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We investigate oscillatory shear-driven gas flows in the transition and free-molecular-flow regimes.
Analytical results valid through slip flow and the early transition regime are obtained using a
recently proposed, rigorous second-order slip model with no adjustable coefficients. Analytical
solution of the collisionless Boltzmann equation provides a description of the high Knudsen number
limit �Kn�1� including the bounded shear layers present in the limit of high oscillation frequency.
These layers are analogous to the Stokes layers observed in the Kn�1 limit, but contrary to the
latter, they exhibit a nonconstant wave speed as demonstrated by Park, Bahukudumbi, and Beskok
in Phys. Fluids. 16, 317 �2004�. All theoretical results are validated by direct Monte Carlo
simulations. We find that the second-order slip results are in good agreement with direct simulation
Monte Carlo �DSMC� solutions up to Kn�0.4; in some cases these results continue to provide
useful approximations to quantities of engineering interest, such as the shear stress, well beyond
Kn�0.5. The collisionless theory provides, in general, a good description of DSMC results for
Kn�10, while in the high frequency limit the agreement is very good for Knundsen numbers as low
as Kn�5. © 2005 American Institute of Physics. �DOI: 10.1063/1.1874193�
I. INTRODUCTION

In a recent paper1 Park et al. presented a thorough study
of oscillatory Couette flows between two parallel smooth
walls as an archetypal small-scale oscillatory shear-driven
gas flow. These flows have attracted significant interest in
recent years in connection to a variety of microelectrome-
chanical system related applications.2 Using direct Monte
Carlo simulations3 and analytical solutions, Park et al. stud-
ied a wide range of Knudsen �Kn=� /L� and Stokes �S
=��L2 /�� numbers. Here � is the molecular mean free path,
� is the oscillation frequency, �=� /� is the gas kinematic
viscosity, � is the gas density, and L is the characteristic flow
length scale, which in this case is the distance between the
two walls. Specifically, Knudsen numbers ranged from the
slip-flow regime Kn	0.1 to the free-molecular-flow regime
Kn�10, and two models for describing the gas behavior in
certain flow regimes were studied. The first model, referred
to as an “engineering model,”4 is a generalized first-order
slip-flow relation augmented by a number of adjustable �fit-
ted� coefficients; the addition of these coefficients enables
the model to describe the flow field for all Kn as long as the
flow is quasistatic �S�1�, in addition to describing the flow
in the Kn	0.1 regime. Unfortunately, this adjustable param-
eter approach removes the ability of the slip model to capture
the stress field and thus necessitates the use of a separate fit
for the stress. Additionally, fitted slip-flow models are known
to be valid only for the flow they have been fitted to; this is
explained and rectified below. The second model proposed is
a collisionless Boltzmann equation formulation that is solved
numerically; the authors show that this model is effective for
large Knudsen numbers �Kn�1�, as expected.
The purpose of the current paper is twofold: first, we
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provide a rigorous alternative to the engineering model pro-
posed by Park et al. for use in the Kn
1 limit. In particular,
we use a second-order slip model, which is able to capture
both the flow field and stress field with no fitted/adjustable
parameters. The second objective of this paper is to provide
closed-form solutions of the free-molecular-flow formulation
of Park et al. These solutions are parametrized by a “ballistic
Stokes number” Sb=�L /cm which, as expected, becomes the
relevant nondimensional parameter characterizing the oscil-
lation frequency in this collisionless transport limit. Here
cm=�2kT /m is the most probable molecular speed, T is the
gas temperature, k is the Boltzmann’s constant, and m is the
molecular mass. Our results also provide closed-form de-
scriptions of the bounded shear layer structures reminiscent
of Stokes layers observed by Park et al. in the high fre-
quency and high Knudsen number limit.

