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Variance reduction for Monte Carlo solutions of the Boltzmann equation
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We show that by considering only the deviation from equilibrium, significant computational savings
can be obtained in Monte Carlo evaluations of the Boltzmann collision integral for flow problems
in the small Mach numbefMa) limit. The benefits of this variance reduction approach include a
significantly reduced statistical uncertainty when the deviation from equilibrium is small, and a
flow-velocity signal-to-noise ratio that remains approximately constant with Ma in th€ Miamit.

This results in stochastic Boltzmann solution methods whose computational cost for a given
signal-to-noise ratio is essentially independent of Ma for<lg our numerical implementation
demonstrates this for Mach numbers as low a®.1Dhese features are in sharp contrast to current
particle-based simulation techniques in which statistical sampling leads to computational cost that is
proportional to Ma?, making calculations at small Ma very expensive2@05 American Institute

of Physics[DOI: 10.1063/1.189921)0

Interest in numerical solution of the Boltzmann dresses high-speed flows; in this method, the collision inte-
equation? has recently been revived in connection withgral is evaluated by a Monte Carlo sampling of
modeling gaseous flows is small-scale devigeiroelectro-  representative collisions in a fashion which closely re-
mechanical systemsvhere the Navier—Stokes description is sembles the collision process in DSMC.
no longer valid®* This new regime of interest is typically In this Letter we report on significant computational im-
characterized by problems exhibiting small deviations fromprovements obtained by exploiting the fact that for low-
equilibrium; a typical example, and one which we will use speed flows the deviation from equilibrium is small. More
throughout this Letter as an archetypal problem, is lowspecifically, we can construct methods that are significantly
speed—i.e., low Mach number—flow. Although these flowsmore efficient by focusing the computational effort on calcu-
are in general more amenable to Boltzmann equation analyating the value of the collision integral due to tHeviation

sis due to the possibility of linearized approaches, theyrom equilibrium. This approach falls in the broad category
present significant challenges to the prevalent Boltzmangg yariance reductiof techniques.

simulation tool, known as the direct simulation Monte Carlo Solving for the deviation from equilibrium has been con-

(DSMC)' DSMC is a stochastic simulation methSdfor  jgered by Cheremisthin a different context, namely, as a
solving' the nonlinear Boltzmann equation. Unfortunately, method for removing the stiffness in explicit time integration

DSMbC ";‘l not.wr:all Siu'ted to the S|mul?t|(r)]n of low I\/Ilach of deterministicdiscrete velocity approximations of the Bolt-
nhumber flows: the slow convergence of the statistical sams ., equation in the limit of small mean-free path. Cher-

pling of macroscopic observablém this case the flow ve- emisin’s deterministic approach, coupled to his interest in

locity) results in a rapid increase in the number of Sample%igh-speed flows where little, if any, computational gain is

required as the magmtgde of these quantltles decréa@e.s.. obtained by this decomposition is, perhaps, the reason that
the other hand, DSMC is very attractive due to the simplicity . o . S

L . . : . the potential of considering the deviation from equilibrium
of its intuitive particle-tracking formulation, which not only

appeals to users, but also endows this method with a signif}'—vIthln an importance sampling framework has not been re-

cant efficiency advantageee below alized before. :

The objective of the work presented here is to develop Here we con5|d_er a hard-sphere gas, althou_gh our: ap-
an approach which addresses the limitations of Monte Cari§0ach can be easily extended to other interaction models
approaches in the case of low-speed flows commonly foun g v.arla.lble. hard-sphere moﬁe.ILet f(r,c,t) be the ve-
in small scale devices. Our approach has focused on efficiefRC1ty distribution function normalized by a reference num-
methods for evaluating the collision integral since, in curren€r_densityn, and most probable molecular speecj,
approaches, it is by far the most time-consuming part of the V2KTo/m, wherek is Boltzmann’s constantn is the mo-
calculation. In particular, we focused on preserving the inlecular mass, and’, is a reference temperature. Here
gredients we feel make DSMC such a powerful and succes&(X,y,2) is the position vector in physical space,
ful approach, namely, simplicity and the efficiency stemming=(Cx,Cy,C,) is the molecular velocity vector, artdis time.
from the evaluation of the collision integral by importance These quantities are nondimensionalized by the mean-free
sampling, while improving upon the performance of DSMC path A=1/(y27n,d?), most probable molecular speed, and
and similar approaches. An example of such a “similar” apthe molecular collision timer=\m\/(2c,), respectively,
proach is theA-e method of Tan and Varghege/yhich ad- whered is the hard-sphere molecular diametén the ab-
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sence of external body forces we write the Boltzmann equa- df Jar , e
tion in the following form: —| (rch= 1 f f f (81 + 8 =8, — 6)(2f¥F 1
coll

