl– in graphyne-3 and vari-
ants90. Rejection of NaCl has also been demonstrated in forward 
osmosis in graphene103,105,106 and graphyne-3104, consistent with selec-
tivity governed by size effects. Compiled results indicate the theoreti-
cally predicted potential for high solute rejection and permeance of 
NATMs compared with existing membranes, although this perfor-
mance remains to be experimentally realized (Fig. 3g).

A few experimental studies have probed transport across atomi-
cally thin pores46,117–129, with particular focus on electrically driven 
ionic transport across pores in graphene117–119,124, hBN125 and MoS2 
(ref. 126), motivated by applications in DNA analysis. Ionic conduct-
ance of large pores (>2  nm) in graphene and MoS2 agrees reason-
ably well with continuum descriptions of ion transport110,117,124,126,127, 
although a surprisingly high K+/Cl– selectivity was recently observed 
in large (20 nm) graphene pores, which was attributed to the surface 
charge on graphene124. Experimental data on the behaviour of smaller 
pores (≤2nm) is limited (Fig.  3f). Hints of ion transport through 
subnanometre pore defects109,110 smaller than the ion hydration shell 
were first seen in a study by Garaj et al.117, who observed that salts 
of larger monovalent ions with lower hydration energies displayed 
higher conductance than salts of smaller ions. Jain et al.88 attempted 
to isolate pore defects by suspending graphene across a silicon nitride 
nanopore. They observed linear, rectified and nonlinear current–volt-
age characteristics consistent with ion dehydration and electrostatic 
effects in subnanometre pores. Their observation of cation/cation 
selectivity and voltage-activated fluctuations88 also hints at parallels 
between atomically thin nanopores and biological ion channels107,108. 
Nonlinear current–voltage characteristics, effects of charge quan-
tization and high ionic current density driven by salt concentration 

difference were recently observed in MoS2 nanopores128,129, which may 
find use in energy harvesting from salinity gradients.

Ionic selectivity in macroscale single-layer graphene membranes 
was reported by O’Hern et  al.121, who introduced subnanometre 
pores in graphene by ion bombardment followed by chemical etch-
ing. Although there was significant leakage through defects, the mem-
branes exhibited some K+/Cl– selectivity consistent with electrostatic 
exclusion of Cl– due to negatively charged pore functional groups111 
expected in oxidative etching; with further etching, the membrane 
permitted selective transport of KCl over a larger organic molecule 
(~1.0 nm size). Osmosis-driven water flux measured across similar gra-
phene membranes with ~0.5 nm pores123 was consistent with molecu-
lar dynamics predictions by Suk and Aluru102. Water/ion selectivity 
was demonstrated by Surwade et al.122 using oxygen plasma to intro-
duce ~1 nm pores at a density of ~1012 cm–2 in single-layer graphene 
placed on a micrometre-scale aperture. For a certain plasma treatment, 
all NaCl ions were rejected and water permeated at high rates, though 
only one side of the membrane was wetted and evaporation may have 
played a role. Water transport has also been measured across larger 
(50–1,000 nm) pores in bilayer graphene, with results consistent with 
continuum theory46. Although a picture of water and ion transport 
across atomically thin pores is beginning to emerge, experimental data 
are sparse, there are some discrepancies among the simulation results 
and ion selectivity remains to be understood (Fig. 3f).

Compared with water or ions, protons show distinct transport 
behaviours. Geim and co-workers discovered that monolayers of 
(nonporous) pristine graphene and hBN are permeable to pro-
tons130 and have high selectivity (~10) over deuterons131, opening 
new possibilities for deuterium/hydrogen separation. The obser-
vation that small, otherwise impermeable defects in graphene 
could also permit selective proton transport132,133 suggests the pos-
sibility of creating high-permeance proton-selective NATMs from 
materials such as graphyne-1.

Fabrication of NATMs
Practical realization of NATMs requires synthesis of a continuous 
layer of atomically thin material with controlled porosity as well as 
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the ability to handle the materials using suitable porous supports. 
NATMs can be fabricated ‘top-down’ by creating pores in an ini-
tially nonporous atomically thin material, or by ‘bottom-up’ synthe-
sis of an intrinsically porous material.