II. PROBLEM DESCRIPTION

We consider a dilute hard-sphere gas between two infi-
nite, fully accommodating, plane walls; the two walls are
located at y=0 and y=L, respectively, and are parallel to the
x-z plane. The assumption of full accommodation is moti-
vated by experimental observations3,5,6 which suggest that
for the “engineering” surfaces of interest here, specular re-
flection levels are very low. The ratio of specific heats of this
gas will be denoted by �. At t=0 the wall at y=0 starts to
oscillate in its own plane and in the x direction with velocity
U=U0 sin �t. We are interested in the steady state behavior
of this system as described by the velocity of the gas in the x
direction u�y� and the shear stress in the gas �xy�y�. We will
assume that U0 is small enough so that the governing equa-

tions and boundary conditions in the kinetic formulation of
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Sec. IV can be linearized; this assumption also allows the use
of the second-order slip model of Sec. III which is derived
from a linearized kinetic formulation. Linear kinetic condi-
tions may be assumed when U0�cm, that is, when the Mach
number based on the wall velocity �M =U0 / ��� /2cm�� is
small.5 This is not a very restrictive assumption with regard
to practical applications. As will be seen below, under linear-
ized conditions the flow is isothermal and so throughout this
paper the gas density � and temperature T are understood to
be constant.

An implication of the linearization condition U0�cm

stems from the von Karman relation,7

M =�3


40
1.270 Re Kn � Re Kn, �1�

where Re=U0L /� is the Reynolds number. Relation �1� im-
plies that any formulation based on the assumption M �1 is
limited to Re�1 for Kn�0.1. Although convection is not
important in the problem studied here, this discussion aims
to clarify that, when referring to second-order slip models
and the associated extension of the Navier–Stokes descrip-
tion to Kn�0.1, the condition Re�1 is implied, because, as
stated above, the second-order slip model used here is based
on such an assumption �M �1�. In other words, the term
“Navier–Stokes” is used here in a more general sense and is
to be understrood as generally denoting the set of continuum
conservation laws subject to the linear-gradient transport clo-
sures appropriate to the Kn�1 limit.

III. SOLUTION FOR Kn<1

Although use of the Navier–Stokes description is usually
limited to the no-slip and slip-flow regimes, the recent devel-
opment of a reliable second-order slip model8,9 for the hard-
sphere gas allows the use of this description well into the
transition regime. In Sec. III B we provide an analytical so-
lution of the oscillatory shear problem made possible by the
second-order slip model described also below.

A. Second-order slip model

Second-order slip models can, in some cases, extend the
range of applicability of the Navier–Stokes description
around and beyond Kn�0.1 where the accuracy of first-
order slip models begins to deteriorate.5 Given the simplicity
and negligible cost of Navier–Stokes solutions compared to
molecular simulations, accurate second-order slip models are
very desirable.

For this reason, the author has recently developed and
validated8,9 a rigorous second-order slip model for the hard-
sphere gas. This model combines elements of the original
asymptotic theory of Cercignani10 �based on the BGK ap-
proximation of the Boltzmann equation� with elements of the
later work of Sone and collaborators �also based on the same
model equation7� to form a second-order slip framework.
This framework is then made suitable for the hard-sphere gas
by replacing the BGK slip coefficients by appropriate non-
adjustable values for the hard-sphere gas.8,9 As discussed

9
before and also below, this last modification holds the key to
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making this theory useful, because now agreement with re-
alistic Boltzmann simulations and physical experiments can
be demonstrated. We, in fact, believe that the inability of the
BGK model to provide this connection to simulations using
realistic interaction models or experiments is one of the pri-
mary reasons for the lack of interest in the original �BGK�
version of the slip-flow theory. This model is now briefly
discussed. More details can be found elsewhere.9

Rigorous asymptotic analysis10 of the BGK model of the
Boltzmann equation shows that in steady, one-dimensional
flows the appropriate second-order boundary condition is of
the form

�û�wall − uw = ��� � û

��
�

wall
− ��2� �2û

��2�
wall

. �2�

Here, � is the coordinate normal to the wall and pointing into
the gas and û is the fluid velocity in the x direction as pre-
dicted by the Navier–Stokes equations. Differentiating the
Navier–Stokes flow field from the “true” flow field as given
by solution of the Boltzmann equation �u� is necessary be-
cause within the asymptotic analysis u= û+uKN. Here uKN is
a kinetic boundary layer contribution, known as the Knudsen
layer, which becomes important in the near-wall regions, i.e.,
uKN→0 as � /�→�9 �see Fig. 1�. In other words, slip-flow
boundary conditions provide effective boundary conditions
for û, the Navier–Stokes component of the true flow field,
while in the near-wall regions the Knudsen layer needs to be
superposed to the former to capture u.

