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Using the observation that slip in simple fluids at low and moderate shear rates is a ther-
mally activated process driven by the shear stress in the fluid close to the solid boundary, we
develop a molecular-kinetic model for simple fluid slip at solid boundaries. The proposed
model, which is in the form of a universal scaling relation that connects slip and shear rate,
reduces to the well-known Navier slip condition under low shear conditions, providing a
direct connection between molecular parameters and the slip length. Molecular-dynamics
simulations are in very good agreement with the predicted dependence of slip on system
parameters, including the temperature and fluid-solid interaction strength. Connections
between our model and previous work, as well as simulation and experimental results,
are explored and discussed.
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I. INTRODUCTION

Fluids under nanoscale confinement can exhibit a number of remarkable transport properties,
including anomalous flow rates [1–3], diffusion [4], and heat transfer [5]. Nanofluidic engineering
exploits these phenomena for the development of novel materials for clean water [6] and energy
[7] among other applications. Modeling the dynamics of nanoconfined fluids requires a detailed
understanding of the effect of the fluid-solid interface on transport in these conditions [8–11].

Slip at the fluid-solid interface is, perhaps, the most ubiquitous of these phenomena and has
received considerable attention (see, for example, Refs. [11–19]). In the case of dilute gas systems,
the functional form of the slip relation as well as slip coefficients can be calculated via asymptotic
expansions of the Boltzmann equation [20–22]. In dense liquids such analytical treatments are not
possible; however, strong empirical evidence exists that the slip relation is of the same form as the
dilute case, namely,

us = β
∂u

∂η

∣∣∣∣
b

, (1)

which is referred to as the Navier slip condition, after Navier [23] who first proposed it. In this
expression, us is the slip velocity (difference between the fluid velocity at the boundary and the
boundary velocity), u is the flow velocity in the direction parallel to the boundary, and η is the wall
normal in the direction pointing into the fluid; the subscript “b” denotes the boundary location.

Most research in the dense-fluid arena has thus focused on investigating the properties of the
slip length β. Of particular note is the work of Thompson and Troian [11], which showed that
molecular-dynamics (MD) data for the slip length could be described well by an expression of the
form β = β0(1 − γ̇ /γ̇c)−1/2 (where β0 is the slip length at low shear rates, γ̇ denotes the shear
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rate, and γ̇c is a constant that depends on the fluid as well as the fluid-solid interaction details),
suggesting that the slip length obeys some form of critical dynamics. Other groups have made use
of Green-Kubo analyses to develop models that relate the slip length to the solid-liquid interaction
potential corrugations, at both the atomistic scale [14,24] and the roughness scale [16]. Several
authors [25–27] have proposed that slip exhibits many of the hallmarks of a thermally activated
process, at least for simple fluids in contact with atomically smooth boundaries.

Despite this considerable progress, complete and predictive models of fluid slip based on ab initio
(molecular) considerations have yet to be fully developed. The goal of the present work is to present
a physically motivated model for slip at the interface between a simple fluid and a molecularly
smooth solid that is able to unify existing work and explain our, as well as previous, simulation
results.

II. FORMULATION

The model proposed here is based on the observation that fluid slip on a molecularly smooth wall
at low and moderate shear rates can be modeled as a thermally activated process [26,27] and can
thus be quantitatively described using an extension of the Eyring theory of reaction rates [28,29].
For a discussion of this theory and its connection to transition state theory (TST), see Ref. [30].
Provided the conditions for an activated process are met, rate theory can be used to relate the drift
velocity of molecules under the influence of a driving force to the rate of hopping over the potential
barrier generated by nearby molecules. Eyring used such an approach to develop a theory for the
viscosities of dense fluids [29], while Blake and coworkers pioneered the use of this concept to
describe slip and utilized it to model contact-line motion as a molecular-kinetic process [25]. The
model by Blake and Haynes (in particular, Ref. [25]) has been widely accepted in the contact-line
literature and has been found to be in good agreement with experimental data (see Refs. [31,32] for
discussions) as well as MD simulations of contact-line motion [33,34].

Following the exposition by Wyart and deGennes [35], the drift velocity, ud, can be written as
the difference between the forward and backward hopping rates ud = l j (κ+ − κ−) with

κ± = τ−1
0 exp

(
−V ∓ 1

2 fdl2
j

kBT

)
,

leading to

ud = 2l j

τ0
exp

(
− V

kBT

)
sinh

(
fdl2

j

2kBT

)
, (2)

where l j is the jump length, τ0 is the jump time scale, V is the potential barrier associated with the
jump, kB is Boltzmann’s constant, and fd is the force per unit length acting on the fluid molecules
causing this drift.