Top-down fabrication. Chemical vapour deposition (CVD) has 
emerged as a tunable and versatile method for producing continuous 
layers of 2D materials over large areas134 and lends itself easily to fab-
rication of NATMs. Within a year of the first demonstration of large-
area CVD growth of monolayer graphene on copper by Li et al.135 in 
2009, Samsung demonstrated roll-to-roll transfer of 30-inch sheets of 
CVD graphene136, and SONY later demonstrated roll-to-roll synthesis 
and transfer to produce 100-m-long graphene-coated films137. Several 
methods are now available to handle and transfer graphene and other 
2D materials to various substrates138, and membranes have been 
made without transfer by introducing pores in the catalytic substrate 

before139 or after140 CVD growth. Besides CVD methods, mechanical 
exfoliation of 2D layered materials produces thin, pristine flakes that 
are ideally suited for physics experiments or microscale membranes29, 
whereas liquid-phase exfoliated 2D materials134 are less suitable due 
to the need to assemble and fill in gaps between flakes. Experimental 
work on NATMs has therefore largely focused on exfoliated and CVD 
graphene, for which technical know-how is most advanced.

Subnanometre pores can be introduced in the initially nonpo-
rous material by ‘top-down’ approaches using ion irradiation121,141–147 
or chemical/plasma etching29,86,122,148–152 (Fig. 4a–c). Etchant chemis-
try dictates the pore functional groups and can stabilize the pores153, 
whereas pore density and size depend on the interplay between 
nucleation of defects and their growth into larger pores154. For exam-
ple, thermal oxidation of graphene or graphite in oxygen produces 
a low (<1010 cm–2) density of large (>10 nm) holes155, while ozone 
tends to easily nucleate defects to yield a high density of pores154,156 
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and was used for creating gas-selective pores in graphene nanobal-
loons29,86. Oxygen plasma can also induce148,149 and grow nanometre-
scale pores in suspended single-layer graphene122,151 at a high density 
(~1012 cm–2, Fig. 4b). Nucleation of defects followed by growth can 
produce more uniform pores with controllable size and density146. 
This was realized in graphene using oxygen and hydrogen plasma, 
respectively, to nucleate and grow pores149. Ion irradiation can also 
controllably nucleate defects, which can be followed by electron-
induced sputtering or chemical etching to create a high density 
(~1012–1013 cm–2) of subnanometre pores121,123,145 (Fig. 4a). Ion angle 
of incidence, energy and type determine the kind of defect, whereas 
the ion fluence determines their density141,142. An energy threshold of 
~30 eV is required to produce defects in graphene157, indicating that 
ion impact could also play a role in plasma treatment146. Whereas 
these methods produce a distribution of pore sizes121,145 and perhaps 
work well only in single-layer materials, focused ion beams can pre-
cisely machine a large number of individual pores down to ~8 nm 
in diameter46 (Fig.  4c). Electron beams focused below 1  nm can 
create precise subnanometre to few-nanometre pores117,158,159. Other 
methods to create pores include the use of block copolymers160 or 
substrates161 as templates, reduction of graphene oxide162, catalyst-
induced etching163,164, electrochemical machining by atomic force 
microscopy86, or the use of electrical pulses to create pores with 
subnanometre accuracy in graphene127 or MoS2 (ref. 165).

Bottom-up fabrication. In contrast to the creation of pores in an 
initially nonporous material, recent advances in the synthesis of 
intrinsically porous covalently cross-linked single or few-layer 2D 
polymers166,167, including graphyne and its variants168, have potential 
for creating a high density of atomically precise pores tailor-made 
for specific applications, directly in a covalently bonded single 
layer51,59,90,94,101,113. For example, surface-assisted synthesis of nano-
porous graphene by aryl–aryl coupling of polyphenylene-based 
precursors or cyclodehydrogenation using polycyclic aromatic 
hydrocarbons has been proposed51 (Fig. 4d). Graphdiyne has been 
synthesized at the millimetre scale by cross-linking of hexaethynylb-
enzene on copper under nitrogen atmosphere169, which may permit 
selective transport of hydrogen59, and possibly water91 or protons. 
Recently, a 2D polymer with ~0.8  nm pores was synthesized by 
ultraviolet cross-linking of triptycene-based amphiphilic monomers 
self-assembled at the water/air interface in a Langmuir–Blodgett 
trough170 (Fig. 4e). The high quality of the resulting polymer and the 
ability to transfer centimetre-scale areas to porous supports makes 
it a promising route to realize NATMs.

Another potential route to NATM fabrication is by modifying syn-
thesis processes that normally result in nonporous materials. Pores 
could potentially be created in a modified CVD process by control-
ling the ratio of the growth precursor and etchant (for example, CH4 
and H2 for graphene)171, introducing etchants during or post synthe-
sis, templating of the catalytic substrate161 or substitutional doping to 
generate precisely defined pores172. However, atomic precision and 
high porosity may be difficult to realize with these approaches.