In practice, the “effective” thickness of the Knudsen
layer for a hard-sphere gas, based on its decay to a few
percent of uKN��=0�, is �1.5�.7,9 Cercignani’s study shows
that the contribution of the Knudsen layers to the flow is
such that the bulk �average� flow velocity �ub=1/L	0

Lu dy�
differs from the slip-corrected Navier–Stokes approximation
to the same quantity �ûb=1/L	0

Lû dy� to O�Kn2�. Thus, while
for Kn	0.1 using only û to describe the flow is typically
sufficient, for Kn�0.1 and when using second-order slip
boundary conditions in particular, Knudsen layers need to be
quantitatively taken into account. The existence of the Knud-
sen layer also implies that a successful second-order slip

FIG. 1. Schematic of the Knudsen layer in the vicinity of the wall ��=0�.
model is one that does not agree with Boltzmann equation
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solutions within 1.5� from the walls. This explains why at-
tempts towards determining � by fitting direct simulation
Monte Carlo �DSMC� solutions in the entirety of the simu-
lation domain have not led to a predictive model with no
adjustable parameters.

In one-dimensional flows, the hard-sphere second-order
slip model reduces to Eq. �2� with �=1.11 and �=0.61. This
model was shown to be in excellent agreement with direct
Monte Carlo solutions of the Boltzmann equation for Kn
�0.4 in the case of pressure-driven flow,8 a one-dimensional
impulsive start problem9 and an oscillatory shear flow
problem.9 In higher dimensions the second-order term is sig-
nificantly more complex;7 also, wall curvature introduces ad-
ditional terms.7,12,13 This, in fact, explains why the experi-
mentally measured second-order slip coefficient extracted
from pressure-driven flow in tubes is found to differ from the
second-order slip coefficient measured from pressure-driven
flow in two-dimensional channels.

One aspect of slip-flow theory perhaps not fully appre-
ciated is that slip models are so useful because they do not
require modifications to the viscous constitutive relation
�e.g., through additional adjustable parameters or variable
viscosity constructs�. Within the slip-flow asymptotic theory
this is manifested by the fact that the stress field does not
require a Knudsen layer correction.9 This paper, as well as
previous work,9 clearly shows that the true �Boltzmann�
stress field is correctly captured by the second-order slip
model used here.

A final feature of the second-order slip model is that it is
possible to quantitatively account for the contribution of the
Knudsen layer to the bulk flow speed without solving the
Boltzmann equation; this is important because Knudsen lay-
ers penetrate appreciable parts of the flow as the Knudsen
number increases, and consequently the Navier–Stokes ve-
locity prediction deteriorates as Kn grows beyond Kn�0.2.
In a one-dimensional geometry, the bulk flow velocity is
given by

ub =
1

L



0

L

u dy =
1

L



0

L �û + ��2 �2û

�y2�dy , �3�

where for a hard-sphere gas �=0.296.8 A direct consequence
of the above relation is that in Poiseuille-type flows where
the curvature of û is constant, experimental measurement of
the flow rate �ubL� yields an “effective” second-order slip
coefficient �−�.9 Recent experiments in helium and
nitrogen14 report a second-order slip coefficient of
�0.25±0.1 which is in good agreement with the model pre-
diction �−�=0.31. Therefore, this model is also able to pro-
vide a resolution of the long-standing discrepancy between
experimental data and second-order slip model predictions.

B. Results

The solution of the oscillatory Couette problem in the
Navier–Stokes approximation reduces to solution of

� û

�t
= �

�2û

�y2 �4�
subject to the slip-flow boundary conditions
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û − U0 Im�exp�i�t�� = ��
� û

�y
− ��2 �2û

�y2 at y = 0,

û = − ��
� û

�y
− ��2 �2û

�y2 at y = L .

The steady state solution is given by

û = Im
�A cosh��
y

L
� + B sinh��

y

L
��exp�i�t�� , �5�

where Im denotes the imaginary part. Here,

A = U0
D

�1 + ��2 Kn2�D + �� KnC
, �6�

B = −
C

D
A , �7�

C = cosh � + �� Kn sinh � + ��2 Kn2cosh � , �8�

D = sinh � + �� Kn cosh � + ��2 Kn2 sinh � , �9�

and �=�iS. One of the quantities of interest is the magnitude
of the shear stress on the driven wall ��xy�y=0��=�w. From
the above solution we obtain

�w

�U0/L
= � �C

�1 + ��2 Kn2�D + �� Kn C
� . �10�

As discussed above, for sufficiently low speeds the flow
is expected to be isothermal. In fact, the argument presented
in Sec. IV for the collisionless Boltzmann equation can be
generalized in the presence of collisions11 to show that under
the linear conditions assumed here the isothermal assumption
is valid. Here we will provide a Navier–Stokes point of view:
the isothermal approximation is reasonable when the Brink-
man number Br=�U0

2 / ��T� is small, where � is the thermal
conductivity. Using the fact that for a monoatomic gas � /�
�15k / �4m� we see that Br=4mU0

2 / �15kT�=8U0
2 / �15cm

2 ��1
is automatically satisfied under linear conditions.

