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Analysis of discretization in the direct simulation Monte Carlo
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We propose a continuous-time formulation of the direct simulation Monte Carlo that allows the
evaluation of the transport coefficient dependence on the time step through the use of the Green—
Kubo theory. Our results indicate that the error exhibits quadratic dependence on the time step, and
that for time steps of the order of one mean free time the error is of the order of 5%. Our predictions
for the transport coefficients are in good agreement with numerical experiments. The calculation of
the cell size dependence, first obtained by Alexansteal. [Phys. Fluids10, 1540 (1998], is
reviewed and a correction is pointed out. ZD0O0 American Institute of Physics.
[S1070-663(100)00210-5

I. INTRODUCTION from the selection of collision partners from cells of finite

size (L). In a previous pap&it was shown that the resulting
The direct simulation Monte Carl(DSMC) has been a error is proportional to the square of the cell size, with the
very useful tool for the simulation of equilibrium and non- constant of proportionality such that cell sizes of the order of
equilibrium gas flows:” It is very attractive because it SUC- one mean free path result in errors of the order of 10%. In
cessfully “coarse grains” the molecular description to the s paper we show that DSMC commits a “discretization
hydrodynamic regime, thus offering substantial computatime” by performing an instantaneous collision of the mol-
tional efficiency advantages over “brute force” molecular ¢ jes that would have normally collided within a time step
dynamics simulations. DSMC simulations have been sﬁownm_ This shift in the collision times is shown to have two

Fof.cgtnvergebto B]?Itzrr;alnn equ;tlon.sg.lunons”m' the I'g"tt, Ofcontributions to the transport coefficients by comparing
INfinite number ot particies, and vanishing cell size and iMen gy, ith a model where collisions take place in a con-

step. However, like most computational methods, in the limit,. ; .

L o ! . tinuous fashion. First, the molecules that are close enough to
of finite discretization, numerical error contaminates the so; . I . o
lution be considered for collision during the “collide” part of the

In a recent paper, Ohwatihas shown that the DSMC ?Igor|t2rrt1h(|n the”g,éirze (Eet)riwould ha\t/.e b.e?rr:l at. a finite dis- f
procedure viewed as a splitting method applied to tthee ance It they cotlided at the proper ime, this 1S a source o

integrationof the Boltzmann equation results in a first-order €MOF similar to the finite cell size effe_ct. Sgcond, extra fluxes
accurate description of thdistribution function Ohwada are generated due to the altered trajectories of the molecules

finds that due to error accumulation, the distribution functiont@t: @s a result of the discretization, collide at times other

diverges from the correct time-evolving distribution function than their proper collision time.

. i . g . 6 . .
proportionally to the time stefit in transient problems. This ~Alexanderet al.” have shown that the effects of discreti-
is in contrast to the results of Bogomofothat had previ- Zation in space can be calculated by application of the
ously shown a second-order behavior. Green—Kubo formulatiohwhen the collision process is as-

In this paper we focus on a different class of problemssumed to be continuousA¢—0). Unfortunately, DSMC
We consider problems that are steady with respect to thdoes not lend itself naturally to the application of this formu-
molecular time scale, and thus the distribution function hagation for the calculation of the truncation error due to a finite
relaxed to a steady state. We quantify the deviation of thigime step because DSMC is a discrete-time model. In order
state from the correct nonequilibrium state by obtaining meato apply the Green—Kubo procedure we will first formulate a
sures of the deviation of the transport coefficients from theircontinuous-time model that is dynamically equivalent to
theoretical values. We will refer to the deviation of the trans-DSMC.
port coefficients from the exact Enskog values for dilute  In Sec. Il we give an overview of the dynamical steps of
gases(which DSMC reproduces in the limit of an infinite the DSMC algorithm and review the calculation for the ef-
number of particles and vanishing time step and cell)sig fect of finite cell size. In Sec. lll we quantify the two sources
the truncation error. As we now discuss, DSMC introduces &f error arising from a finite time step and show how the
truncation error due to discretization both in space and timegrror for transport coefficients can be calculated as a function