Scalability, quality and stability. Among the top-down methods, 
pore creation in CVD-grown materials by chemical and plasma routes 
is amenable to fabrication of large-area NATMs (Fig. 4f). Machining 
using focused ion beams is less scalable and appropriate for smaller 
membranes, whereas electrochemical methods and machining using 
atomic force microscopy or tightly focused electron beams are suit-
able for creation of a few pores for microscale membranes. Bottom-up 
approaches remain relatively unexplored for membrane applications, 
and key challenges are to engineer practical processes for synthesis 
of continuous layers over sufficiently large areas167. As of now, roll-
to-roll processed 2D materials are not commercially available, and 
CVD-grown materials remain inherently polycrystalline with intrin-
sic vacancy defects, grain boundaries and wrinkles that contribute to 

leakage pathways120,173. Compared with applications in electronics, 
the quality requirements for atomically thin materials for membrane 
applications are more stringent in some respects, as small pinhole 
defects can severely compromise selectivity. To address these issues, 
synthesis processes need to be tailored to minimize pinhole defects, 
and methods to assess quality for membrane applications need to be 
developed. In addition, polymer-based methods to transfer atomi-
cally thin materials tend to leave surface contamination, the effects 
of which on transport across the membrane are poorly understood. 
Techniques for clean transfer and control of surface contamination 
are also essential to ensure quality and reproducibility.

Mechanical stability of NATMs is essential to withstand handling, 
abrasion and high pressures. Graphene has a remarkably high frac-
ture strength of 130 GPa (~44 N m−1) and tolerates strains of ~25% 
(ref. 27), which would facilitate its handling on a support. Although 
pores and defects can decrease the fracture strength by about an order 
of magnitude151,174, it is more than sufficient to withstand high pres-
sures when the atomically thin layer is properly supported. The ability 
to withstand pressure scales inversely with the support pore diam-
eter, and molecular dynamics simulations indicate that nanoporous 
graphene can withstand a pressure of 570 bar when suspended over 
1 μm pores175. Sufficiently high strengths are also expected of other 
atomically thin materials including MoS2 (ref. 176), graphyne89,101 and 
covalent organic frameworks94. Adhesion and abrasion resistance are 
other important considerations related to slippage, delamination and 
wear of NATMs. Graphene exhibits a high adhesion energy177 and 
good abrasion resistance178, but abrasion resistance in the context 
of membranes is not well understood and protective coatings will 
be required if the atomically thin layer is damaged easily. Similarly, 
although NATMs are expected to be chemically stable28,152, studies 
that specifically investigate this aspect are needed.

From pores to membranes. Provided that transport across a pore 
is not influenced by its neighbours, the net flux across NATMs is the 
sum of those across the membrane pores. Using this assumption, the 
predicted permeance ranges from 104 to 108 GPU and exceeds 1,000 l 
m−2 h−1 bar−1 for gas separations and water desalination, respectively, 
significantly surpassing the permeance of polymeric membranes 
(Fig. 5e,f). These estimates constitute upper bounds, since real mem-
branes will inevitably have a distribution of pore sizes and defects that 
are situated in parallel with each other (Fig. 5a). NATMs are therefore 
extremely sensitive to leakage through defects, and their size selectiv-
ity is determined by the largest pores123 — presenting a major engi-
neering challenge that may well turn out to be the Achilles heel for 
some applications. It is for this reason that only a few studies have 
demonstrated selective transport across non-microscopic NATMs, 
which requires strategies to minimize the impact of defects by inde-
pendent stacking of layers46,173, sealing of defects123, appropriate choice 
of the porous support173 or other mechanisms131 (Fig. 5b).

Celebi et al.46 stacked two layers of graphene on a silicon support 
to form a nearly impermeable layer, into which ordered arrays of 
pores with diameters of 8–1,000 nm were machined using a focused 
ion beam. The measured water flow rates (per unit graphene area) 
were five- to sevenfold greater than commercial ultrafiltration mem-
branes, whereas vapour transport rates were two to three orders of 
magnitude higher than those in commercial membranes (Fig.  5c). 
Boutilier et al.173 showed that gas transport through stacked graphene 
layers can be explained by random alignment of defects, resulting in 
exponential decrease in gas permeance with selectivity approaching 
the Knudsen limit. Kim et al.179 stacked five layers of graphene on a 
polymeric membrane to enhance its barrier properties. The O2/N2 
selectivity exceeded the Knudsen limit, and was attributed to defects 
and inter-layer transport. Although there are no reports of creating 
aligned subnanometre pores in multilayer materials, the stacking 
approach may be useful for materials like graphyne that have high 
intrinsic porosity.
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O’Hern et  al.123 created centimetre-scale single-layer graphene 
NATMs by multiscale sealing of defects. Nanoscale defects were sealed 
by atomic layer deposition, which tends to deposit preferentially 
on defects and wrinkles, whereas the impermeability of graphene 
was exploited to seal larger defects using interfacial polymerization, 
where monomers introduced on opposite sides of the graphene layer 
react to form polymer plugs only where graphene is missing (Fig. 5b). 
After introducing subnanometre pores by ion irradiation and etch-
ing, the resulting membrane exhibited water permeance based on 
graphene area comparable to polyamide reverse osmosis membranes, 
and rejected organic molecules (≥1 nm) and divalent MgSO4 (but not 
NaCl) under osmotically driven flow (Fig. 5d).