To make further progress, we make two observations. First, in the case of slip, the force on the
molecules at the fluid-solid boundary responsible for the drift is the shear stress in the fluid at this
location, μ(∂u/∂η)|b, where μ denotes the viscosity. Assuming that within a few atomic diameters
from the boundary an “inner” description exists in which molecular effects dominate, and noting
that the slip boundary condition is associated with the outer (Navier-Stokes) region description, we
interpret the above quantity as taken at the interface of the outer and inner regions, that is, in a region
where the Navier-Stokes description is still valid. In other words, μ corresponds to the bulk value
of the viscosity, while (∂u/∂η)|b corresponds to the velocity gradient a few atomic diameters away
from the boundary where layering effects do not affect the flow field significantly.

Our second observation is that, in its most general form, the potential V represents the overall
potential landscape, and thus for a fluid molecule at the fluid-solid interface it includes both the fluid-
solid (Vs) as well as fluid-fluid (Vf ) interactions. Assuming additivity of the potential contributions,
which is certainly true for our simulations, exp(−V/kBT ) can be factored into a term containing
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the fluid-solid interaction and a term containing the fluid-fluid interaction, which can be absorbed
into the timescale by defining τ̂0 = τ0 exp(Vf /kBT ). As shown below, this allows us to explicitly
highlight the effect of fluid-solid interaction.

Writing fdl j = μ�−1
FL (∂u/∂η)|b, where �FL denotes the areal density of fluid molecules at the

fluid-solid interface (number of molecules in the first fluid layer at the fluid-wall interface per unit
interface area), we obtain the following expression for the slip velocity:

us = 2l j

τ̂0
exp

(
− αε

kBT

)
sinh

(
μl j

2�FLkBT
γ̇

)
, (3)

where, as a reminder, τ̂0 now includes the contribution of fluid environment on the potential barrier.
In this expression, we have factored the overall fluid-solid interaction energy Vs into αε, where ε

is the energy scale for fluid-solid interactions and α represents the potential energy of each fluid
atom in the first fluid layer due to its interaction with all of the solid atoms, expressed in units
of ε. In other words, α is the scaled potential interaction energy of a single fluid atom in the first
fluid layer summed (or, in the mean-field sense, integrated) over all solid atoms. The properties and
characteristic values of the areal density, �FL, and the related volumetric density of the first fluid
layer at the fluid-solid interface, ρFL = �FL/hFL (where hFL denotes the width of the first layer),
have been extensively studied in a recent publication by the authors [36].

It immediately follows from (3) that in the small-shear-rate limit, γ̇ � 2�FLkBT/(l jμ), Eq. (3)
linearizes to the Navier slip condition (1), with

β = μl2
j

�FLkBT τ̂0
exp

(
− αε

kBT

)
. (4)

It is worth observing that, contrary to the continuum approach where β is a parameter whose
value needs to be supplied as part of the problem specification, the molecular-kinetic approach
provides a direct connection between the slip length and the governing molecular parameters. As a
consequence, with very detailed micromechanical information, Eq. (4) could in principle be used to
directly predict the slip length from first principles.

III. VALIDATION

To assess these ideas, we performed nonequilibrium MD simulations of plane-Couette flow,
described in detail in the Appendix. Our results and subsequent discussion will be expressed in
terms of standard LJ nondimensional quantities [37], namely, σ for length, ε f for energy, and
τ ≡ (mσ 2/ε f )1/2 for time. In order to verify each of the dependences in Eq. (3), we measure the
slip velocity as we systematically vary the shear rate, the temperature, and the fluid-solid interaction
strength.

