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This paper reviews basic results and recent developments in the field of small-scale gaseous
hydrodynamics which has received significant attention in connection with small-scale science and
technology. We focus on the modeling challenges arising from the breakdown of the Navier-Stokes
description, observed when characteristic lengthscales become of the order of, or smaller than, the
molecular mean free path. We discuss both theoretical results and numerical methods development.
Examples of the former include the limit of applicability of the Navier-Stokes constitutive laws, the
concept of second-order slip and the appropriate form of such a model, and how to reconcile
experimental measurements of slipping flows with theory. We also review a number of recently
developed theoretical descriptions of canonical nanoscale flows of engineering interest. On the
simulation front, we review recent progress in characterizing the accuracy of the prevalent
Boltzmann simulation method known as direct simulation Monte Carlo. We also present recent
variance reduction ideas which address the prohibitive cost associated with the statistical sampling
of macroscopic properties in low-speed flows. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2393436�

I. INTRODUCTION

A. Overview

Small-scale, atmospheric pressure, internal gaseous
flows have received significant attention in recent years in
connection with microscale and nanoscale science and
technology.1,2 In addition to applications of practical interest,
small-scale gaseous hydrodynamics continues to attract sig-
nificant attention due to the number of scientific challenges it
poses.

In this paper we discuss some of the recent progress in
modeling small-scale internal gaseous flows of engineering
interest in which extensions or alternatives to the Navier-
Stokes description are required. In small-scale flows, the
Navier-Stokes description is expected to fail2,3 when the
characteristic hydrodynamic lengthscale approaches the fluid
“internal lengthscale;” in dilute gases this scale is associated
with the molecular mean free path, the average distance trav-
eled between intermolecular collisions. Until recently, and
with the exception of the classical shear, pressure-driven, and
thermal-creep-driven duct flows, very few flows of engineer-
ing interest have been theoretically characterized, primarily
because previous efforts had focused on external, high-speed
flows associated with flight in the upper atmosphere. Gaining
a fundamental understanding in this new �low-speed� regime
is important for facilitating the design of small-scale devices
but also for educational purposes. For this reason, particular
emphasis will be given here to basic theoretical results for

monoatomic gases, which can facilitate a fundamental under-
standing of the flow physics.

B. Background

In the small-scale, low-speed flows of interest here, the
failure of the Navier-Stokes description can be quantified by
the Knudsen number, Kn=� /H, where � is the molecular
mean free path and H is the characteristic hydrodynamic
lengthscale. The Navier-Stokes description �in the interest of
simplicity, limiting cases of this description �e.g., Stokes
flow� will not be denoted separately but will be understood
to apply under the appropriate conditions� corresponds to the
collision-dominated transport limit of small Knudsen number
�Kn�1�. More specifically, in the presence of hydrodynamic
gradients in a homogeneous gas over lengthscales character-
ized by Kn�1, the Chapman-Enskog4,5 �or Grad-Hilbert;6

see Ref. 7 for a critical comparison� expansion procedure can
be applied to the governing kinetic �Boltzmann� equation
�with Kn as a small parameter� to show that the gas response
can be described by linear-gradient constitutive relations
which lead to the Navier-Stokes description.4,5 Close to the
system boundaries, however, the inhomogeneity introduced
by the former results in kinetic effects that cannot be cap-
tured by the Navier-Stokes description.

Although kinetic effects are always present adjacent to
system boundaries �in the presence of nonequilibrium�, in the
Kn�1 limit the former remain localized to thin layers
�thickness of order �� known as Knudsen layers. Analysis of
the governing kinetic �Boltzmann� equation shows8 that the
inhomogeneity induced by the wall presence may be ac-
counted for by a boundary-layer-type theory in which the
Navier-Stokes description, albeit subject to slip boundary

a�This paper is based on the invited talk presented by the author at the 58th
Annual American Physical Society Division of Fluid Dynamics Meeting,
which was held 20–22 November 2005 in Chicago, IL.
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conditions, is formally the outer, collision-dominated, solu-
tion. The inner description, which amounts to a Knudsen
layer correction to the flowfield, will be discussed further in
Secs. II A and II C 1. In other words, for small Knudsen
numbers, kinetic effects at the walls manifest themselves, at
the Navier-Stokes description level, in the form of “appar-
ent” hydrodynamic property slip/jump at the boundaries
which can be captured by slip-flow boundary conditions �see
Sec. II A�. For Kn�0.1 a first-order asymptotic theory is
sufficiently accurate, especially for practical purposes. For
this reason, the regime Kn�0.1 is known as slip flow. It is
noteworthy that �for Kn�1� Knudsen layers are present ir-
respective of the characteristic system lengthscale, H; how-
ever, as Kn decreases, their effect becomes less pronounced,
as one would expect, to the extent that in the limit Kn≪1
their effect is, for all practical purposes, negligible and the
classical no-slip boundary condition becomes an excellent
approximation.

When the Knudsen number becomes appreciable �Kn
�0.1�, one expects kinetic effects to be important in a large
part of the domain and the Navier-Stokes description to fail.
When the Knudsen number is large �Kn→��, the rate of
intermolecular collisions is very small compared to the rate
of molecule-wall collisions. As a result, transport at high
Knudsen numbers is ballistic. Ballistic transport is typically
assumed to take place for Kn�10. The regime 0.1�Kn
�10 is known as the transition regime, and is typically the
most challenging to model. In this regime, nonlocal transport
is important while collisions between molecules are not
negligible.

C. Kinetic description

Gaseous hydrodynamics beyond Navier-Stokes can be
captured using a kinetic description. Under the assumption of
a dilute gas �air at atmospheric pressure satisfies the dilute-
gas criteria9�, a kinetic description characterizes the state of
the gas in terms of the single-particle distribution function
f = f�x ,c , t�, which is proportional to the probability of find-
ing a particle at a location x with velocity c at time t �Ref. 4�.
Within this description, connection to hydrodynamics is
made through the moments of f . For example, the gas den-
sity is given by

��x,t� = �
allc

mfdc , �1�

while the gas flow velocity is given by

u�x,t� =
1

��x,t��allc
mcfdc . �2�

Here m is the molecular mass; n=� /m is the gas number
density. The gas pressure and temperature will be denoted
P= P�x , t� and T=T�x , t�, respectively, and are given by
higher moments of f �Ref. 4�.

The evolution of the distribution function is governed by
the Boltzmann equation7,9

�f

�t
+ c ·

�f

�x
+ a ·

�f

�c
= �df

dt
�

coll
,

�3�

�df

dt
�

coll
=� � �f�f1� − f f1�g�d2�d3c1.

Here, f1� f�x ,c1 , t�, f�� f�x ,c� , t�, f�1� f�x ,c�1 , t�, where a
prime indicates postcollision velocities. �Postcollision ve-
locities depend on the precollision velocities and the scatter-
ing solid angle �.� Additionally, g= 	c−c1	 is the relative
precollision speed, � is the collision cross section, and a is
the acceleration due to body forces acting on a molecule.

The Boltzmann equation describes a balance between
phase-space advection �left-hand side �LHS�� and collisions
�right-hand side �RHS��. The RHS of the Boltzmann equa-
tion is typically referred to as the collision integral and con-
tributes significantly to the intransigence of this equation.
This led Bhatnagar et al.10,4 to propose a model equation,
known now as the BGK model, which significantly simpli-
fies the mathematics by replacing the collision integral with
the simple relaxation model, namely −�f − f0� /	 ; here, f0 is a
Maxwellian distribution at the local velocity and temperature
and 	 is an inverse collision frequency that does not depend
on the molecular velocity. The value of the collision fre-
quency is usually chosen to match the viscosity of the mod-
eled gas. The BGK model has proven itself as a useful quali-
tative model, because it retains most qualitative features of
the Boltzmann equation. One of its major disadvantages is
that it predicts a Prandtl number �Pr� of 1 �Refs. 4 and 7�,
rather than a value close to 2/3 appropriate for a mono-
atomic gas; this means that the BGK model cannot match the
viscosity and the thermal conductivity of a real gas at the
same time, and thus flow calculations involving heat transfer
need to be interpreted with great care.

The most prevalent solution method for Eq. �3� is a sto-
chastic particle simulation method known as direct simula-
tion Monte Carlo �DSMC�. Comprehensive descriptions of
this method can be found in Ref. 11 or the monograph by the
inventor of this method, Bird;9 a brief description is given in
Sec. III A. The majority of theoretical developments pre-
sented here use DSMC for verification purposes. In some
cases, however, DSMC provides the only solution available
to the problem of interest.

In the interest of simplicity, unless otherwise stated, the
theoretical results and DSMC simulations will be using the
hard-sphere �HS� model ��=d2 /4, where d is the hard-sphere
diameter�.9 The hard-sphere model provides reasonably ac-
curate models of rarefied gas flows,7 and for the purposes of
this discussion it provides a good compromise between sim-
plicity and realistic modeling. The mean free path of a hard-
sphere gas is given by

� =
1


2
nd2
, �4�

while the first-order approximations to the viscosity and ther-
mal conductivity of the hard-sphere gas within the Chapman-
Enskog theory are given by
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� =
5

16d2
mkbT



�5�

and

� =
75kb

64d2
kbT

m

, �6�

respectively.5 Here, T is the gas temperature, kb is Boltz-
mann’s constant. The above rational approximations to the
transport coefficients are typically preferred over the more
accurate “infinite-order” expressions from which they only
differ by approximately 2% �Ref. 5�. One of the disadvan-
tages of the hard-sphere model is that it predicts transport
coefficients which are proportional to T0.5, whereas real
gases exhibit a slightly higher exponent of approximately
T0.7. To remedy this, collision models with more complex
collision cross sections have been proposed;9 one example is
the variable hard-sphere �VHS� model in which the collision
cross section is a function of the relative velocity of the
colliding molecules. The discussion in this paper can easily
be extended to these modified collision models.