Beyond these considerations, an appropriate support layer is 
essential to achieve high selectivity in the presence of imperfections 
and defects173. An ideal support — or coating — will add a transport 
resistance in series to both selective pores and defects, thereby limit-
ing leakage without adversely impacting the permeance. This resistive 
layer must provide parallel transport pathways or be thinner than the 
spacing between non-selective defects in the atomically thin layer173. 
Such an approach was critical to early commercialization of gas 
separation membranes11. Beyond its role in minimizing leakage, the 
support must have high surface porosity to make use of most of the 
NATM area, have high mechanical strength, good chemical resistance, 
higher permeance than the atomically thin layer, and provide stable 
adhesion and facilitate transfer or coating of the atomically thin layer. 
Most experimental studies have used specialized supports (for exam-
ple, polycarbonate track-etched membranes123 or microfabricated 
silicon supports46) with low surface porosity, which results in high 
permeance with respect to graphene area but low permeance based 
on total membrane area, and are suboptimal for practical separations. 
Although graphene NATMs have been fabricated on more practical 
supports such as poly(1-methylsilyl-1-propyne)179, polypropylene180 
and polyvinylidenedifluoride180, meeting all of the above require-
ments is challenging, especially for pressure-driven separations.

Potential applications of NATMs
The path for new membrane technologies to advance beyond the 
laboratory is tortuous1. Membranes that are difficult to scale up 
have found use in research and analytical applications181, whereas 
polyamide reverse osmosis membranes have grown to become the 
dominant desalination technology today. Although NATMs are still 
in the early stages of development, they present characteristics that 
are potentially advantageous for addressing persistent challenges in 
membrane separations.

A key advantage of NATMs is their high permeance that could 
enable higher energy efficiency and compact, high-productivity 
membrane separation systems. For seawater and brackish water, 
respectively, increasing the permeance of desalination membranes 
threefold could reduce the membrane area by 44% and 63% or reduce 
the energy consumption by 15% and 46% (ref. 182); the smaller gains 
for seawater are due to its higher osmotic pressure and build-up of 
the rejected salt at the membrane. More substantial gains in energy 
consumption and productivity are expected for applications involving 
low solute concentrations (for example, reverse osmosis treatment for 
drinking water, ultrapure water, and nanofiltration for water, phar-
maceutical, food and beverage, and biotechnology industries13,183), 
provided that fouling is not enhanced at higher fluxes184. The com-
bination of high selectivity and permeance is also desirable for a 
number of gas separations19, such as O2 or N2 from air, CO2/CH4 for 
natural gas sweetening and H2O/air for dehumidification185.

A second advantage of NATMs is their potential for increased 
robustness due to high chemical resistance and mechanical strength, 
which could prove useful for operation under harsh conditions. For 
example, NATMs may be able to better withstand chlorine and permit 
desalination of high-salinity water by high-pressure reverse osmo-
sis, or allow for more aggressive cleaning procedures184 to maintain 

membrane performance and extend their useful life. NATMs may 
help to address the challenges of aging, compaction and influence of 
solvents in organic solvent nanofiltration13, and potentially open new 
possibilities in the separation of liquefied gases and fuels.

Third, the molecular-sieving mechanism of transport is expected 
to lead to rejection of all species that significantly exceed the pore 
size99,101. If NATMs could provide universal size-based rejection 
regardless of the solute or the fluid in which separation is performed, 
it would benefit applications involving a diversity of solutes such as 
in removal of persistent organic pollutants8,10 for water reclamation, 
removal of boron from seawater17 or in chemical processing3,13.