We begin by studying the dependence on shear rate. Figure 1 shows a comparison between MD
simulation results and the prediction of Eq. (3) scaled in the form

us = u0 sinh(γ̇ /γ̇0). (5)

To test this scaling, we generated data sets in the above-described geometry in which the shear
rate was varied, while all other parameters were held constant. To augment these data sets, we also
collected all rigid-wall MD simulation data from Refs. [11] and [38] and scaled those according to
(5). In plotting the scaled data, the constants u0 ≡ 2l j

τ̂0
exp (− αε

kBT ) and γ̇0 ≡ 2�FLkBT
μl j

were determined
for each data set by means of a nonlinear least-squares fit to (5). For in-house MD simulations
(shown in blue), the vertical size of the symbols reflects the characteristic scale of uncertainty in
the corresponding slip velocity measurements. In particular, the symbol height is equal to the width
of the 95% confidence interval on the slip velocity, as determined via a linear fit to the velocity
profile in the bulk region (as described in the Appendix). The figure shows that Eq. (5) is able to
accurately describe all data sets, including those reported by Thompson and Troian, which were
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FIG. 1. Scaled slip velocity as a function of scaled shear as measured in MD simulations. The scaling
predicted by Eq. (3) is shown as the dashed green line (slip model). MD data transcribed from [11] (TT ’97)
and [38] (MHPL ’08) and scaled according to Eq. (3) are shown in green and pink; in-house MD results are
shown in blue.

shown to be fitted well by the expression β = β0(1 − γ̇ /γ̇c)−1/2 [11]. In other words, although both
(5) and the model by Thompson and Troian fit the data of Fig. 1 with comparable accuracy in view
of the uncertainty in the data, compared to the latter, expression (5) has the benefit of being more
physically motivated, due to both its clear connection to a physical model of slip and the fact that it
predicts finite slip at all finite shear rates. In fact, (5) is also able to describe well the slip velocities
measured in a wide range [39–41] of experiments (see Fig. 2) involving aqueous solutions, alkanes,

FIG. 2. Scaled slip velocity as a function of scaled shear for experiments performed via atomic force
microscopy [39] (CNW ’01), surface-force apparatus [40] (ZG ’01), and near-field laser velocimetry [41] (LL
’03). The scaling predicted by Eq. (3) is shown as the dashed green line (slip model).
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TABLE I. Parameters for characteristic length and time scales in (3), for each of the densities in Fig. 1.

ρave l j [Å] τ̂0 exp ( αε

kBT ) [ns]

0.6 1.6 ± 0.29 0.034 ± 0.009
1.0 2.4 ± 0.35 0.92 ± 0.51

and polymeric fluids. In both figures, we are able to observe a regime of shear rates consistent with
the Navier slip relation (for γ̇ /γ̇0 � 1, us ∝ γ̇ ), beyond which the slip velocity rises dramatically
with shear rate.

Using values of the viscosity μ from Ref. [42] and values of the areal density of interfacial
fluid �FL from Ref. [36], we are able to infer the values for the molecular-kinetic parameters in (3),
namely, l j and τ̂0 exp ( αε

kBT ) for our in-house MD data. These values, along with their associated 95%
confidence interval, are presented in Table I. We observe that both parameters are of molecular scale
as expected. In fact, l j lies between the graphene interatomic spacing (a = 1.42 Å) and the fluid-
fluid characteristic spacing (σ = 3.15 Å), demonstrating consistency with the proposed molecular
mechanism. Here we note that the slight increase of l j with ρave suggests that the effect of fluid-
fluid interaction becomes more important as the density is increased, as expected. Along the same
lines, we also note the sensitivity of the product τ̂0 exp ( αε

kBT ) to ρave; this can be understood by
noting that Vf is expected to increase with ρave, again demonstrating consistency with the proposed
molecular mechanism. Further analysis of the complete term τ̂0 exp ( αε

kBT ), including development
of approaches for separating the contributions of its constituents, will be undertaken in the future.

We now investigate the other major factors affecting slip, namely, the temperature and the
fluid-solid interaction strength. Having verified the nonlinear behavior with shear rate in the above
section, the following comparisons will be performed for low shear rates for which an explicit
expression for the slip length exists [see (4)].

Figure 3 shows the temperature dependence of the slip length at a fixed fluid-solid interaction
strength ε = 1 and boundary speed uw = 0.25, for two fluid densities. We find that the slip length

FIG. 3. Slip length as a function of temperature for high- and low-density fluids (uw = 0.25), where the
change in nondimensional temperature is effected by changes in the dimensional temperature (ε is held constant
at 1). For both densities, the results from MD simulation show strong agreement with the dependence in (6)
(slip model).
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FIG. 4. Slip length as a function of fluid-solid interaction strength for high- and low-density fluids (uw =
0.125). For both densities, the results from MD simulation show strong agreement with the exponential decay
given by (7) (slip model).