D. Further remarks

Gaseous flows beyond the Navier-Stokes regime �Kn
�0.1� are frequently referred to as rarefied, most likely due
to historical reasons, viz the rarefied gas dynamics
literature,9,12 where deviation from Navier-Stokes was exten-
sively studied in the context of high altitude aerodynamics.
Flows for which the Navier-Stokes description breaks down
are also frequently referred to as “noncontinuum;” this ter-
minology is very common within the rarefied gas dynamics9

and now the microelectromechanical systems �MEMS� lit-
erature, and may, unfortunately, lead to confusion in a me-
chanics setting where the expression “noncontinuum” will
most likely be associated with a breakdown of the continuum
assumption. One may surmise that use of the term “noncon-
tinuum” derives from the view that because the continuum
approach culminates in the Navier-Stokes equations, when
the latter fails, the continuum approach fails, without this
necessarily implying failure of the continuum assumption.
We would thus like to emphasize that for a large class of the
problems of practical interest, including the ones discussed
here, hydrodynamic fields and the associated conservation
laws remain well defined. The view taken in this paper is the
one typically adopted within the rarefied gas dynamics com-
munity and described in Ref. 4: conservation laws for mass,
momentum, and energy follow naturally from moments of
the Boltzmann equation. The implied averaging procedure
can be performed using an ensemble of realizations �with no
restrictions on space or time averaging intervals�, thus lead-
ing to a meaningful description in terms of said conservation
laws �i.e., both in the presence and absence of Navier-Stokes
closures�, for quite a wide range of conditions, including
very small lengthscales and time scales.

II. FLOW PHYSICS

In this section we will review theoretical results focusing
on the physics of problems of engineering interest; both re-

cent and basic fundamental results will be discussed. One of
the basic geometries that we will visit frequently is a two-
dimensional channel such as the one shown in Fig. 1. The
two-dimensional channel geometry has been widely studied
in the context of small-scale flows due to its direct relevance
to typical small-scale applications, but also due to its sim-
plicity, which enables investigations aimed at the physics of
transport at small scales.

A. First-order slip-flow theory

When the Knudsen number is small, solution of the lin-
earized Boltzmann equation can be obtained using
asymptotic approaches.6,8 By taking advantage of the fact
that for Kn�0.1 kinetic effects are limited to the vicinity of
the walls, one can obtain solutions of the linearized Boltz-
mann equation by superposing a Navier-Stokes solution with
a kinetic boundary �Knudsen� layer correction, where the
latter is significant only up to distances of the order of one
mean free path from the wall �see Fig. 2�.

The matching procedure between inner and outer solu-
tions leads to “effective” boundary conditions for the Navier-
Stokes description, known as slip-flow relations. Using these
boundary conditions, the Navier-Stokes description is able to
capture the �bulk� flowfield away from the walls. These rela-
tions, to first order in Kn, can be written as follows:

FIG. 1. Two-dimensional channel geometry and nomenclature.

FIG. 2. Schematic of the Knudsen layer in the vicinity of the wall �=0�.

111301-3 The limits of Navier-Stokes theory Phys. Fluids 18, 111301 �2006�

Downloaded 25 Jun 2008 to 18.80.2.95. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



	us
NS	wall − Us = ��v�dus

NS

d
�

wall

+ ��v
 2kb


mT
�dTNS

ds
�

wall
. �7�

Here, s is the coordinate tangent to the wall,  is the coor-
dinate normal to the wall and pointing into the gas, and U
denotes wall velocity. The superscript NS is used to differ-
entiate between the linearized Boltzmann equation solution
�no superscript�, which is the “true” flowfield, and the
Navier-Stokes �slip-flow� approximation to this solution; as
stated above, the two are related through the superposition of
a Knudsen layer correction, e.g., us=us

NS+us
Kn, T=TNS

+TKn, ..., with these corrections decaying fast away from the
walls, i.e., us

Kn, TKn→0 as  /�v→�.
Also, �v is a viscosity-based mean free path defined by

�v =
�

P


RT

2
. �8�

This definition is very useful for molecular models without a
well-defined range of interaction where a mean free path is
difficult to define.7 Note that this definition is such that
�v=�= �
2
nd2�−1 for the hard-sphere gas. The hard-sphere
results presented below have been developed using �v
��
2
nd2�−1; the slight numerical difference ��v
��
2
nd2�−1� observed when one uses �5� into �8� is due to
the use of a rational form for �8� in the interests of simplicity.

The temperature jump at the wall is given by the follow-
ing analogous expression:

	T̂	wall − Tw = �
2�

� + 1

�v

Pr
� dT̂

d
�

wall
, �9�

where � is the ratio of specific heats.
The coefficients �, �, and � are determined by matching

the outer and inner descriptions within the asymptotic solu-
tion. Maxwell was able to estimate these coefficients without
solving the Boltzmann equation using insightful physical ar-
guments; he found

� =
2 − �

�
, � = 0.75, �10�

where � is the accommodation coefficient which param-
etrizes the gas-wall-surface interaction and denotes the frac-
tion of diffusely reflected molecules �1−� being the fraction
of molecules reflected specularly� at the surface. In a similar
fashion, � was estimated by von Smoluchowski13 to equal

� =
2 − �

�
. �11�

The amount of slip at the surface is clearly a strong
function of the accommodation coefficient. Our discussion
will be limited to the interpretation given above—known as
Maxwell’s gas-surface interaction model14—primarily be-
cause the majority of theoretical results have been obtained
using this model. A number of more complex models exist,
typically relying on more than one accommodation coeffi-
cient; for example, the use of separate momentum and en-

ergy accommodation coefficients is common.2,13 Scattering
kernels based on more than one accommodation coefficient
have been developed,7,15 but theoretical results on the behav-
ior of slip coefficients are very few and scattered.7 A discus-
sion of accommodation coefficients can be found in Ref. 14.

Solutions of the Boltzmann equation for the slip coeffi-
cients were originally obtained for the significantly simpler
BGK model. Early work by Cercignani,7,16 and recent results
for the hard-sphere gas, show that the first-order coefficients
are fairly insensitive to the gas model �e.g., hard sphere,
BGK�. Thus, although hard-sphere results are more realistic,
in our discussion below we will also include BGK results,
especially since in some cases they are the only ones
available.

Solutions of the Boltzmann equation have mostly fo-
cused on the fully accommodating case ��=1�, primarily be-
cause for most “engineering surfaces” of practical interest
��1 �Refs. 9 and 17�. In this limit, it is known that
��BGK,�=1�=1.1466, ��BGK,�=1�=1.149,��BGK,�
=1��1.168. �When reporting BGK results for � and �, a
number of authors introduce a correction for the fact that for
the BGK model Pr=1 rather than the more realistic �for a
monoatomic gas� value of 2 /3. This correction amounts to
multiplying these coefficients by 3/2 �as a result of enhanc-
ing the collision frequency by the same amount in order to
match the value of thermal conductivity�.7 This correction
has been applied throughout this paper.� On the other hand,
��HS,�=1�=1.11, ��HS,�=1�=1.015, ��HS,�=1�=1.13
�Ref. 18�, verifying that first-order slip coefficients are fairly
insensitive to the gas model and that Maxwell’s estimate is
approximately 10%–15% in error in the diffuse reflection
��=1� limit. This discrepancy has implications in the inter-
pretation of experimental results and will be discussed be-
low. In the limit �→0, ��BGK�→2/� �Ref. 19�, in agree-
ment with Maxwell’s approximate solution.

Very few results exist for intermediate values of accom-
modation coefficients. Loyalka20 used a variational approach
to show that for the BGK model a linear interpolation be-
tween the �=1 and �→0 limits provides reasonable accu-
racy, i.e.,

��BGK,�� �
2 − �

�
�1 + ���BGK,� = 1� − 1���

=
2 − �

�
�1 + 0.1466�� . �12�

In the case of the temperature jump coefficient, Loyalka20

finds that similar interpolation between the fully accommo-
dating and specular reflection limits may be applied for in-
termediate values of �. For the thermal creep slip coefficient,
Loyalka and Cipolla find14

��BGK,�� = 0.75 + 0.399� . �13�

Discussion:

�1� Slip-flow theory naturally reduces to no-slip boundary
conditions in the limit Kn≪1. This can be easily seen
by nondimensionalizing  in Eqs. �7� and �9� using the
characteristic lengthscale H.
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�2� The above slip-flow relations are formally valid for
steady flows. Comparison of transient slip-flow solutions
to solutions of the Boltzmann equation suggest that the
above slip-flow relations remain accurate for time-
dependent flows, provided the latter are evolving at suf-
ficiently long time scales. One may expect that this ef-
fectively “quasistatic” behavior would be observed
when the hydrodynamic evolution time scale is long
compared to the molecular collision time that character-
izes the evolution of kinetic effects at the wall. This is
verified by theoretical treatments of the Boltzmann
equation, at least in the BGK approximation,21 where
slip-flow relations equivalent �at least formally� to the
above are obtained by assuming that the evolution time
scale is long compared to the molecular collision time
	c=� / c̄; here c̄=
8kbT / �
m� is the mean thermal
speed. As shown and discussed further in Sec. II C 1,
our results obtained using the second-order slip model of
that section confirm that.