However, actual application is contingent on commensurate 
advances in technology and practical membranes meeting these 
expectations41. The predicted performance and most of the proposed 
applications have yet to be realized even at the lab scale. Significant 
advances including ensuring a tight pore size distribution, design 
of appropriate supports and minimizing leakage are prerequisite 
for proof-of-concept studies. Manufacture at appropriate scale and 
cost, packaging into modules that minimize concentration polariza-
tion186, characterization of fouling and chemical resistance, and dem-
onstration of long-term performance under realistic conditions are 
essential41 for large-scale applications such as water desalination and 
natural gas separations. Small-scale applications such as laboratory 
and analytical separations or nanofiltration — which have less strin-
gent demands on selectivity but would benefit from the high perme-
ance and chemical stability of NATMs — are likely to emerge first.

Beyond separations, NATMs could find use in a variety of other 
applications such as in fuel cells130,132,133, microfluidics111, sensing16, 
surface micropatterning187, energy harvesting129 and a variety of bio-
medical applications, such as drug release, biosensing and immu-
noisolation12. Nanopores in NATMs may find use in detection and 
analysis of single molecules, ions and binding events, or interrogating 
discrete steps in chemical reactions165. In these applications, NATMs 
have the potential to offer higher selectivity, sensitivity, faster time-to-
result or ease of fabrication. The more exotic capabilities of NATMs, 
such as isotope separation by quantum effects131 and perhaps undis-
covered phenomena that do not have parallels in other membranes, 
could potentially open new applications. Finally, NATMs can provide 
fundamental insights into nanofluidic transport mechanisms that are 
relevant to atomically thin materials for barrier applications188, for 
electron microscopy189 and in graphene oxide membranes32.

Future perspectives
Regardless of the extent and timeframe in which NATMs will have 
an impact, they represent a unique class of membrane with tremen-
dous potential for advancing membrane technology and are likely to 
persist far into the future.

Although theoretical studies have shed light on transport mech-
anisms in idealized pores, an understanding of the structure and 
behaviour of pores in real materials has only just started to emerge. 
Controlled experiments at the single pore level, complemented by 
theoretical studies on realistic pores, are required to probe the effects 
of different pore structures, functional groups, dynamic behaviours 
and the role of surface contaminants. Simulations are needed to 
advance pore creation techniques and explore different applications 
of NATMs, which can guide experimental developments. For exam-
ple, are there pore structures that enable selective transport of water 
over boron, urea and other species that are difficult to reject using 
state-of-the-art membranes? Can NATMs separate water from etha-
nol? How effective are NATMs for separations in organic solvents?

Realization of practical membranes requires advances on four 
fronts. First, improved methods are needed to create a high density 
of uniform pores that will enable separations such as water desali-
nation. Here, key challenges are achieving sufficiently precise pores 
using top-down techniques and scale-up of bottom-up synthesis 
methods. Second, better understanding of the origin of defects that 
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may arise during synthesis, handling or creation of selective pores, 
methods to limit leakage through defects, and quality control during 
synthesis are indispensable for realization of functional membranes. 
Theoretical studies are needed that shed light on how the distribu-
tion of pore size and defects as well as the membrane support struc-
ture determine the actual permeance and selectivity. Third, design or 
selection of an appropriate porous support layer and development of 
methods to promote adhesion and to coat the atomically thin layer 
on the support are essential for full utilization of the properties of 
NATMs. Fourth, packaging of membranes, design of modules tai-
lored to NATMs, experimental and theoretical studies to understand 
fouling, chemical resistance, and potential degradation mechanisms, 
and cost-effective scale-up of membrane manufacturing are critical 
for advancing NATMs towards real-world applications.

Finally, it is likely that there will be opportunities to use NATMs 
in novel formats or in novel devices. For example, NATMs could act 
as porous scaffolds to realize novel membranes with improved per-
formance by coating190 or functionalizing191 them with ultrathin lay-
ers of materials192, perhaps by grafting polymers or materials that are 
difficult to cast into thin membranes. The fact that it is possible to 
make NATMs from conducting as well as insulating atomically thin 
materials raises the possibility of electrically actuated membranes that 
can actively modulate transport or pump ions9. Other intriguing pos-
sibilities arise due to the atomically thin nature that enables reactions 
across pores in NATMs — which could find use in selectively sealing 
leaky pores, functionalizing the membranes or performing chemical 
reactions across NATMs where pores control the stereochemistry.

Although significant technological challenges remain for practical 
applications, NATMs have provided us with the fascinating oppor-
tunity to explore fundamental questions in fluid flow at the smallest 
possible length scale. It is quite likely that these fundamental studies 
will continue to provide new — and perhaps surprising — insights 
into mass transport at the nanoscale. On the practical side, NATMs 
have tremendous potential, but also face considerable challenges that 
need to be recognized and addressed if the field is to move ahead. 
Only time will reveal whether NATMs live up to their promise.
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