dt
— 5y 200 43
of Vot of { g} e " + 99 god?Qdv, Py, (5)
ot 2 o [dt]g since the integral involving"Bf}'® is identically zerqfV® is
an equilibrium distributiop and interchangingy andv; has
no effect on the physical situatidine., the integrals involv-
df H MB ¢d dsMB : :
{_] fo) = fff(51+ 5 - 6, &, ing fMBfY and f4f)® are equa)l Separating terms gives
dt coII
df ' MB
><gcrd2()d3v1d3v, (2) a C0|| r,c ,t) (51+ o - 51 5)(2f

— dy £d 2 3
where o=(4y2m)™ is the nondimensional differential colli- + 1) figod®0dv,dy. (6)

sion cross section,for3he}rd spherég,:f(r .C1,t), 8=8°(v  Using the same approach as in the preceding section, we can
=€), 6;=6°(v1=C), 6;=5°(v;~C), 8'=5°(v'~¢), v,vi are the  approximate integral6) by the following single sum:
precollision velocities,g=|v-v,| is the magnitude of the

relative velocity vector, and’,v; are the postcollision ve- df : ,

locities, related to the precollision velocities through the dt w”(r Ch) = NE( A% d ~ 8217 d)
scattering angl€). Integration in velocity space extends e o §

from — to o unless otherwise stated; similarly, the solid Xsgr(2fi™ + f{)sgn(f])gioi, (7)

angle integration is over the surface of the unit sphere. The
formulation given above can be obtained by considering the,
weak form of the collision mtegréland choosing the delta

which employs importance sampling by selecting the veloc-
ty v with probability [2fMB(v) +fd(v)|/ [|2fMB(v) +f9(v)|d3v

function 5%(v—c) as a test functiof. and v, with probabilty [fé(vy|/SIf4v)ld*v. Here N
Equation(2) and its importance sampling interpretation =Jl2f (v)+f (v)|d3 X []f9(v)|d®v and sgix=0)=+1.
motivate a number of Monte Carlo solution schefieslud- As will be seen below, the variance reduction in cases

ing particle schemeésuch as DSMEand the method pre- where fd<fMB is considerable to the extent that at Ma

sented here. Let us write E€@) for the collision integral as = ©(0.1) this approach provides considerable computational
savings compared to direct methods which (#BeThis is to

be expected, since this approach allows one to avoid consid-

[g] (r,c,t) :/\/QH f f f (8 +8 — 8- 5)m ering a large number of physically occurring collisioftise
dt Jeon 4 N? vast majority forf<fMB) with no net effectAlso note that
% dod2Qd3y. o the above relations hold fany Maxwell-Boltzmann distri-
god dv,dy, ® bution. In other wordsf“® may be chosen to vary as a
where N'=[fd%. Noting thatf/\ is anormalizedprobabil-  function of space and time so as to maximize computational

ity distribution function, expressiof8) lends itself to Monte  efficiency by minimizingf - fMB. Applying this approach to a
Carlo evaluation using importance sampli’r%]vhich is typi-  flow where f9«fM8 (e.g., shock waveor choosing the
cally significantly more efficient than the more straightfor- “wrong” Maxwell-Boltzmann distribution shouldot affect
ward Monte Carlo evaluations. Using importance samplingthe accuracy of the solution, only degrade its efficiency.