�3� Corrections to the above slip relations due to wall cur-
vature are formally of second order in the Knudsen
number7 and are given in Ref. 6.

�4� First-order Knudsen layer corrections for the most com-
mon state variables and their fluxes are tabulated in Ref.
6 for the BGK and HS models; the lack of analytical
descriptions is the primary reason for their neglect in
engineering analysis. In Sec. II C 1 we will discuss the
Knudsen layer correction for the tangential flow veloc-
ity; we will illustrate that its contribution to the average
flow velocity is of order Kn2 �Ref. 22�, and show how it
can be incorporated into a second-order slip model.

�5� Conveniently, the first-order Knudsen layer correction
for the stress tensor is zero in isothermal flow; this
means that within slip-flow theory the stress field is
given by the Navier-Stokes solution �no modification to
the Navier-Stokes constitutive relation is required or al-
lowed; in fact, this is one of the basic premises and
undoubtedly one of the great advantages of slip-flow
theory�. In a similar fashion, the first-order Knudsen
layer correction to the heat flux in the direction normal
to the wall in the presence of a temperature gradient in
the same direction is zero.

�6� In addition to the experimental difficulties associated
with accurate measurement of accommodation coeffi-
cients, theoretical difficulties make this an even harder
task. One such difficulty is the uncertainty associated
with the gas-surface interaction model; although Max-
well’s accommodation model is frequently used in the-
oretical studies, experimental results have not reached a
consensus on whether it accurately describes gas-surface
interaction, or whether a more complex model is re-
quired. This uncertainty is compounded by the fact that
experimental results are typically compared to Max-
well’s estimates for the slip coefficients �Eqs. �10� and
�11��, which can lead to errors in accommodation coef-
ficients �of the order of 5%�. From a number of experi-
mental studies conducted to date �see, for example, Refs.
2, 9, 17, 23, and 25�, it appears that for “engineering
surfaces” the accommodation coefficient is close to 1.

Recent experiments using air on silicon find accommo-
dation coefficients in the range 0.85–0.95 �Ref. 2�; for
these measurements, the actual accommodation coeffi-
cients are probably even closer to 1 for two reasons:

�a� Experimental results are typically interpreted using
Eqs. �10� and �11�, which underestimate the value
of the slip coefficient and would thus lead to lower
estimates of �.

�b� A number of experimental studies extend to Kn
�0.1 while still using first-order slip-flow rela-
tions. In pressure-driven flows, second-order slip
effects increase the amount of slip present �see
Sec. II C 1�. Neglecting second-order slip effects
would again lead to lower estimates of �.

�7� Thermal creep phenomena extend beyond the slip-flow
regime; thermal creep flow for all Knudsen numbers for
the hard-sphere model has been characterized in Ref. 18.

Unless otherwise stated, in what follows we will assume
that �=1 and thus �=1.11, �=1.015, and �=1.13.

B. Isothermal pressure-driven flows
in two-dimensional channels

Isothermal pressure-driven flow in two-dimensional
ducts for Kn�0.1 was originally studied by Knudsen.26 He
studied the flow through capillaries and showed the existence
of a minimum in the flow rate when the latter is normalized
by the pressure difference driving the flow and plotted
against the average pressure in the channel �inverse Knudsen
number�;2 this minimum cannot be predicted by the Navier-
Stokes description. Following Knudsen’s discovery, a theo-
retical description of this phenomenon remained a significant
challenge for a number of years.

Following the development of semianalytical solutions
of simple models of the Boltzmann equation �e.g., BGK�,27

numerical solutions of the linearized Boltzmann equation for
the more realistic hard-sphere gas for various two-
dimensional geometries were finally developed.18 For two-
dimensional channels �as in Fig. 1� the gas response for ar-
bitrary Knudsen numbers is typically expressed in kinetic
terms through the following expression:

Q̇ = ubH = −
1

P

dP

dx
H2
RT

2
Q̄ , �14�

where Q̇ is the volumetric flow rate per unit depth, ub is the
bulk �average over the channel width� velocity, R=kb /m is

the gas constant, and Q̄= Q̄�Kn� is a proportionality coeffi-
cient whose dependence on Kn is shown in Fig. 3. Similarly

defined Q̄ parameters have now been tabulated for a variety
of two-dimensional duct geometries.2 Note that the linear-
ized treatment assumes a constant pressure gradient; in other
words these solutions do not include the effects of stream-
wise acceleration due to the gas compressibility.

As shown in Fig. 3, Q̄�Kn� for a two-dimensional chan-
nel in the transition regime varies slowly about its minimum
value occurring at Kn�1. Numerical solutions, such as lin-
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earized solutions of the Boltzmann equation for hard
spheres7,18,28 and molecular simulations,28 have been shown
to be in good agreement with experiments.7,28

C. Second-order velocity slip

Slip-flow solutions to a variety of problems of practical
interest suggest that slip-flow theory is remarkably robust, in
the sense that it continues to be reasonably accurate, at least
in a qualitative sense, well beyond its expected limits of
applicability �Kn�0.1�; examples in this paper include the
pressure-driven flow of Sec. II B and the convective heat-
transfer problem of Sec. II G. Robust slip-flow models will
always be preferable to alternatives such as molecular simu-
lations or solutions of the Boltzmann equation, since the dif-
ficulty associated with solving the Navier-Stokes equations is
negligible compared with the cost of these alternative meth-
ods. For this reason, a variety of researchers22,24,25,28–30 have
attempted to develop or evaluate slip models that can be used
beyond Kn�0.1. A review of a number of these approaches
can be found in Ref. 2. In this paper we will discuss ap-
proaches which fall within the rigorous framework of
asymptotic analysis of the Boltzmann equation.

Although the general structure of slip-flow relations up
to second order in Kn has been known for some time,8,31 and
the second-order coefficient for one-dimensional, isothermal
flow for the BGK model was calculated by Cercignani22 as
early as 1964, the calculation of other second-order slip co-
efficients has proven to be a significantly harder task.
Second-order slip coefficients for the BGK model have even-
tually been calculated;6,7,22 these, however, unlike the first-
order slip coefficients, are not necessarily approximately
equal to the corresponding coefficients of the more realistic
hard-sphere model. This has been one of the main reasons
for the lack of interest in second-order slip-flow theory, since

agreement with experiments and solutions of the Boltzmann
equation �e.g., DSMC simulations� could not be achieved
using the BGK theory. Another reason for the lack of interest
in the second-order slip-flow theory is the special care
needed in interpreting slip-flow solutions and comparing
those to numerical solutions of the Boltzmann equation or
experimental data due to the presence of Knudsen layers in
the flow. This is illustrated in Fig. 4, which shows the extent
of Knudsen layers in a one-dimensional flow at Kn=0.2 by
comparing the Boltzmann solution �u=uNS+uKN� to the
Navier-Stokes solution uNS �obtained using the second-order
slip model to be introduced in the next section�; this figure
clearly illustrates that, at this Knudsen number, Knudsen lay-
ers from both walls penetrate approximately 60% of the
physical domain. This means that the effective width of the
Knudsen layer is approximately 1.5�v �this will also be dis-
cussed in more detail below�, and thus for Kn�0.3 direct
comparison between the Navier-Stokes and the true flowfield
is impossible.

1. A second-order slip model for the hard-sphere gas

To address this deficiency, the author has developed32 a
second-order slip model for the hard-sphere gas. According
to this model, for one-dimensional �variations only in  di-
rection�, fully accommodating ��=1� flows, the second-
order slip is given by

	us
NS	wall − Us = ��v� �us

NS

�
�

wall
− ��v

2� �2us
NS

�2 �
wall

, �15�

where �=0.61 is the second-order slip coefficient ��=1.11�.
Validation of this model for a variety of flows shows excel-
lent agreement up to Kn�0.4 �provided the effect of the
Knudsen layers is properly accounted for�.

The first-order Knudsen layer correction in the tangential
flow velocity us

KN�� can be written as

FIG. 3. �Color online� Nondimensional flow rate as a function of the Knud-
sen number for fully developed pressure-driven flow. The solid line denotes

Q̄ as determined by solution of the linearized Boltzmann equation for a
hard-sphere gas �Ref. 18�, and the dash-dotted line denotes the second-order
slip model discussed in Sec. II C 1. The stars denote DSMC simulation
results, and the dashed line a first-order slip model.

