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Analysis of discretization in the direct simulation Monte Carlo
Nicolas G. Hadjiconstantinoua)

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139

~Received 15 October 1999; accepted 7 June 2000!

We propose a continuous-time formulation of the direct simulation Monte Carlo that allows the
evaluation of the transport coefficient dependence on the time step through the use of the Green–
Kubo theory. Our results indicate that the error exhibits quadratic dependence on the time step, and
that for time steps of the order of one mean free time the error is of the order of 5%. Our predictions
for the transport coefficients are in good agreement with numerical experiments. The calculation of
the cell size dependence, first obtained by Alexanderet al. @Phys. Fluids10, 1540 ~1998!#, is
reviewed and a correction is pointed out. ©2000 American Institute of Physics.
@S1070-6631~00!00210-5#
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I. INTRODUCTION

The direct simulation Monte Carlo~DSMC! has been a
very useful tool for the simulation of equilibrium and no
equilibrium gas flows.1,2 It is very attractive because it suc
cessfully ‘‘coarse grains’’ the molecular description to t
hydrodynamic regime, thus offering substantial compu
tional efficiency advantages over ‘‘brute force’’ molecul
dynamics simulations. DSMC simulations have been sho3

to converge to Boltzmann equation solutions in the limit
infinite number of particles, and vanishing cell size and ti
step. However, like most computational methods, in the li
of finite discretization, numerical error contaminates the
lution.

In a recent paper, Ohwada4 has shown that the DSMC
procedure viewed as a splitting method applied to thetime
integrationof the Boltzmann equation results in a first-ord
accurate description of thedistribution function. Ohwada
finds that due to error accumulation, the distribution funct
diverges from the correct time-evolving distribution functio
proportionally to the time stepDt in transient problems. This
is in contrast to the results of Bogomolov5 that had previ-
ously shown a second-order behavior.

In this paper we focus on a different class of problem
We consider problems that are steady with respect to
molecular time scale, and thus the distribution function h
relaxed to a steady state. We quantify the deviation of
state from the correct nonequilibrium state by obtaining m
sures of the deviation of the transport coefficients from th
theoretical values. We will refer to the deviation of the tran
port coefficients from the exact Enskog values for dilu
gases~which DSMC reproduces in the limit of an infinit
number of particles and vanishing time step and cell size! as
the truncation error. As we now discuss, DSMC introduce
truncation error due to discretization both in space and ti

Truncation error from discretization in space resu

a!Electronic mail: ngh@mit.edu
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from the selection of collision partners from cells of fini
size (L). In a previous paper6 it was shown that the resulting
error is proportional to the square of the cell size, with t
constant of proportionality such that cell sizes of the order
one mean free path result in errors of the order of 10%
this paper we show that DSMC commits a ‘‘discretizati
crime’’ by performing an instantaneous collision of the mo
ecules that would have normally collided within a time st
Dt. This shift in the collision times is shown to have tw
contributions to the transport coefficients by compari
DSMC with a model where collisions take place in a co
tinuous fashion. First, the molecules that are close enoug
be considered for collision during the ‘‘collide’’ part of th
algorithm~in the same cell! would have been at a finite dis
tance if they collided at the proper time; this is a source
error similar to the finite cell size effect. Second, extra flux
are generated due to the altered trajectories of the molec
that, as a result of the discretization, collide at times ot
than their proper collision time.

Alexanderet al.6 have shown that the effects of discre
zation in space can be calculated by application of
Green–Kubo formulation7 when the collision process is as
sumed to be continuous (Dt→0). Unfortunately, DSMC
does not lend itself naturally to the application of this form
lation for the calculation of the truncation error due to a fin
time step because DSMC is a discrete-time model. In or
to apply the Green–Kubo procedure we will first formulate
continuous-time model that is dynamically equivalent
DSMC.

In Sec. II we give an overview of the dynamical steps
the DSMC algorithm and review the calculation for the e
fect of finite cell size. In Sec. III we quantify the two sourc
of error arising from a finite time step and show how t
error for transport coefficients can be calculated as a func
of the time step. In Sec. IV we compare our predictions w
simulation results, and finish with some concluding rema
in Sec. V.
4 © 2000 American Institute of Physics
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II. DSMC ALGORITHM AND CELL SIZE DEPENDENCE
OF TRANSPORT COEFFICIENTS

In what follows we will limit our illustration to two di-
mensions; generalization to three dimensions follows
rectly. Consider two particles,i and j, that collide at time
stepn ~Fig. 1!; let their initial locations~at the start of the
time step! be (xi