the collision integral can be approximated by One patrticularly desirable feature of this approach is that
the degree of variance reduction is larger for distributions
f 4aN2 m M that are ploser to the equilibrium distributigire., whenf is '
{a} (r,c,t)= ™ 4 (61;+68 = 81;-6)goy, (4  smaller in magnitude leading to a method that can practi-
coll i=1

cally capture very small deviations from equilibrium. This is

in contrast to current methodsuch as DSMCwhere asfd

where the precollision velocitieg andvy; are chosen inde- —0, fMB dominates the integrand landscape and thus leads

pendently with probabilityf/A" and f;/N, respectively, to a statistical noise which is independentfdfind a signal-

within afinite phase space volume here,M is the number to-noise ratio that decreases line&rwith decreasing Mach

of Monte Carlo samples. Considering only a finite volume ofnumber(Ma= \2/'yU where y is the ratio of specific heats

velocity space is justifiéd? in low-speed flows, provided and U is the nondimensional local velocjtyOn the other

this volume is sufficiently large. The scattering angle  hand, in the method presented here, the integrand landscape

[which does not appear explicitly i), but affects the val- and consequently the statistical effoscale withfd; conse-

ues of the collision cross section and the postcollision velociguently, asf®— 0, the statistical error decreases linearly with

ties] is chosen with uniform probability on the unit sphere. the signal leading to a constant signal-to-noise ratio.

The analogy with the collision process in DSMC is apparent. ~ We now proceed with some numerical examples and a
We now discuss the variance reduction approach probrief description of our numerical implementation; a compre-

posed here. We begin by consideringaabitrary Maxwell-  hensive discussion of numerical implementation details will
Boltzmann distributionfM® and definingfd=f-f“E, Upon  be given in a future communication. In the interest of sim-
substitution into Eq(4), we obtain plicity, Eq. (7) is evaluated by choosing precollision veloci-
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ties to lie on computational nodes; this constraint can be ! ' ‘ ‘ ' ' ' ' e
relaxed by using a suitable interpolatiaccounting for dis- 08} - DSMC L

continuities in velocity spageThe & functions in Eq.(7) are
approximated by

06
04
1/h3 if vl < h/2, ozr

. (8)
0 otherwise.

V) = ¢(v) =

u/uwall
o

We see that if we takb equal to the nodal spacing, this
will result in each “collision event” contributing to the value 04y
of the collision integral at four nodes, namely the nodes that s
are closest to each of the two precollision and postcollision
velocities. In other words, the collision integral at each node
is taken to be the average of the collision integral for veloci- 5 o4 03 o2 01 o o1 oz 03 o4 o5
ties near that node; this can be seen more clearly by consid- XL
ering the weak form of the collision integral with as a test F'(i-e%t-e’\‘f?ofvnv‘?/'Jiztﬁdv\\;:l'lo\clgogifffi'f ﬁjﬂ: 1_'318 iﬂdc thqai)r/i-:(t;tebgot\r,v Léf;sntet?]tiy
fur.]Ctlon' This appro.ach cgn aI.so be mterp.reted asa methcﬁgthod proposed here and D%/MC.W'I%”he_ga.s 'is initiglly at equilibrium.
akin to kernel density estimation, a technigue for nonpara-
metric probability distribution estimatiol?:** Higher accu-

:‘Cy candbe t%btalinid by makn:;g;smaller; _for all rt_atiutl;ts pressure driven flow problem discussed below.
iscussed in this Letter, we use the approximaignwi The approach for evaluating the collision integral pro-

Equal to tlhe _nodal sﬁpa_cmgaAlthoug? the fine spacing u_seBosed here can be applied to higher spatial dimensions di-
ere results in a sufficient degree of conservation, it is Im'rectly since it in no way depends on the dimensionality of the

portant to note that the above approximation will, in generaladvection operator. Depending on the method used, however,

lead t9 ta dnor)tc;‘]ogsirvat|ve scret_me. Thtlr?]c?lcsm? dcommol;\ ISSUfiscretization of the advection operator may require more
associated wi oltzmann soiution me a number re since discontinuities in the distribution function propa-

of approaches to remedy this have been propqsed; some Cite into the gas in the case of convex bounddries.