FIG. 4. Snapshot of flow velocity in an oscillatory Couette flow at Kn
=0.2. The stars represent the DSMC solution �u� and the solid line the
Navier-Stokes approximation to this solution �uNS�. The vertical dotted lines
illustrate the approximate thickness of the Knudsen layers. Uo is the wall-
velocity amplitude.
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us
KN�/�v� = − �v�dus

NS

d
�

wall
I1�/�v� , �16�

where I1� /�v� is a positive function that decays to zero for
 /�v�1; it has been numerically calculated for both the
BGK �Ref. 7� and HS gas.33 The implication of this relation
is that the Knudsen layer correction is parametrized by the
Navier-Stokes solution. In other words, despite the fact that
the underlying distribution in the Knudsen layer differs from
the Chapman-Enskog solution, this correction becomes a
functional of, and is thus effectively determined by, the local
Navier-Stokes solution �after a short transient of the order of
the collision time; the length of time over which this relax-
ation takes place has implications in the validity of slip-flow
theory in transient flows, and is discussed in Sec. II A and
below�. Tabulated values show that us

KN� /�v� decays to ap-
proximately 3% of its maximum value �us

KN� /�v=0�� at 
=1.5�v; we will refer to this distance as the effective width
of the Knudsen layer.

Due to the lack of an analytical description for
us

KN� /�v�, the contribution of the Knudsen layer can be
most conveniently accounted for in an average sense, i.e.,
when calculating averages over the domain. In a one-
dimensional geometry such as that of Fig. 1, the average
�bulk� flow velocity is given by

ub =
1

H
�

−H/2

H/2

uxdy =
1

H
�

−H/2

H/2

�ux
NS + ux

KN�dy . �17�

Recalling that �v /H�1 we define �=0
�I1� /�v�d� /�v� to

obtain

ub =
1

H
�

−H/2

H/2

ux
NSdy −

��v
2

H
�dux

NS

dy
�

−H/2
+

��v
2

H
�dux

NS

dy
�

H/2

=
1

H
�

−H/2

H/2 �ux
NS + ��v

2�2ux
NS

�y2 �dy , �18�

where �=0.296 �Ref. 32�. In other words, the contribution of
the Knudsen layer to the average flow velocity is O�Kn2�.

The above value for � was obtained by using the fact
that the Knudsen layer function I1 for the hard-sphere gas is
very similar to the BGK Knudsen layer function whose inte-
gral is known exactly. �A slightly more precise value for �
could have been obtained if one integrated the hard-sphere
Knudsen layer function; unfortunately, this value can only be
obtained approximately by numerically integrating the tabu-
lated solution for this function.�

While the contribution of the Knudsen layer can always
be found by a Boltzmann equation analysis, the value of Eq.
�18� lies in the fact that it relates this contribution to the
Navier-Stokes solution and thus it requires no solution of the
Boltzmann equation. This correction makes comparison to
Boltzmann equation solutions possible when Knudsen layers
occupy a large fraction of the domain; additionally, it makes
comparison possible with experiments which report average
flow rates. In fact, it has already been used to explain recent
experimental data: a direct consequence of the above relation
is that in Poiseuille-type flows, where �2ux

NS/�y2 is a con-

stant, experimental measurement of the flow rate �mean flow
velocity� yields an “effective” second-order slip coefficient
�−� �see also Ref. 32�. In other words, while the average
value of a �Navier-Stokes� Poiseuille profile subject to
second-order slip of the form �15� is given by

ub
NS =

1

H
�

−H/2

H/2

ux
NSdy = −

H2

2�

dP

dx
�1

6
+ �Kn + 2�Kn2� ,

�19�

the true bulk flow speed �as inferred by an experiment mea-
suring the flow rate� is given by Eq. �18�, which leads to

ub =
1

H
�

−H/2

H/2 �ux
NS + ��v

2�2ux
NS

�y2 �dy

= −
H2

2�

dP

dx
�1

6
+ �Kn + 2�Kn2� �20�

or

Q̄ =
4

15



1 + 6�Kn + 12�Kn2

Kn

�




12

1 + 6�Kn + 12�Kn2

Kn
, �21�

with �=�−�=0.31. �The above two expressions for Q̄ differ
by less than 2%; the difference between them is due to the
use of slightly different approximations for the hard-sphere
gas viscosity.5,22� As shown in Fig. 3, the above equation
captures the flow rate in isothermal pressure-driven flow very
accurately up to Kn�0.4. This is also demonstrated in Sec.
II E, where the pressure-driven flow rate is used to determine
the wave propagation constant in two-dimensional channels
�under the long-wavelength approximation�.

Most importantly, the above model explains the findings
of recent experiments25 on helium and nitrogen flow in
small-scale channels; these experiments find the second-
order slip coefficient to be approximately 0.25±0.1. Of
course, since the slip coefficient was determined by measur-
ing the flow rate, these experiments were in fact determining
the effective second-order slip coefficient �, which is in good
agreement with the value 0.31 given above.

Discussion:

�1� The second-order Knudsen layer correction for the hard-
sphere model has not been calculated. Its contribution to
the mean flow velocity was not required in �18� since it
is of higher order.

�2� The second-order Knudsen layer correction to the stress
tensor in isothermal flow is zero.6 Thus, no modification
to the Navier-Stokes constitutive relation is required �al-
lowed� within isothermal slip-flow theory.

�3� In higher spatial dimensions, additional terms appear in
Eqs. �15� and �18�. In the case of Eq. �15�, these terms
also include contributions from the curvature of the
boundary. As a result, the “effective” second-order slip
coefficient for flow in tubes is different �see experimen-
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tal results of Ref. 30, but note that this fact was over-
looked in the paper� than the one for two-dimensional
channels ���.

�4� The assumption of variations only in the normal-to-the-
wall direction, inherent in the model described above, is
not very restrictive. Approaches based on assumptions
of slow variation in the axial direction �x in Fig. 1�, such
as the widely used locally fully developed assumption or
long-wavelength approximation, are expected to yield
excellent approximations when appropriately used for
two-dimensional problems. This is verified by compari-
son of solutions of such problems to DSMC simulations
�see Sec. II E for example� or experiments �e.g.,
Ref. 25�.

�5� The linearized conditions �Ma�1� under which the
second-order slip framework is derived,6,8,31 imply Re
�1 since Ma�ReKn and Kn�0.1. Here Ma is the
Mach number and Re is the Reynolds number, based on
the same characteristic lengthscale as Kn.

�6� It appears that the steady-flow assumption on which this
model is based does not significantly limit its applicabil-
ity. As discussed in Sec. II A, slip-flow theory appears to
extend to flows that evolve at time scales that are long
compared to the molecular collision time; in fact, our
results, some of which will be shown below, suggest that
the quasistatic behavior of slip at the wall seems to hold
for time scales �5	c, which correspond to viscous evo-
lution time scales for lengthscales characterized by Kn
�0.4; this restriction on evolution timescale is easily
satisfied by the vast majority of practical flows of
interest.

�7� Comparisons with solutions of the Boltzmann equation
for a variety of problems34–36 show that the above slip
model provides reasonably accurate approximations to
solutions of the Boltzmann equation up to Kn�0.4
�maximum error at Kn�0.4 is of the order of a few
percent for both flow speed and stress�. Moreover, it
remains qualitatively robust well beyond this Knudsen
number. This is rather remarkable for a number of rea-
sons: first, for Kn�0.3 the Knudsen layers, treated
within the theory as thin boundary layers at the wall
�see, for example, the development of Eq. �18��, merge,
leading to kinetic corrections that overlap but apparently
may still be superposed. Moreover, although a kinetic
correction is required throughout the physical domain
for Kn�0.3, it appears that the underlying Navier-
Stokes constitutive relation remains robust �the stress
field is accurately captured for arbitrary flows with no
adjustable parameters� up to Kn�0.4 �at Kn=0.4 the
domain width is 2.5��.

2. Example

To illustrate some of the discussion items above, we
present a solution of a one-dimensional model problem. Con-
sider the two-dimensional channel of Fig. 1 in which both
channel walls impulsively start to move at time t=0 in the x
direction with velocity Ux; this velocity is small compared to
the most probable molecular velocity �Ma�1�. Figure 5

shows a comparison between second-order-slip-corrected
Navier-Stokes solution and DSMC simulations for Kn
=0.21. The top plot shows the flowfield at three different
times; the existence of the Knudsen layer, manifested by the
difference between the DSMC solution and the Navier-
Stokes solution, can be seen clearly. The three snapshots also
clearly illustrate how the magnitude of the Knudsen layer
correction scales with �uNS/ 	�y	wall. The middle plot shows
the stress field at the same three times, and demonstrates that
no Knudsen layer correction exists close to the wall. The
bottom plot shows the bulk flow velocity �ub� as a function
of time: as this plot shows, this quantity can be calculated to
excellent accuracy using Eq. �18�. This last comparison �as
well as a comparison of the stress field� becomes particularly
useful as Kn increases to Kn�0.3 and beyond, where the
Knudsen layer essentially covers the whole physical domain.
This is illustrated in Fig. 6, where a comparison at Kn
=0.35 is shown. The figure verifies that although the Knud-
sen layers cover the physical domain, the second-order slip
remains reasonably accurate in predicting the stress field and
bulk flow velocity, especially considering that the compari-
son takes place for times as low as five collision times. Com-
parisons at higher Knudsen numbers34,35 show that, even
though the Knudsen layers have penetrated to the middle of
the domain, the slip model remains quantitatively accurate
up to Kn�0.4, and qualitatively accurate well beyond that.
In some cases �see next section� quantitative accuracy ex-
tends up to Kn�1.