IV. SOLUTION IN THE COLLISIONLESS LIMIT

Let c= �cx ,cy ,cz� be the molecular velocity vector. By
assuming linearized conditions �U0�cm� we can write the
distribution function of molecular velocities as f =�F�1+��
and neglecting higher order terms in �, we obtain the linear-
ized Boltzmann equation in the collisionless approximation,1

��

�t
+ cy

��

�y
= 0. �11�

Here

F = � 1


cm
2 �3/2

exp�−
cx

2 + cy
2 + cz

2

cm
2 � �12�

is the equilibrium Maxwellian distribution function. The

macroscopic velocity in the x direction is obtained from
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u =
 cx�F dc �13�

when the solution for � is established. The validity of the
constant density and temperature assumption can be verified
from the solution �to be obtained below� which will be seen
to be an odd function of cx. This property of the solution also
means that the mass flux to the wall remains equal to its
equilibrium value and thus the linearized boundary condi-
tions at the two walls can be written as11

� =
2cxU

cm
2 , cy � 0 at y = 0, �14�

� = 0, cy 
 0 at y = L . �15�

The solution

�̃ =
2cxŨ

cm
2 exp�−

sy

cy
�, cy � 0, �16�

�̃ = 0, cy 
 0 �17�

is obtained by using the Laplace transform technique. Here s
is the Laplace variable and � denotes the Laplace transform
of a function. It can be observed that the solution is an odd
function of cx, confirming our a priori assumption of isother-
mal, constant density flow. Using �16� and �17� into �13� we
obtain

ũ =
Ũ
�




��0
exp�− ��2 +

sy

cm�
��d� . �18�

Taking the inverse Laplace transform of this equation leads
to

u =
U0

�




y/�cmt�

�

sin��t −
�y

cm�
�exp�− �2�d� . �19�

In steady state the solution is given by

u =
U0

�

Im
exp�i�t�


0

�

exp�− ��2 +
i�y

cm�
��d�� . �20�

One would expect that “ballistic Stokes layers” will ap-
pear in the limit of high “ballistic Stokes number” Sb

=�L /cm. In this limit the above integral can be approximated
using the asymptotic expansion,15



0

�

exp�− ��2 +
�

�
��d� =�


3
exp�− 3��

2
�2/3�

� 
1 −
1

36
� 2

�
�2/3

+
25

2592
� 2

�
�4/3

+ …� �21�

suitable for large values of �. From this equation, it appears
that good approximations can be obtained for ��2 by keep-
ing only the first term in the expansion. Thus, for Sby /L

�2 we obtain
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u =
U0

�3
exp�−

3

2
�Sb

2
�2/3� y

L
�2/3�

�sin��t −
3�3

2
�Sb

2
�2/3� y

L
�2/3� . �22�

This expression explains recent DSMC results reporting a
nonconstant wave speed and a signal decay that is “not ex-
actly exponential.”1

If we define a ballistic Stokes layer thickness � to be the
distance from the wall to the location where �u� drops to
0.01U0, we obtain

� =
8.9

Sb
L . �23�

Thus, a bounded layer will form for Sb�10. Note, however,
that this expression assumes the existence of a wall at y=L
such that Kn�1. A more general relation can be obtained by
writing

� =
8.9cm

�
=

8.9�


2

�

��c
, �24�

where �c=� / c̄ is the collision time and c̄= �2/�
�cm is the
mean molecular speed. We thus expect a ballistic bounded
layer will form in a domain of arbitrary length if ��c�10
�and L���. In this case, the relevant length scale is ����� as
given above and not L.1

To treat the low frequency limit analytically we use a
series expansion15 of integral �20� suitable for Sby /L�1 to
obtain

u =
U0

2
�1 − �
Sb

y

L
+ Sb

2� y

L
�2�sin �t

−
U0

�

Sb

y

L
�1 −

3

2
�̃ − ln�Sb

y

L
��cos �t , �25�

where �̃=0.577… is Euler’s constant. Retaining up to
second-order terms in the expansion leads to an accurate rep-
resentation of the integral up to Sby /L�0.4.