Truncation error from discretization in space resultSyf the time step. In Sec. IV we compare our predictions with
simulation results, and finish with some concluding remarks
3Electronic mail: ngh@mit.edu in Sec. V.
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. ) I ouf of moleculei, Au; is the change in the velocity of particie
DSMC collision point o (ai:4:) in the x direction during coIIis%on, and den03t1e5 tﬁue sum
Vi over all collisions, each collision occurring atand involv-
ing molecules andj. The distancey;—y;) between the two
molecules at collision introduces a potential contribution that
is absent in the Enskog theory of dilute gases.
The viscosity is calculated using the Green—Kubo for-
mulation as applied to hard spheres by Wainright,

_ 1f°°d
7= VkT) o 93

whereV is the volume, andg is a sufficiently long smooth-
P ing time (several time stepsSubstitution of Eq(1) into Eq.
® (z5,9;) (2) yields

(.’L'?, yzo) O,

1 [t
t_Jo dt I3, (t+9) |, 2)

FIG. 1. Schematic of a representative collision between particles in DSMC n= 77K+ 77C+ 77P, 3

for cell sizeL—0. The particles collide at=At/2. . . .
where the superscript§, C, P denote kinetic, cross, and po-

tential terms. The kinetic term is the Chapman—Enskog vis-
cosity of a dilute gaghard spheres of diameter)®

Il. DSMC ALGORITHM AND CELL SIZE DEPENDENCE 5.

OF TRANSPORT COEFFICIENTS WK:EmF)\21 (4)

In what follows we will limit our illustration to two di- - ) o ]
mensions; generalization to three dimensions follows diWherel'=2a"n“y7kT/mis the collision rate per unit vol-
rectly. Consider two particles, andj, that collide at time UMe, and\=1/(y2nwa?) is the mean free path.
stepn (Fig. 1); let their initial locations(at the start of the The cross term is zero because particle velocities are
time step be x°,y°) and (x? ,y?). Let 7 be the time variable uncorrelated with their positiorfsThe potential term is given
over which DSMC coarse grains, that is=mod(,At),
wheret=nAt+ 7 is time. The above particles travel with m2T
velocitiesv; andv;, and atr=At/2 (when collisions take np=m<[(yi—y1)Aui]z)c
place will be in the same cell so that they are chosen as
collision partners. After colliding, the particles acquire new B ) )
velocitiesv| andvj’ and travel ballistically for the remainder _ﬁ«yi_yj) )o((AU)%)c, ()
of the time stepr=At/2 to their final positionsx/ ,y/) and
(x].y]). Note that in our notation a time step starts A2
before the instantaneous collision process and end&tl/

2

where( ). denotes average over collisions. For a gas of uni-
o form density, ((y;—y;)?).=L?/6. We would like to point

after the instantaneous collision process. This being purely g“t that((Au)%z 3(kT/m) '”Steg‘d of the 0r|g|n§1I Vall_Je of
matter of convention has no effect on the DSMC dynamics.§(kT/m_) givenin A_Iexa}ndelet aI.,. anq thus the viscosity as
particles travel ballistically between collisions for a tim¢ a function of cell size in DSMC is given by
(we exclude the presence of external fields that may intro- 5 mkT, 16 L2
duce particle accelerationand then instantaneous collisions n=—>\ —( 1+ — —) :
. . . 160 T 451 )2

accounting for the whole time intervaAt take place.
Our convention merely introduces a shift in the globalThe expression for the thermal conductivity given in the pa-
time counter with collisions taking place att  per by Alexandeet al. is not affected by this correction.
=At/2, 3At/2, 5At/2,..., with ballistic motion in be-
tween, instead of=0, At, 2At, ..., with ballistic motion
in between.