D. Oscillatory shear flows

Oscillatory shear flows �one wall in Fig. 1 oscillates in
the x direction with velocity amplitude Uo and frequency ��
are very common in MEMS and are considered to be of
“tremendous importance in MEMS devices.”37 A comprehen-
sive simulation study of rarefaction effects on oscillatory
shear �Couette� flows was recently conducted by Park et al.38

Park et al. used an extended first-order slip-flow relation
with a number of adjustable coefficients to describe the
amount of slip at the wall for all Knudsen numbers, provided
the flow was quasistatic �i.e., the Stokes number S
=
�H2 /� is much smaller than 1�. Note that the quasistatic
assumption is not at all restrictive in practical applications
where the gap size, H, is very small. Also note that in the
quasistatic regime, shear flow results in a linear velocity pro-
file �at the Navier-Stokes level of approximation� and thus
describing the amount of slip completely characterizes the
flowfield.

The oscillatory shear flow problem was used in Refs. 34
and 35 as a validation test problem for the second-order slip
model of Sec. II C 1. Excellent agreement with DSMC solu-
tions was found for all S for Kn�0.4 for both the flowfield
and the stress field. In fact, for sufficiently low frequencies
�S�1� the agreement is very good up to Kn�1 �note that
for this flow, in the quasistatic regime S�1, the second-order
slip model reduces to the first-order slip model, which is
known to describe the stress very well up to Kn�1�. Figure
7 shows a comparison between DSMC solutions and the
second-order slip model of Sec. II C 1 for the magnitude of
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the shear stress at the wall. This comparison shows that for
S�1 the second-order slip model in conjunction with a col-
lisionless model �shown in dashed line� may be used to
bridge the transition regime.

The collisionless result of Fig. 7 was given by Park et
al., who showed that the velocity and shear stress at the wall
are independent of � and equal to the values of the steady
problem. Analytical results for the flowfield and the bounded
�ballistic� shear layers appearing at high frequency in the
Kn�1 limit—analogous to Stokes layers in the Kn�1
limit—were given by the present author in Ref. 35.

E. Axial wave propagation in small-scale channels

In this section we discuss a theory of axial plane-wave
propagation in two-dimensional channels �Fig. 1� for arbi-
trary Knudsen numbers. The theory is based on the long-
wavelength approximation and on the observation that, in the

Navier-Stokes limit, the propagation of disturbances in
small-scale channels for most frequencies of practical inter-
est is viscous dominated. The importance of viscosity can be

quantified by a narrow channel criterion, S=
�H2 /��1.
When S�1 �whereby the channel is termed narrow� the vis-
cous diffusion length based on the oscillation frequency is
much larger than the channel height; viscosity is expected to
be dominant and inertial effects will be negligible. This ob-
servation has two corollaries; first, since the inertial effects
are negligible the flow is governed by the steady equation of
motion, that is, the flow is effectively quasisteady.39 Second,
since for gases the Prandtl number is of order one, the flow is
also isothermal �for a discussion see Ref. 40�. This was first
realized by Lamb,41 who used this approach to describe wave
propagation in small-scale channels using the Navier-Stokes
description. Lamb’s prediction for the propagation constant
using this theory is identical to the more general theory of

FIG. 5. Comparison between DSMC results �symbols�
and second-order-slip-corrected Navier-Stokes solution
�lines� for Kn=0.21, for the impulsive start problem
described in Sec. II C 1. Due to the problem symmetry
about y=0, only half domain is shown; the wall is at
y /H=−0.5. Flowfield and stress plots shown at three
times: 11.1	c ���, 16.2	c �*�, and 22.3	c ���. Top plot:
comparison of flow velocities; the Knudsen layer con-
tribution �u−uNS� is visible close to the wall �the verti-
cal dotted line delimits the approximate extent of the
Knudsen layer �−0.5�y /H�−0.185�. Middle plot:
comparison of the shear stress. Bottom plot: compari-
son of the bulk velocity as a function of time.

111301-9 The limits of Navier-Stokes theory Phys. Fluids 18, 111301 �2006�

Downloaded 25 Jun 2008 to 18.80.2.95. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Kirchhoff42 when the narrow channel limit is taken in the
latter.

The author has recently39 used the fact that wave propa-
gation in the narrow channel limit �the narrow channel crite-
rion needs to be suitably redefined in the transition regime
where viscosity loses its meaning; however, the work in
Refs. 39 and 40 shows that S remains a conservative criterion
for the neglect of inertia and thermal effects for Kn�0.1� is
governed by the steady equation of motion to provide a pre-
diction for the propagation constant for arbitrary Knudsen
numbers without explicitly solving the Boltzmann equation.
This is achieved by rewriting Eq. �14� in the form

ũb = −
1

R
dP̃

dx
, �22�

where tilde denotes the amplitude of a sinusoidally time-
varying quantity and R=R�Kn�, the “flow resistance,” is
given by

R =
P0

HQ̄
RT0/2
. �23�

Here, P0 and T0 denote the mean pressure and temperature,
respectively. Equation �22� locally describes wave propaga-
tion since, as we argued above, in the narrow channel limit
the flow is isothermal and quasistatic and governed by the
steady-flow equation of motion. Using the long-wavelength
approximation allows us to integrate mass conservation,
written here as a kinematic condition,39

�P

�x
= − � �P

��
�

T
�0

�2�

�x2 �24�

across the channel height. Here ��P /���T indicates that this
derivative is evaluated under isothermal conditions appropri-
ate to a narrow channel. Additionally, �0 is the average den-
sity and � is the fluid-particle displacement defined by

FIG. 6. Comparison between DSMC results �symbols�
and second-order-slip-corrected Navier-Stokes solution
�lines� for Kn=0.35, for the impulsive start problem
described in Sec. II C 1. Due to the problem symmetry
about y=0, only half domain is shown; the wall is at
y /H=−0.5. Flowfield and stress plots shown at three
times: 4.9	c ���, 7.9	c �*�, and 12.8	c ���. Top plot:
comparison of flow velocities. Middle plot: comparison
of the shear stress. Bottom plot: comparison of the bulk
velocity as a function of time.
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ux�x,y,t� =
���x,y,t�

�t
. �25�

Combining Eqs. �22� and �24� we obtain39

i��b =
�0��P/���T

R
�2�b

�x2 , �26�

where �b is the bulk �average over the channel width� fluid-
particle displacement. From the above we can obtain the
propagation constant

�mm + ik�2 =
i�R
P0

, �27�

where mm is the attenuation coefficient and k is the wave-
number. Using Eq. �23� we obtain

�mm + ik�2�2 =
8i

Kn

Q̄

	c

T
, �28�

where T=2
 /� is the oscillation period.
This result is expected to be of general use because the

narrow channel requirement is easily satisfied in the transi-
tion regime.39 A more convenient expression for use in the
early transition regime, which does not require a lookup

table �for Q̄�, can be obtained using the second-order slip
model discussed in Sec. II C 1. Using this model we obtain

�mm + ik�2�2 =
96iKn2

1 + 6�Kn + 12�Kn2

	c

T
, �29�

which, as can be seen in Fig. 8, remains reasonably accurate
up to Kn�1 �aided by the square-root dependence of the
propagation constant on R�. This expression for Kn→0 re-
duces to the well-known narrow-channel result obtained us-
ing the no-slip Navier-Stokes description.43

Figure 8 shows a comparison between Eq. �29� �Eq.
�28��, DSMC simulations, and the Navier-Stokes result.
�DSMC simulations of wave propagation are discussed in

Ref. 39.� It can be seen that the theory is in excellent agree-
ment with DSMC results. As noted above, the second-order
slip model provides an excellent approximation for Kn
�0.5 and a reasonable approximation up to Kn�1. The no-
slip Navier-Stokes result clearly fails as the Knudsen number
increases. The theory presented here can be easily general-
ized to ducts of arbitrary cross-sectional shape, and has been
extended40 to include the effects of inertia and heat transfer
in the slip-flow regime where closures for the shear stress
tensor and heat flux vector exist.

F. Reynolds equation for thin films

The approach of Sec. II E is reminiscent of lubrication
theory analyses used in describing the flow in thin films.44

This type of approach, typically using the Reynolds equa-
tion, is fairly common in small-scale devices whose geom-
etry lends itself naturally to this type of analysis. An exten-
sive discussion of the Reynolds equation and its applications
to small-scale flows can be found in Ref. 37. Our objective

FIG. 7. Normalized wall shear stress magnitude as a function of the Knud-
sen number. Symbols denote DSMC results. Solid lines denote the second-
order slip model result. Dashed line denotes the collisionless result. Here,
the left wall oscillates with velocity amplitude Uo.

FIG. 8. Comparison between the theoretical predictions of Eq. �28�, shown
as a solid line, and the simulation results denoted by stars as a function of
the Knudsen number at a constant frequency given by T /	c�6400. The
dash-dotted line denotes the prediction of Eq. �29�. The no-slip Navier-
Stokes solution �dashed lines� is also included for comparison.
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here is to briefly discuss the opportunities provided by the
lubrication approximation for obtaining solutions for arbi-
trary Knudsen numbers to various small-scale problems,
without explicitly solving the Boltzmann equation.