is fitted well (R2 � 0.89) by the form

β = c1 exp
(c2

T

)
, (6)

where c1 and c2 are fitting constants. This form represents the dominant temperature dependence in
(4) arising from term exp(−V/kBT ). Additional contributions to the temperature dependence can be
accounted for by noting that (a) for a Lennard-Jones fluid, μ ∼ T ζ with ζ ≈ 1 when ρ � 0.6 and
T � 2 [43] and (b) the leading-order temperature dependence of �FL was shown in Ref. [36] to be
of the form �FL ∼ a + b Wa, where Wa ∝ ε/(kBT ) is the Wall number introduced in Ref. [36] and
a and b are density-dependent constants introduced and discussed in Sec. II C of the same reference.
Modifying expression (6) to β = c1 exp(c2/T )T γ (a + b′/T )−1, where T γ represents any residual
temperature dependence (e.g., τ0 or due to the difference between ζ and 1) and using values of a
and b′ as calculated from independent MD simulations in Ref. [36], has a negligible effect on the fit
quality (R2 value increase of 1% or less).

Figure 4 shows the dependence of the slip length on ε at a fixed temperature T = 5 and boundary
speed uw = 0.125, for two fluid densities. We find that the form

β = c3 exp(−c4ε), (7)

where c3 and c4 are fitting constants, results in a very strong fit (R2 � 0.91). This form represents
the dominant dependence of β on ε in (4). Including the dependence of �FL on ε by modifying
expression (7) to β = c3 exp(−c4ε)(a + b′′ε)−1 and using values of a and b′′ as calculated in
Ref. [36] has a negligible effect on the fit quality (R2 value increases from 0.971 to 0.973). We
also note that for the set of simulations depicted in Fig. 4 the slip length is essentially independent
of the liquid density (in fact, both data sets are jointly well fitted by the same exponential decay).
This is consistent with the results of Fig. 3, which shows that the slip length is nearly independent
of density for T � 5. As a final note on the consistency of the two fits [(6) and (7)], we point out
that at the condition T = 5 and ε = 1, both predict slip length values of approximately 16, for both
fluid densities.
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IV. CONNECTION TO OTHER STUDIES OF SLIP

The present model is, in general, in good agreement with earlier theoretical and experimental
work on liquid slip. For example, Eq. (3) predicts that at fixed temperature, in the small-shear-rate
limit, slip is linear in the bulk viscosity. This is in good agreement with the Green-Kubo analysis by
Barrat and Bocquet [14,24], who found the same scaling; this observation also agrees qualitatively
with the predictions of the variable-density Frenkel-Kontorova model [15]. The strength of this
result is even clearer after careful comparison with experiments that probe the effect of varying both
the viscosity and the shear rate [39] across the transition into the nonlinear regime. The data of Craig
et al., included in Fig. 2, show both a transition to the nonlinear regime as the shear rate is increased
at fixed viscosity, but also that the controlling factor for this transition is the product of viscosity
and shear rate. Their data show quantitative agreement (within 14% error) with the predictions of
(3) (see Fig. 2).

Equation (3) is also in good qualitative agreement with earlier work focused on the relationship
between slip and wettability. Both MD simulations [11,44] and experiments [45,46] have found that
slip tends to increase as the fluid becomes less wetting (as the energy scale ε of fluid-solid interaction
decreases). More specifically, the MD simulations in Ref. [44] strongly suggest that dβ/dε < 0 and
d2β/dε2 > 0, i.e., slip decays as a convex function of ε, which is reflected by Eq. (3). We also
note that under some assumptions, Green-Kubo theory [14] predicts β ∝ ε−2 (for fixed first layer
density and first layer structure factor), which is in qualitative agreement with the above findings;
this behavior was also observed in MD simulations of patterned wettability [47] in the cases where
the slip is determined by the interaction between the first fluid layer and the wall. Here we also note
that in the limit ε → 0, where the barrier height associated with the fluid-solid interaction becomes
small, we expect (3) to no longer hold.