In the limit thatAt— 0 we can neglect the error from the
discrete nature of this algorithm and use the Green—Kubd@. Equivalent continuous-time model

theory to evaluate the effect of cell siZe on the transport We now proceed to examine the case whetds finite

coefﬁc@ents. we revigw here the cal_cula_ltion of the Vi§COSityand thus the DSMC algorithm becomes discrete in time. For
coeff|C|er_1t asa fungtmn of the cell 5|62e n orc_ier {0 point OUtye apove formalism to be applied we propose a continuous-
a correction. Following Alexandeat al.” we define the stress time model that is dynamically equivalent to DSMC.
tensordyy(t) for a hard sphere system, Consider a model where the particles that according to

N DSMC would have collided at=At/2 (that is, atr=At/2

Jy(D=m[ X upi+ > Au(yi—y)d(t—to)|, (1) were in the same cellinstead collide(each colliding pair

=t ¢ independently at t, that lies uniformly betweenr=0 and
whereN is the number of moleculesn is the mass of the r=At. The distribution function for the particle location
moleculesy;, v; are thex andy components of the velocity relative to the DSMC collision point at collisionrE&t.) de-

(6

lll. TIME-STEP DEPENDENCE OF TRANSPORT
COEFFICIENTS
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pends on the difference between the collision timand the o (zf, yif)
DSMC collision timer=At/2: We can write the single par- DSMC collision point

ticle distribution function(in one dimensionin the case that (@2,49) o /

the collision cell is centered ox=0 as Vi

L/2 - - -
Fxite) = f ~ pRacitdk @)

where p(x) is the probability(uniform in this approxima- Ar;

tion) for a particle to be in the cell at, andq(x|x;t.) is the
probability for a particle that is at at 7= At/2 to be found at

. . L 0 .0
x at 7=t,. Due to the Maxwellian velocity distribution (z},97)
q(x|x;t,) has a particularly simple form that leads to
m L2 1 V;' ;s
f(x;ty)= f — ' z! o
¢ 27kT(t,— At/2)2) -1l (27,97
~5 FIG. 2. Schematic of a representative collision between particles in the
- m(X—X) ~ ®) continuous-time model. The discontinuous jump in the trajectories repre-
2KT(t,— At/2)2 ! sents the shift occurring along with the collision.

wherek is Boltzmann’s constant, antl is the temperature.

The above expression reduces to a Maxwellian distribution

(centered ak=0) if the cell sizeL—0. We can see that a This shift introduces mass, momentum, and energy fluxes
finite cell size modifies the particle distribution function and, that contribute to “enhanced” transport coefficients as

thus, strictly couples to the finite time-step truncation errorShown below.

In the interest of simplicitythe effect of finite cell size can

be fully quantified if the algebraic complexity is undertaken B- Calculation of transport coefficients

and because the error due to a finite cell size in the limit  \we now present the calculation of the viscosity of the

At—0 is known? we will take L— 0. In this limit the rela-  pSMC-equivalent continuous-time model as a function of

tive distance in they direction between a collision pair at the time step. Application of the Green—Kubo theory implies

collision can be written as that steady problems are considered, at least at the autocor-
relation decay time scale. This is not a very restrictive as-
Yi=yp)={te= 5|9y (9 sumption since typical hydrodynamic evolution takes place

at time scales much longer than the latter time scale.
The momentum flux resulting from the particle shift can
be written as

where g=v;—v; is the precollision relative velocity of the
particles.

Figure 2 indicates that for this model to be dynamically
identical to the DSMC implementation, colliding particles
need to be shifted after their collisions by an amount that ~ J§ = m>y, (U Ay;+ujAy)) 8(t—t)
corrects for their ballistic motion with postcollision veloci- ¢
ties instead of the precollision velocities for the appropriate At
amount of time {,— At/2). The shift ensures that the mol- =m2 (tc— >
ecules have final positions{(,y{) and (] ,y|) that are the ¢
same as for DSMQFig. 1). The amount each molecule
needs to be shifted is given by

AvigyS(t—to), (11)

where g’=vi’—vj’ is the postcollision relative velocity be-
tween particle and particlg. Shifting the particles before or

_ Aty after collision results in the same total potential contribution
Ari_<t°_ ?)(Vi Vi) 10 i the stress tensor:
[N
Jyy(t)=m Z’l uiUi+§C: (Aui(yi_yj)—i'ui,Ayi_"uj’ij)‘S(t_tc)} (12
[N
=m Zl UWH‘; [Aui(yi+Ayi_(yj+AYj))+uiAyi‘I'ujij]&(t_tc)} (13
[ At
=m ;1 uiui+§ (tc— 7)(Auigy+Avig)’()5(t—tc)} (14)
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Collisionless Limit

fected by the time step as we would normally expect: The
virial  (Au;(y;—y;)+Uu/Ay;+ujAy;). is proportional to
((te— At/2)).=0.