In a one-dimensional gap �see Fig. 1� with one plate
moving in the x direction with velocity Ux, the Reynolds
equation reads

�

�x
�−

�H3

12�

dP

dx
+

�HUx

2
� = −

���H�
�t

. �30�

This formulation is convenient because it requires only
knowledge of the flow rate �average flow speed� through the
gap; this has the fortunate consequence that it can be easily
generalized to arbitrary Knudsen numbers in a fashion that is
exactly analogous to the procedure used in Sec. II E. This
was realized by Fukui and Kaneko,45 who formulated such a
generalized Reynolds equation by:

• Realizing that the “Couette” flow contribution to the mass
flow rate ��HUx /2� does not change with the Knudsen
number.

• Replacing the Navier-Stokes �Poiseuille� mass flow rate

− �H3

12�

dP

dx

by the form

− �H2

P

RT

2
Q̄��,Kn�

dP

dx

valid for all Knudsen numbers and accommodation coeffi-
cients.

• Including the flow rate due to thermal creep

�H2

T

RT

2
Q̄T��,Kn�

dTw

dx

�Ref. 45� into the total flow rate, and thus accounting for
the effects of an axial temperature gradient.

Comparison between the formulation of Fukui and
Kaneko and DSMC simulations can be found in Ref. 46.

A number of approaches using fits of Q̄�Kn� to define an
“effective viscosity” for integrating the resulting “general-
ized” Reynolds equation have appeared. It is hoped that the
discussion of Sec. II C 1 illustrates that the concept of an
“effective viscosity” is not very robust for a number of rea-
sons �this discussion is not limited to the context of Reynolds
equation applications�. For Kn�0.1 the physical mechanism
of transport changes and there is no reason to expect the
concept of linear-gradient transport to hold. Even in the early
transition regime, the concept of an “effective viscosity” is
contradicted by a variety of findings �see Sec. II C 1�. To be
more specific, an “effective viscosity” can be viewed as the
particular choice of absorbing the kinetic corrections to the
Poiseuille flow rate in Eq. �20�, namely 1+6�Kn+12�Kn2,
into one of the proportionality constants, namely the viscos-
ity. However, Sec. II C 1 has shown that the origin of these
corrections �first- and second-order slip and Knudsen layer
contribution to the flow rate� is not consistent with a variable

viscosity. In fact, the correct way of interpreting Eq. �20� is
that the constitutive relation, including the value of the vis-
cosity, remain unchanged up to at least Kn�0.4. Moreover,
when the “effective viscosity” approach is adopted, the fol-
lowing problems arise:

• Kinetic corrections to the flow rate are problem dependent
�flow, geometry�; as a result, an effective viscosity ap-
proach cannot be predictive. For example, the “effective
viscosity” fitted from the Poiseuille flow rate in a tube is
different from the “effective viscosity” fitted from the
Poiseuille flow rate in a channel due to the curvature cor-
rections to the second-order slip coefficient discussed in
Sec. II C 1.

• The fitted “effective viscosity” does not give the correct
stress through the linear constitutive law.

The “effective viscosity” approach has another disadvan-
tage when used in the Reynolds equation: the complex ex-

pressions used to fit Q̄ typically cannot be directly integrated,
unless the assumption Kn�Kn�P� is made. Use of Eq. �21�
for Kn�0.5, on the other hand, should not suffer from this
disadvantage.

G. Flows involving heat transfer

In this section we review flows in which heat transfer is
important. We give particular emphasis to convective heat
transfer in internal flows, which has only recently been in-
vestigated within the context of Navier-Stokes failure in
small-scale gaseous flows. We also summarize the investiga-
tion of Gallis and co-workers on thermophoretic forces on
small particles in gas flows.

1. The Graetz problem for arbitrary Knudsen numbers

Since its original solution in 1885 �Ref. 47�, the Graetz
problem has served as an archetypal convective heat-transfer
problem both from a process modeling and an educational
viewpoint. In the Graetz problem a fluid is flowing in a long
channel whose wall temperature changes in a step fashion.
The channel is assumed to be sufficiently long so that the
fluid is in an isothermal and hydrodynamically fully devel-
oped state before the wall temperature changes. One is typi-
cally interested in the energy exchange between the walls
and the gas, which can be quantified by the Nusselt number

NuT =
q2H

��Tw − Tb�
, �31�

which is a nondimensional heat-transfer coefficient.48 Here q
is the wall heat flux and Tb is the bulk temperature defined by

Tb =
−H/2

H/2 uxTdy

ubH
. �32�

Although the work in Ref. 50 focused on the fully developed
Nusselt number, the developing �tube entrance� part of the
flow can also be treated using the same approach.

The gas-phase Graetz problem subject to slip-flow
boundary conditions was studied originally by Sparrow;49

this study, however, did not include the effects of axial heat
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conduction which cannot be neglected in small-scale flows.
Here we review the solution by the author,50 in which the
extended Graetz problem �including the effect of axial heat
conduction parametrized by the Peclet number Pe=RePr
= ��ub2H /��Pr� is solved in the slip-flow regime. The solu-
tion is compared to DSMC simulations in a wide range of
Knudsen numbers; the DSMC solutions serve to verify the
slip-flow solution but also extend the Graetz solution to the
transition regime. The DSMC simulations were performed at
sufficiently low speeds for the effects of viscous heat dissi-
pation to be small; this is very important since high speeds
typically used in DSMC simulations to alleviate signal-to-
noise limitations �a new method for solving the Boltzmann
equation, which does not suffer from this limitation, is dis-
cussed in Sec. III E� may introduce sufficient viscous heat
dissipation effects to render the simulation results invalid.
The effect of viscous dissipation on convective heat transfer
is briefly discussed at the end of this section.

In Ref. 50 a semianalytical solution of the Graetz prob-
lem in the slip-flow regime for all Peclet numbers was pre-
sented. This solution showed that in the presence of axial
heat conduction �Pe�10� the Nusselt number is larger than
the corresponding Nusselt number in the absence of axial
heat conduction �Pe→��. In particular, it was found that for
typical small-scale applications where Pe�1 the Nusselt
number is fairly insensitive to the Peclet number, but higher
�by about 10%� than Nu�Pe→��.

The semianalytical slip-flow solution of Ref. 50 was
complemented by low-speed DSMC simulations in both the
slip-flow and transition regimes �see Fig. 9�. Comparison of
the two solutions in the slip-flow regime shows that the ef-
fects of thermal creep are negligible for typical conditions,
and also that the velocity slip and temperature jump coeffi-
cients of Sec. II A provide good accuracy in this regime. The
DSMC solutions in the transition regime showed that for
fully accommodating walls the Nusselt number decreases

monotonically with increasing Knudsen number. Unpub-
lished DSMC solutions for accommodation coefficients
smaller than one exhibit the same qualitative behavior as
partially accommodating slip-flow results; in other words,
decreasing the thermal accommodation coefficient increases
the thermal resistance and decreases the Nusselt number,
while decreasing the momentum accommodation coefficient
increases the flow velocity close to the wall leading to a
small increase in the Nusselt number.50 The similarity be-
tween the Nusselt number dependence on the Knudsen num-
ber and the dependence of the skin-friction coefficient on the
Knudsen number50 suggests that some form of Reynolds
analogy between the two nondimensional numbers may exist
for Kn�0.1.

The effect of viscous dissipation on convective heat
transfer is typically quantified by the Brinkman number Br
=�ub

2 / ���T�, where �T is the characteristic temperature dif-
ference in the flow. It is well known that viscous dissipation
in the fluid affects convective heat transfer both in terms of
bulk temperature fields and resulting Nusselt numbers. Dis-
sipation in small-scale flows is interesting both from practi-
cal and theoretical points of view. It becomes especially rel-
evant in view of the limitations associated with DSMC,
which require artificially high flow velocities in order to ob-
tain a discernible hydrodynamic signal. From a theoretical
point of view, small-scale �slipping� flows differ from their
large-scale �nonslipping� counterparts because the slip
present at the system boundaries leads to an additional mode
of dissipation, namely, shear work at the boundary. In Ref.
51 the author presented an analysis of a model convective
heat-transfer problem, namely convective heat transfer under
constant wall heat flux48—a dual to the Graetz problem de-
scribed above—in the presence of dissipation: it was shown
that, in the slip-flow regime, shear work on the boundary
scales with the Brinkman number Br, similarly to viscous
heat dissipation in the bulk; also, although shear work at the
boundary must be included in the total heat exchange with
the system walls, it has no direct influence on the bulk tem-
perature field, because it occurs at the system boundaries.
Consequently, it was demonstrated how shear work at the
boundary can be accounted for in convective heat-transfer
calculations under the assumption of �locally� fully devel-
oped conditions. It was also shown that, as the Knudsen
number increases, this mode of dissipation can be as impor-
tant as dissipation in the bulk of the flow.