Finally, the shear stress can be calculated from

�xy = �
 �cx − u�cy�1 + ��F dc = �
 cxcy�F dc �26�

using the appropriate asymptotic expansions.15 Of particular
interest in this case is the magnitude of the shear stress at the
driven wall

�FM =
1

�U �2kT
, �27�
w 2 0


m
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which is independent of the oscillation frequency and equal
to the steady free-molecular value.1 The superscript FM de-
notes free molecular. Using Eq. �27� we can write

�w
FM

�U0/L
=

1

2Kn
. �28�
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V. COMPARISON WITH DSMC SIMULATIONS AND
DISCUSSION OF RESULTS

We performed direct Monte Carlo simulations3 to verify
the theoretical results of Secs. III and IV. Standard16 DSMC
techniques were used. Figures 2 and 3 show a comparison

FIG. 2. Velocity profile comparison
for Kn=0.1,S=4. The theoretical re-
sult �Eq. �5�� obtained using the
second-order slip model of Sec. III A
is shown as a solid line. DSMC simu-
lations are shown in stars. The dashed
vertical lines denote the extent of the
Knudsen layer �which starts at the
wall�, and thus enclose the region
where the DSMC result �u� is directly
comparable to the Navier–Stokes re-
sult �û�.

FIG. 3. Velocity profile comparison
for Kn=0.2,S=2. The theoretical re-
sult �Eq. �5�� obtained using the
second-order slip model of Sec. III A
is shown as a solid line. DSMC simu-
lations are shown in stars. The dashed
vertical lines denote the extent of the
Knudsen layer �which starts at the
wall�, and thus enclose the region
where the DSMC result �u� is directly
comparable to the Navier–Stokes re-
sult �û�.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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between DSMC results �u� and those obtained using the
second-order slip model �û�. The figures also indicate the
width of the Knudsen layer wherein the Navier–Stokes pro-
file �û� should not be expected to match the DSMC solution
�u�. These figures clearly indicate that part of the challenge
in using a second-order slip model lies in the interpretation
of results; provided the existense of the Knudsen layer is
accounted for, the agreement between the DSMC and NS
results is very good.

Interpretation of the results becomes more challenging
for Kn�0.3 where uKN�0 everywhere in the physical do-
main and a Knudsen layer becomes difficult to define �see
Fig. 4�. In this case, knowledge of profile û is not sufficient
to describe u anywhere in the physical domain. However, the
second-order slip model remains accurate and useful beyond
Kn�0.3. We claim that the second-order slip model remains
accurate because it is correctly capturing all quantities that
the Navier–Stokes description is expected to describe,
namely, û and the stress field �for the latter see Fig. 8�. The
fact that û is correctly captured beyond Kn�0.3 is inferred
from the fact that when a correction for the Knudsen layer
contribution is added to û �using Eq. �3��, the bulk flow
velocity is in excellent agreement with DSMC results for a
number of flows.9 Although explicit knowledge of uKN

would have been preferable, this would require solution of
the Boltzmann equation. The value of the second-order slip
model discussed here lies in its ability to provide an accurate
description of the Navier–Stokes part of the flowfield, the
true �Boltzmann� stress field and the average effect of the
Knudsen layer �see Eq. �3�� without requiring solution of the
Boltzmann equation.
Figure 5 shows a comparison between the theoretical
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result �22� and DSMC simulations for Kn=10,Sb=19.9. Fig-
ure 6 shows a comparison between the theoretical result �22�
and DSMC simulations for Kn=5,Sb=9.9. Both figures
show that in the Sb�1 limit the agreement is very good
�except when y /L→0 as expected� and the effect of molecu-
lar collisions appears to be very small. On the other hand, the
comparison between the collisionless theory and DSMC
simulations in Fig. 7 shows that the effect of collisions is not
completely negligible at Kn�10 in the Sb�1 limit. This is
expected since the very high frequencies ���c≫1� present
for Sb�1 have the effect of reducing the importance of mo-
lecular collisions.