A similar calculation for the thermal conductivity
yields

75k kT
K= —
64g2 ¥ ™M

(20

64 (CoAt)?
T 2 |

The diffusion coefficient can be calculated using the Ein-
stein formula

D=2

1N
N > (xi(t>—xi<0>>2) : (21)
I
A where a long time limit is assumed. Applying this formula to
FIG. 3. Error in coefficient of viscosity as a function of the scaleg\/c,) the continuous-time model reveals that the sfit. (10)]
time step(from Ref. 8. Circles denote the normalized error in momentum for poth colliding particles required for every collision, leads
flux (E}) in the simulations of Garcia and Wagr(&ef. 8, and the solid line to a “potential-like” term Ar»é‘(t—t )=(t - AtIZ)AV- 6(t
is the prediction 0f19). . ImA ¢ & e
—t.) that yields an error proportional té\¢)~. The resulting
expression for the diffusion coefficiet is

2
Here .Avi is the changr—; .in velocity of particle in the y D= 3 /k_T 1+i (CoAt) , (22)
direction due to the collision. 8ng? ¥ ™M 27w \2

Application of the Green—Kubo formulé2) again re- . .
sults in kinetic, cross, and potential terms. The kinetic term iswheren IS the number density.
again the dilute gas terfEq. (4)]. The cross term is zero

because DSMC is “centered” in time: The contribution is IV. COMPARISON WITH NUMERICAL SIMULATIONS

proportional to{(t.— (At/2)). and hence zero because Garcia and Wagn@performed steady state and transient
At At numerical simula}tions in a variety of_ configuratigns to mea-
J (tc_ —|dt.=0. (15)  sure the truncation error as a function of the time step. In

0 2 those simulations the cell size was taken td_be\/5 so that

the cell size contribution is negligible, and the time step was

varied fromAt=2\/(2cy) to At=16\/cy. The error is de-

2> fined as the normalized deviation in the flux corresponding to
Cc

The potential contribution can be written as

2
mT
P
< (16) the transport coefficient with respect to the exact result. The

exact result is taken to be a very accurate simulation with
This expression assumes that there is no correlation beyontit=X\/(8c).

the first collision between molecules. The uniform collision  Figure 3 shows the comparison between the numerical

U

At ,
te— > (Aujgy+Avigy)

in time gives results of Garcia and Wagner for the viscosity coefficient and
At)2 (AD)? the theoretical predictiofEq. (19)] for steady Couette flow.
<( — _) > = (17) The agreement is very good fart—0. For At>\/c, the
2 12 error deviates from the quadratic time step dependence. Gar-

cia and Wagnérmpoint out that this is due to the upper bound
set on the transport coefficients by the collisionless limit that
16/ KkT)\? is indicated on the same graph. The predictions given here
((Aug,+ Avg;)2>c=€<ﬁ) (18 for the thermal conductivityEq. (20)] and diffusion coeffi-
cient [Eqg. (22)] are also in very good agreement with the
The expression for the viscosity including the time-stepnumerical results of Garcia and Wagher steady state. The

whereas

contribution is thus transient calculations of Garcia and Wagner also exhibit a
2 quadratic error in the time step; however, no comparison
n= 5 A /ka/ + 32 (CoAt) (190  With our results was presented.
1602 V 7 |7 150m )2 |’

wherecy= y2kT/m is the most probable speed. V. CONCLUDING REMARKS

The calculation of other transport coefficients follows We have presented a formulation that allows the calcu-
along the same lines. Potential contributions are proportiondation of the transport coefficient dependence on the time
to ((t.— At/2)%).=(At)?/12 and cross contributions vanish step. The calculations predict that the error in trasport
because DSMC is centered in time. The pressure is unatoefficientss of orderAt2, and that forAt~\/c, the trun-
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