2. Thermophoretic force on small particles

Small particles in a gas through which heat flows expe-
rience a thermophoretic force in the direction of the heat
flux; this force is a result of the net momentum transferred to
the particle due to the asymmetric velocity distribution of the
surrounding gas52 in the presence of a heat flux. This phe-
nomenon was first described by Tyndall53 and has become of
significant interest in connection with contamination of mi-
crofabrication processes by small solid particles. This prob-
lem appears to be particularly important in plasma-based
processes which generate small particles.52

FIG. 9. Variation of Nusselt number NuT with Knudsen number Kn �from
Ref. 50�. The stars denote DSMC simulation data for increasing wall tem-
perature and the circles denote DSMC simulation data for decreasing wall
temperature. The �overlying� solid lines denote hard-sphere slip-flow results
for Pe=0.01, 0.1, and 1.0.
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Considerable progress has been made in describing this
phenomenon by assuming a spherical �radius R� and infi-
nitely conducting particle in a quiescent monoatomic gas.
Provided that the particle is sufficiently small, such that it
has no effect on the molecular distribution function of the
surrounding gas, the thermophoretic force can be calculated
by integrating the momentum flux imparted by the molecules
striking the particle. The particle can be considered suffi-
ciently small when the Knudsen number based on the par-
ticle radius, KnR=� /R, implies a free-molecular flow around
the particle, i.e., KnR�1. Based on these assumptions, Gallis
and his collaborators54 have also developed a general method
for calculating forces on particles in DSMC simulations of
arbitrary gaseous flows, provided the particle concentration
is dilute. This method is briefly discussed in Sec. III C.

In the cases where the molecular velocity distribution
function is known, such as free-molecular flow or the
Navier-Stokes limit, the thermophoretic force can be ob-
tained analytically. Performing the calculations in these two
extremes and under the assumption that the particle surface
is fully accommodating, reveals that the thermophoretic
force can be expressed in the following form:

Fth = �
R2q/c̄ , �33�

where � is a thermophoresis proportionality parameter which
obtains the values �FM=0.75 for free-molecular flow and
�CE=32/ �15
�=0.679 for a Chapman-Enskog distribution
for Maxwellian molecules. �Maxwellian molecules are de-
fined such that the interaction force between them scales
with the fifth power of the distance between their centers.4

Although not very realistic, this model was introduced by
Maxwell because it makes the product g�d2� independent
of g, allowing analytical evaluation of certain functionals
involving the collision integral.� Here, q is the local heat
flux. Writing the thermophoretic force in the above form is,
in fact, very instructive.52 It shows that the force is only very
mildly dependent on the velocity distribution function with
only a change of order 10% observed between Kn�1 and
Kn�1. These conclusions extend to other collision models;
for example, for a hard-sphere gas, �CE=0.698 �Ref. 52�.

The two limiting values can be used to provide bounds
for the value of the thermophoretic force on fully accommo-
dating particles close to system walls. Using the weak depen-
dence of � on the distribution function, Gallis et al.52 pro-
vided an estimate of this quantity in the Knudsen layer, �KN,
by assuming that the distribution function can be written as a
superposition of a Chapman-Enskog �incoming and outgoing
molecules� and Maxwellian distribution �outgoing mol-
ecules�, with the relative proportions determined by the ac-
commodation coefficient at the wall surface. More specifi-
cally, they consider a wall at temperature Tw with
accommodation coefficient �. For Maxwell molecules, they
find

�KN =
1

2���CE + �2 − ���FM� 2

1 + 
Tw/T
�� , �34�

which simplifies to

�KN = 1
2 ���CE + �2 − ���FM� �35�

in the limit T→Tw, where, here T is the temperature of the
gas outside the Knudsen layer. In other words, the presence
of a Knudsen layer has a very small effect on the thermo-
phoresis parameter, with �KN=0.5��CE+�FM� for a fully ac-
commodating wall and �KN=�FM in the specular reflection
limit.

DSMC simulations show52 that the deviation from �CE

increases with proximity to the wall, as expected; they also
show �see Fig. 10� that Eq. �35� serves as an upper bound to
the actual thermophoresis parameter within the Knudsen
layer; this is presumably because the assumed distribution
function overestimates the deviation from the actual
distribution.

III. NUMERICAL METHODS

In this section we briefly discuss recent developments in
the numerical solution of the Boltzmann equation. The ma-
jority of these developments is associated with the direct
simulation Monte Carlo, briefly discussed below, since this is
by far the most popular approach for dilute gases. In the
interests of brevity we will not discuss hybrid Boltzmann-
Navier-Stokes methods, which increase computational effi-
ciency by limiting the use of the Boltzmann treatment to the
regions where it is needed; discussions of hybrid methods
can be found in Refs. 55 and 56. We will close this section
with a description of a new variance reduction technique
developed to address the computational intransigence of
DSMC in low-speed flows resulting from the slow conver-
gence rate associated with statistical sampling of macro-
scopic properties.

FIG. 10. Comparison between the approximate theory of Gallis and co-
workers for the thermophoretic force in the Knudsen layer and DSMC re-
sults. The theoretical value for the thermophoretic force ratio �for Maxwell-
ian molecules�, �KN/�CE, is shown as a solid line. The DSMC results
represent the average value over five cells of size �x=0.042� adjacent to the
wall �there are two wall locations� in a Kn=0.0475 calculation.

111301-14 Nicolas G. Hadjiconstantinou Phys. Fluids 18, 111301 �2006�

Downloaded 25 Jun 2008 to 18.80.2.95. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



A. The direct simulation Monte Carlo

The direct simulation Monte Carlo is a stochastic par-
ticle simulation technique9 for solving the nonlinear Boltz-
mann equation.57 DSMC solves the Boltzmann equation by
applying a splitting approach to the motion of the particle
simulators �each particle simulates a large number of real
molecules� comprising the system; the time evolution of the
system is approximated by a sequence of discrete time steps
of duration �t, in which particles successively undergo col-
lisionless advection and collisions. Collisions take place be-
tween collision partners selected randomly within cells of
size �x. The introduction of the above approach with the
associated discretization ingredients ��t ,�x� eliminates the
computational cost associated with calculating exact particle
trajectories and leads to a simulation method that is signifi-
cantly more efficient than “brute force” molecular dynamics
approaches.

An augmented DSMC formulation which extends the
applicability of DSMC to gases of moderate densities, where
molecular size effects are not negligible, has also been
developed58 and is known as the “consistent Boltzmann
algorithm.”

B. The effect of finite discretization in DSMC

DSMC has been used to capture and predict nonequilib-
rium hydrodynamic phenomena in all Knudsen regimes9 for
more than three decades. However, it is only recently that
significant progress has been made in its characterization as a
numerical method and in understanding the numerical errors
associated with it.

Recently, Wagner57 has shown that DSMC simulations
approach solutions of the nonlinear Boltzmann equation in
the limit of zero cell size and time step and infinite number
of molecules. This result essentially proves “consistency.”
Convergence results for the transport coefficients have been
recently obtained by Alexander et al.59 for the cell size, and
Hadjiconstantinou60 for the time step.

Alexander et al.59 used the Green-Kubo theory to evalu-
ate the transport coefficients in DSMC when the cell size is
finite but the time step is negligible. They found that because
DSMC allows collisions between molecules at a distance �as
long as they are within the same cell� the transport
coefficients—when measured using the heat flux at the
wall61—deviate from the dilute-gas Enskog values quadrati-
cally with the cell size. For example, for the viscosity Alex-
ander et al.59 find

� =
5

16�2
mkT



�1 +

16

45


�x2

�2 � . �36�

In Ref. 60, the author considered the convergence with
respect to a finite time step when the cell size is negligible.
Because DSMC is discrete in time, in order to apply the
Green-Kubo formulation the author developed a continuous-
time analog of DSMC. Using this continuous-time analog,
and the fact that the DSMC dynamics appears symmetric at
the long times associated with diffusive transport coeffi-
cients, the author was able to show that the transport coeffi-

cients deviate from the dilute-gas Enskog values proportion-
ally to the square of the time step. For example, for the
viscosity he found

� =
5

16�2
mkT



�1 +

16

75


�co�t�2

�2 � , �37�

where co=
2kbT /m is the most probable molecular speed.
This prediction for the viscosity, and similar predictions for
the thermal conductivity and diffusion coefficient derived in
Ref. 60, were verified by DSMC simulations.62 Good agree-
ment was found between theory and simulation as illustrated
in the example of Fig. 11. The theoretical result for the ther-
mal conductivity was also recently verified by Rader et al.;61

by studying a number of variants of the DSMC algorithm,
these authors also verify that the above results are observed
when sampling is performed in a fashion which is consistent
with the symmetry in the dynamics.

The study by Rader et al.61 also reports a discretization
error due to a finite number of particles in a cell. The best fit
to their numerical result for the deviation from the theoretical
value of the thermal conductivity, in the limit �x ,�t→0,
gives the leading-order term to be −0.083/N.

C. Forces on small spherical particles in DSMC

One of the most important challenges associated with
semiconductor manufacturing is the presence of contami-
nants, sometimes produced during the manufacturing pro-
cess, in the form of small particles. Understanding the trans-
port of these particles is very important for their removal or
their handling in ways which ensure that they do not inter-
fere with the manufacturing process. Recently, Gallis and his
co-workers54 developed a method for calculating the force on
small particles in rarefied flows simulated by DSMC. This
method is based on the assumption that the particle concen-
tration is very small and the observation that particles with

FIG. 11. Error in coefficient of viscosity as a function of normalized time
step co�t /� �from Ref. 62�. Circles denote the normalized error in momen-
tum flux in the simulations of Garcia and Wagner �Ref. 62�, and the solid
line is the prediction of �37�. Note that as the time step increases, the trans-
port rate asymptotes to the collisionless limit value.
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sufficiently small radius such that KnR=� /R�1 will have a
very small effect on the flowfield; in this case, the effect of
the flowfield on the particles can be calculated from DSMC
simulations which do not include the particles themselves.