A comparison between DSMC results and the theoretical
results for the wall shear stress is given in Fig. 8. Compari-
sons for S=1, 2, 4 as well as the quasistatic case1 of S

0.25 for 0.1�Kn�20 were performed. Note that although
S ceases to be the relevant parameter for characterizing the
oscillation frequency in the high Knudsen number limit, we
take advantage of the fact that �w is independent of � �and
thus Sb� in this limit to avoid introducing Sb as an additional
parameter into the figure. However, it is important to note
that the quasistatic results �S�0.25� have been obtained by
steady calculations and thus they correspond to Sb�1, while
the results for S=1, 2, 4 correspond to Sb�1. Therefore the
results for S�0.25 support our previous findings �see Fig. 7�,
namely, that collisions in the Kn�1 limit are more important
for Sb�1 than for Sb�1.

A number of additional observations can be made from
Fig. 8: The results show that the second-order slip model of
Sec. III accurately captures �w up to Kn�0.4 for all S for
which the oscillation frequency remains significantly smaller

FIG. 4. Velocity profile comparison
for Kn=0.4,S=1. The theoretical re-
sult �Eq. �5�� obtained using the
second-order slip model of Sec. III A
is shown as a solid line. DSMC simu-
lations are shown in stars. Kinetic ef-
fects are important in the whole com-
putational domain at this Knudsen
number making direct comparison be-
tween u and û difficult.
than the molecular collision frequency. In fact, the second-
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order slip model predictions in some cases remain accurate
up to Kn�1. The fact that in steady �and therefore also
quasisteady� Couette flows the first-order slip-flow relation
describes the stress field fairly accurately has been observed
before,17 and is thought to be due to the simplicity of the
problem. At S=1 the curvature present in the flow decreases
Downloaded 19 Dec 2005 to 18.80.2.80. Redistribution subject to AI
with increasing Knudsen number; this may explain why the
agreement extends to such high Knudsen numbers. For S
�1 the agreement does not extend beyond Kn�0.4, but it
should also be kept in mind that as S increases the oscillation
frequency approaches the molecular collision frequency �S

FIG. 5. Velocity profile comparison
for Kn=10,Sb=19.9. The theoretical
result �Eq. �22�� obtained using the
collisionless Boltzmann formulation
of Sec. IV is shown as a solid line.
DSMC simulations are shown in stars.

FIG. 6. Velocity profile comparison
for Kn=5,Sb=9.9. The theoretical re-
sult �Eq. �22�� obtained using the col-
lisionless Boltzmann formulation of
Sec. IV is shown as a solid line.
DSMC simulations are shown in stars.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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=�2��c /Kn�.18 In particular, the conditions �S=2,Kn=0.4�
and �S=4,Kn=0.2� correspond to ��c=0.32 while �S
=4,Kn=0.4� corresponds to ��c=1.28. Given this, it is ac-
tually remarkable that the second-order slip model remains
reasonably accurate in regimes in which it would normally
not be expected to be valid and where alternative solution
methods are orders of magnitude more computationally ex-
pensive. We also use the data of Fig. 8 to perform a com-
parison of the present second-order slip model with other
Downloaded 19 Dec 2005 to 18.80.2.80. Redistribution subject to AI
such models; this is given in Fig. 9. This figure shows that
both Schamberg’s ��=1,�=5
 /12� �Ref. 19� and Cercig-
nani’s �BGK� ��=1.1467,�=0.9756� �Ref. 10� models fail
to match the ability of the present model to describe all
DSMC data in the relevant Kn−S parameter space and be-
yond.

We close by noting that our study serves to demostrate
the use and applicability of a second-order model as well as
the peculiarities that arise from the existence of a Knudsen

FIG. 7. Velocity profile comparison
for Kn=10,Sb=0.2. The theoretical re-
sult �Eq. �25�� obtained using the col-
lisionless Boltzmann formulation of
Sec. IV is shown as a solid line.
DSMC simulations are shown in stars.

FIG. 8. Normalized wall shear stress
magnitude as a function of the Knud-
sen number. Symbols denote DSMC
results. Solid lines denote the second-
order slip model result �Eq. �10��.
Dashed line denotes the collisionless
result �Eq. �28��. See text for
discussion.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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layer that may not be neglected. Additionally, this study pro-
vides a validation of the second-order slip model, providing
information on the limits of applicability of this model both
in terms of the Knudsen number as well as the proximity of
the oscillation frequency to the molecular collision fre-
quency.
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