As explained above, the presence of �FL in Eq. (3) provides a direct connection between slip and
fluid layering at the fluid-solid interface; this connection was first studied by Barrat and Bocquet
[14] in atomically smooth settings using Green-Kubo theory. The latter study has shown that, under
certain assumptions, and under fixed temperature, fluid-solid interaction and first layer structure
factor as well as diffusion coefficient in the direction parallel to the fluid-solid interface in the first
fluid layer, β ∝ 1/ρFL. Careful MD simulations [18] have verified that the slip length and ρFL are
inversely related, but with a slightly different exponent, namely, β ∼ ρ−1.44

FL . These results are in
general agreement with the prediction of Eq. (4); the latter can be seen more clearly by noting that
�FL = ρFLhFL and that the dependence of hFL on density is weak [36]. It also needs to be noted
that the remaining independent variables appearing in our expression are not exactly the same as the
expression of Barrat and Bocquet. The agreement between Green-Kubo theory and MD simulations
was also studied in the presence of physical surface corrugations (wall roughness) in Ref. [16]; this
is an important consideration that merits further examination from the rate-process perspective in
the future.

V. CONCLUSIONS AND OUTLOOK

We have proposed and validated a general scaling relation describing slip of simple fluids at
smooth solid boundaries. The model builds upon the observation that slip is a thermally activated
process, proposed by others [25] and more firmly established by recent careful studies [26]. The
proposed scaling relation is found to be in excellent agreement with MD simulations as well
as experimental data; the latter even extends to moderately complex fluids. In other words, the
proposed model provides further evidence that slip at low and moderate shear rates can be modeled
as a rate process but also provides an explicit expression for predicting slip in terms of molecular
system parameters. Although the power-law relation proposed in Ref. [11] also exhibits good
agreement with MD simulations, Eq. (3) has the advantage of being associated with a clear physical
model of the slip process and does not suffer from a slip-length divergence at finite shear rates.
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The work by Martini et al. [38] suggests that in the high rate limit, slip is no longer a rate
process. In this work we have limited our MD simulations to low and moderate shear rates given
by γ̇ τ � 0.07, such that, in addition to low-to-moderate shear rates, we ensure μ 
= μ(γ̇ ). It is
worth emphasizing that, from a practical perspective, this low to moderate shear-rate regime covers
virtually all nanofluidic engineering applications (for channels of nanoscale dimensions and typical
fluids, this condition corresponds to flow velocities �O (102) m/s). On the other hand, we note that
at high shear rates Eq. (3) predicts a plateau for the slip length (shear thinning in the large-γ̇ limit
typically results in a behavior of the type μ ∝ γ̇ −1 for simple fluids [48]), in qualitative agreement
with the predictions of the Frenkel-Kontorova model and MD simulations [38]. A quantitative
investigation of the high-shear-rate limit will be the subject of future work.
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APPENDIX: MOLECULAR-DYNAMICS SIMULATIONS

We performed nonequilibrium MD simulations using the LAMMPS code [49]. Our system
consisted of a Lennard-Jones (LJ) fluid [37] of density ρave, atomic mass 16 g/mol, length scale
σ = 3.15 Å, and energy scale ε f = 0.15 kcal/mol, in a plane-Couette setup of channel width 50 Å,
with periodic boundary conditions in all directions. We verified that our conclusions are not affected
by channel width, by running a small subset of simulations in channels of width 25 Å and 100 Å. In
this Appendix, we describe our setup in detail, nondimensionalizing using the dimensions provided
above.

The fluid is confined between two rigid sheets of graphene at fixed z coordinate, which move
in opposite directions at fixed velocity uw. In each simulation, after an equilibration period of 3 ×
103 with a Nosé-Hoover thermostat [50] at a temperature of 5 (unless otherwise specified), fluid
velocities are averaged over a time period of 6 × 103 to obtain a velocity profile as a function of the
z coordinate; to reduce variance in low-signal simulations [51], the averaging period was extended
to 3 × 104 if us � 0.01. The use of a thermostat is necessary in these calculations in order to regulate
temperature in the presence of viscous heating. For a small subset of simulations, we verified that
an alternative choice of the thermostat (in particular a Berendsen thermostat [52]) does not affect
our conclusions. We also verified that the results obtained using no thermostat (simulations in the
microcanonical ensemble) agree with the results from both thermostats, provided that the shear rate
is low (and so viscous heating is negligible).

All simulations were performed in the regime γ̇ τ < 0.07, where it is well known that simple
fluids have shear-rate-independent viscosity [11,19]. We determine the slip velocity by fitting
a line to the fluid velocity profile away from the solid boundaries (which can induce strong
inhomogeneities in the fluid density [8,36]) and extrapolating to the locations of the walls. In our
simulations, we fit the velocity profile over the central region of the channel, at least three distance
units away from the walls.
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