the more nqtab!e ones mclpdg a recent aperadwvhmh Figure 1 shows a comparison between the method pro-
noqlal contributions are distributed according to weights osed here and DSMC for a time-dependent Couette flow. In
which ensure_conservanon of mass, momen;um, and ene_rg&is test case, the gas is at equilibrium with zero velocity at
Schemes which address lack of conservation by applyin

" o th | dated distribution function h %me t=0 when the walls ak=+5 are impulsively acceler-
corrections to the nel\évy updated distribution function have,qy 1 5 velocity of +0.1. Velocity profiles are shown for
also been proposé&. This topic is not a central point of

hi K i he simpl hod d:l,3,6 and at steady state. This figure shows an excellent
tk')s work, so we will use the simpler method proposedq, g| o agreement with the velocity profiles calculated using
above. DSMC. Our results also show that higher moments of the

, Eq“uatlon (1) is scilved. t,’y splitting th.e.tlme evolqup distribution function are also accurately captured; these re-
into a “homogeneous” collision and a collisionless advectlonSuItS will be presented in a future communication

step™® The advection step is treated by a first-order finite-
volume discretizatiol (subject to a Courant stability condi-
tion); within the collision step the distribution function is ;
updated by a first-order Euler step. Fluxal boundary condi-
tions follow from specifying the distribution function for ve-
locities satisfyingn-c>0, wheren is the wall normal point-
ing into the gadi.e., corresponding to particles leaving the
wall), subject to the constraint of zero net mass flux to the
wall.* A diffuse Maxwell reflection was assumed.

A number of higher order schemes for integrating the
advection equation are available, including a fourth-order ac-
curate finite difference schethand a number of implicit
schemes<! an extensive discussion of this topic can be found  °f
in the latter reference. Second-order-accutatdime) split- 0l i
ting schemes are also possible by appropriate
symmetrizatiorf“.8 As will be seen below, the first-order
schemes used here provide adequate accuracy for the valida- o —— % =% =7 &
tion purposes of this work. An iterative method for steady- L _
state problem$’ based on the same spatial discretizationFIG. 2. Pressure-driven flow at Kn=0.8# (solid line) and Kn=4Am
and suitable for the present collision-integral evaluation(dOttEd ling. Comparison between our resul'ts gnd the ngmerlcal sol.utlons

. . (Ref. 12 of the linearized Boltzmann equatidgircles. u* is the nondi-
method has also been developed and will be presented ingensional flow velocity normalized by the nondimensional logarithmic
future communication. This method was used to solve theressure gradiert-1/P)(dP/dx)L.

so

L L L L
0.1 02 03 0.4 05
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: - — . tage associated with the use of current Monte Carlo ap-
direct method, 6400 collision events/timestep . . .
—o— direct method, 32000 collision events/timestep proaches for microscale flows, namely, the poor noise to sig-
S = - ~typical DEMC nal scaling with decreasing Mach number. More specifically,

h the approach proposed here exhibits an approximately con-

S~ stant relative uncertainty as the Mach number decreases, im-

107E S 1 plying that calculations at arbitrarily small Mach numbers
are possible at no extra cost. Computational savings com-
2 AN pared to other direct solution methods can be expected when
. the deviation from equilibrium is smallém the sense that
~. the function varianc® is smallej than the full distribution
10 . 1 function, a condition which is satisfied by a wide variety of
. flows. As a direct outcome of the present research, we envi-
: o sion a modified DSMC-like procedure which simulates only
10 10 107° 10 107 the deviation from equilibrium.

wall velocity

relative statistical uncertainty in flow velocity

FIG. 3. Relative statistical uncertainty in flow velocitgveraged over the This work was supported by Sandia Natiolnal Laboramry'

flow domain as a function of(nondimensionalwall velocity in Couette ~ The authors are grateful to Dr. M. A. Gallis for hosting

flow. Note that the number of samples required to make the statistical unp | B. during his visit at Sandia National Laboratory and for

certainty between the two methods the same scales witlsghareof the . .

ratio of statistical Uncertainties. many useful comments and d|scu55|on§. The authors would
also like to thank Dr. S. Kempka for project support.
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