Gallis and his co-workers define appropriate “Green’s
functions” which quantify the momentum Fg�c̃� and energy
Qg�c̃� transfer rates of individual molecules to the particle
surface as a function of the molecule mass, momentum and
energy, and degree of accommodation on the particle surface.
These can then be integrated over the molecular velocity
distribution function, f�c̃�, to yield the average force

F =� Fg�c̃�f�c̃�dc̃ �38�

or heat flux

q =� Qg�c̃�f�c̃�dc̃ �39�

to the particle, where c̃=c−up and up is the particle speed.
For the case of Maxwell’s gas-surface interaction, Gallis

et al.54 find

Fg�c̃� = �
R2c̃�	c̃	 + ��
1/2/3�co
p� , �40�

Qg�c̃� = ��
R2	c̃	��1/2�	c̃	2 − �co
p�2� , �41�

where co
p=
2kbTp /m and Tp is the particle temperature.

More complex accommodation models can also be treated;
in Ref. 54 an extended Maxwell accommodation model is
presented.

In the DSMC implementation, integration of Eqs. �38�
and �39� is achieved by summing the contributions of mol-
ecules within a cell. This yields the force and heat flux to a
particle as a function of position. Because the force and heat
flux are a function of up, the former are calculated as a
function of a number of values of the latter; the values of the
force and heat flux at intermediate values of up can be sub-
sequently obtained by interpolation.54

D. Statistical noise in low-speed flows

In a recent paper, Hadjiconstantinou et al.63 used equi-
librium statistical mechanics to obtain theoretical results for
the relative statistical �sampling� error in hydrodynamic
quantities in molecular simulations of flows close to equilib-
rium. These results characterize the dependence of the rela-
tive statistical error EQ=�Q / �Q� of hydrodynamic quantity Q
on gas properties and the number of samples taken; here �Q�
is the mean value of Q and �Q is the standard deviation in
the error in estimating �Q�. Such results are useful because
DSMC, the prevalent solution method for the Boltzmann
equation, relies on statistical sampling for extracting hydro-
dynamic fields from particle data. In fact, perhaps the biggest
disadvantage associated with DSMC stems from the large
relative statistical error present in low-speed flows where the
deviation from equilibrium is small. A variance reduction
method developed to reduce statistical uncertainty is de-
scribed in the next section.

In Ref. 63 a variety of expressions for the relative statis-
tical error for the most common hydrodynamic state vari-
ables and their fluxes �shear stress, heat flux� was derived.
For example, it was shown that the statistical uncertainty in
the flow velocity is given by

Eu =
�u

�u�
=

1

�Ma
NM

, �42�

where N is the number of particles in the sampling volume
and M is the number of independent samples per particle.
For the hydrodynamic fluxes, expressions were derived when
those are measured as volume averages and when measured
as surface flux averages. The main findings of this work can
be summarized as follows:

�1� The two averaging methods for hydrodynamic fluxes
�volume, surface� yield comparable relative statistical
errors, provided that �x�co�t. Here �t is the averaging
time used in the flux method; �x is the linear dimension,
in the direction normal to the flux, of the cell in which
volume averaging is performed.

�2� For Kn�1, the relative error in a particular hydrody-
namic flux �e.g., shear stress� is significantly larger than
the relative error in the “conjugate” state variable �e.g.,
velocity�.

�3� A simple theory for incorporating the effects of correla-
tions in volume averaging was presented. This theory is
based on the theory of persistent random walks.

�4� It was shown that not only the number of molecules per
unit volume in an ideal gas is Poisson distributed, but
also arbitrary number fluctuations of an infinite ideal gas
in equilibrium are Poisson distributed.

Good agreement was found with DSMC simulations of
low-speed, low Knudsen number flows where statistical
noise presents the biggest challenges. This is expected since
the deviation from equilibrium is small under these condi-
tions. The results for state variables were also verified for
dense fluids using molecular dynamics simulations.

E. Variance reduction

Equation �42� shows that for a given statistical uncer-
tainty, the computational cost in DSMC scales as Ma−2. As a
result, the simulation of low-speed flows at negligible statis-
tical uncertainty is prohibitively expensive unless massively
parallel computer resources are available: for example, to
obtain 1% statistical uncertainty in a 1 m/s flow at typical
temperatures, one would need on the order of 5�108 inde-
pendent samples per cell.63

To address the inefficiency of DSMC for low-speed
flows, Baker and Hadjiconstantinou developed a variance re-
duction technique for calculating the collision integral of the
Boltzmann equation which exploits the fact that, in these
flows, the deviation from equilibrium is small. More specifi-
cally, they showed that one can construct methods that are
significantly more efficient by focusing the computational
effort on calculating the value of the collision integral due to
the deviation from equilibrium, since the value of the colli-
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sion integral at equilibrium is zero. This can be achieved by
evaluating the following “variance-reduced” form of the col-
lision integral:

�df

dt
�

coll
=

1

2
� � � ��1� + �2� − �1 − �2�

��2f1
MB + f1

d�f2
dg�d2�d3v1d3v2, �43�

where fd= f − fMB is the deviation from any chosen equilib-
rium �Maxwell-Boltzmann� distribution fMB.

The above expression is obtained64 by expanding f about
this equilibrium state in the following form7 of the collision
integral:

�df

dt
�

coll
=

1

2
� � � ��1� + �2� − �1 − �2�

�f1f2g�d2�d3v1d3v2 �44�

and noticing that the value of the collision integral for any
equilibrium distribution is identically zero, i.e.,

1

2
� � � ��1� + �2� − �1 − �2�f1

MBf2
MBg�d2�d3v1d3v2 = 0.

�45�

Here, f1� f�x ,v1 , t�, f2� f�x ,v2 , t�, �1���v−v1�, �2���v
−v2�, �1����v−v1��, �2����v−v2��, where a prime indicates
postcollision velocities and � is the Dirac delta function.

When the deviation from equilibrium is small, the vari-
ance reduction achieved by evaluating �43� by a Monte Carlo
method instead of �44� is large. Moreover, the degree of vari-
ance reduction is larger for distributions that are closer to the
equilibrium distribution, leading to a method that can practi-
cally capture very small deviations from equilibrium. This is
in sharp contrast to methods that do not use fd in evaluating
the collision integral �such as DSMC�. In DSMC in particu-
lar, as fd→0, fMB dominates the integrand landscape and
thus leads to a constant statistical noise,63 which in turn
means that the signal-to-noise ratio decreases linearly63 with
decreasing Mach number �see Eq. �42��. On the other hand,
in the method presented here, the integrand landscape and
consequently the statistical error65 scale with fd in the limit
fd→0; as a result, in this limit, the statistical error decreases
linearly with the signal leading to a constant signal-to-noise
ratio.64 This is shown in Fig. 12, which compares the relative
statistical uncertainty of the present method with that of
DSMC as a function of the characteristic flow velocity for a
shear flow.

It was shown in Ref. 64 that the Boltzmann equation can
be numerically solved using this approach for evaluating the
collision integral and by discretizing the advection operator
using a finite volume or finite difference method. In Ref. 66
the same authors show how variance reduction ideas can be
used to derive a DSMC-like �particle� scheme for solving the
Boltzmann equation, namely by simulating particles which
represent deviation from equilibrium.

IV. DISCUSSION

Theoretical solutions of various phenomena involving
isothermal and nonisothermal flows suggest that slip flow is
remarkably robust. In channel flows, slip flow seems to cor-
rectly predict average quantities of interest �flow rates, wave
propagation constants, heat-transfer coefficients� even be-
yond its typically acknowledged limit of applicability of
Kn�0.1 with acceptable error; moreover, in some cases it
can qualitatively describe the behavior of such average
quantities well into the transition regime.

Methods that extend the range of applicability of the
Navier-Stokes description even beyond first-order slip flow
are highly desirable. The simplicity and significant computa-
tional efficiency advantage enjoyed by the Navier-Stokes de-
scription compared to molecular approaches, coupled with
the effort already invested in continuum methods, make the
former the approach of choice. Despite the lack of general
closure models for transport in the transition regime, analyti-
cal solutions are sometimes possible through the use of the
lubrication approximation and judicious use of already exist-
ing analytical results for simple flows. Rigorous high-order
slip models such as the one presented in Sec. II C 1 are prov-
ing to be valuable in this respect.

Direct simulation Monte Carlo has played and will con-
tinue to play a central role in the analysis of small-scale,
internal gaseous flows. The statistical sampling employed by
this method and the slow convergence associated with it, is,
perhaps, the most serious limitation of DSMC in the context
of small-scale, low-speed flows. Variance reduction tech-
niques such as the one described in Sec. III E have the po-
tential to completely eliminate this limitation.

Significant effort should be invested in carefully evalu-
ating commonly used gas-surface interaction models such as
Maxwell’s model; although more sophisticated gas-surface
interaction models have been developed,15 and have been
shown to be sufficiently tractable for numerical

FIG. 12. Relative statistical uncertainty in flow velocity �averaged over the
flow domain� as a function of the wall velocity, U, in Couette flow. Note that
the number of samples required to make the statistical uncertainty of the two
methods the same, scales with the square of the ratio of statistical
uncertainties.
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implementation,67,68 experimental verification of their ability
to produce accurate results that are also superior to the ones
obtained using the simple Maxwell model, is lacking. More
realistic models should be developed if these are found to be
insufficient.
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