0 ,yi
0) and (xj

0 ,yj
0). Let t be the time variable

over which DSMC coarse grains, that ist5mod(t,Dt),
where t5nDt1t is time. The above particles travel wit
velocities vi and vj , and att5Dt/2 ~when collisions take
place! will be in the same cell so that they are chosen
collision partners. After colliding, the particles acquire ne
velocitiesvi8 andvj8 and travel ballistically for the remainde
of the time stept5Dt/2 to their final positions (xi

f ,yi
f) and

(xj
f ,yj

f). Note that in our notation a time step starts 1/2Dt
before the instantaneous collision process and ends 1Dt
after the instantaneous collision process. This being pure
matter of convention has no effect on the DSMC dynam
particles travel ballistically between collisions for a timeDt
~we exclude the presence of external fields that may in
duce particle accelerations! and then instantaneous collision
accounting for the whole time intervalDt take place.
Our convention merely introduces a shift in the glob
time counter with collisions taking place att
5Dt/2, 3Dt/2, 5Dt/2, . . . , with ballistic motion in be-
tween, instead oft50, Dt, 2Dt, . . . , with ballistic motion
in between.

In the limit thatDt→0 we can neglect the error from th
discrete nature of this algorithm and use the Green–K
theory7 to evaluate the effect of cell sizeL on the transport
coefficients. We review here the calculation of the viscos
coefficient as a function of the cell size in order to point o
a correction. Following Alexanderet al.6 we define the stres
tensorJxy(t) for a hard sphere system,

Jxy~ t !5mF(
i 51

N

uiv i1(
c

Dui~yi2yj !d~ t2tc!G , ~1!

whereN is the number of molecules,m is the mass of the
molecules,ui , v i are thex andy components of the velocity

FIG. 1. Schematic of a representative collision between particles in DS
for cell sizeL→0. The particles collide att5Dt/2.
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of moleculei, Dui is the change in the velocity of particlei
in the x direction during collision, and(c denotes the sum
over all collisions, each collision occurring attc and involv-
ing moleculesi andj. The distance (yi2yj ) between the two
molecules at collision introduces a potential contribution t
is absent in the Enskog theory of dilute gases.

The viscosity is calculated using the Green–Kubo f
mulation as applied to hard spheres by Wainright,7

h5
1

VkTE0

`

dsF 1

ts
E

0

ts
dt Jxy~ t !Jxy~ t1s!G , ~2!

whereV is the volume, andts is a sufficiently long smooth-
ing time ~several time steps!. Substitution of Eq.~1! into Eq.
~2! yields6

h5hK1hC1hP, ~3!

where the superscriptsK, C, P denote kinetic, cross, and po
tential terms. The kinetic term is the Chapman–Enskog v
cosity of a dilute gas~hard spheres of diameters)6

hK5
5p

16
mGl2 , ~4!

whereG52s2n2ApkT/m is the collision rate per unit vol-
ume, andl51/(A2nps2) is the mean free path.

The cross term is zero because particle velocities
uncorrelated with their positions.6 The potential term is given
by6

hP5
m2G

2kT
^@~yi2yj !Dui #

2&c

5
m2G

2kT
^~yi2yj !

2&c^~Dui !
2&c , ~5!

where^ &c denotes average over collisions. For a gas of u
form density,^(yi2yj )

2&c5L2/6. We would like to point
out that^(Du)2&c5 4

3(kT/m) instead of the original value o
8
9(kT/m) given in Alexanderet al.,6 and thus the viscosity a
a function of cell size in DSMC is given by

h5
5

16s2
AmkT

p S 11
16

45p

L2

l2D . ~6!

The expression for the thermal conductivity given in the p
per by Alexanderet al. is not affected by this correction.

III. TIME-STEP DEPENDENCE OF TRANSPORT
COEFFICIENTS

A. Equivalent continuous-time model

We now proceed to examine the case whereDt is finite
and thus the DSMC algorithm becomes discrete in time.
the above formalism to be applied we propose a continuo
time model that is dynamically equivalent to DSMC.

Consider a model where the particles that according
DSMC would have collided att5Dt/2 ~that is, att5Dt/2
were in the same cell! instead collide~each colliding pair
independently! at tc that lies uniformly betweent50 and
t5Dt. The distribution function for the particle locatio
relative to the DSMC collision point at collision (t5tc) de-

C

icense or copyright, see http://pof.aip.org/pof/copyright.jsp
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pends on the difference between the collision timetc and the
DSMC collision timet5Dt/2: We can write the single par
ticle distribution function~in one dimension! in the case that
the collision cell is centered onx50 as

f ~x;tc!5E
2L/2

L/2

p~ x̃!q~xux̃;tc!dx̃, ~7!

where p( x̃) is the probability~uniform in this approxima-
tion! for a particle to be in the cell atx̃, andq(xux̃;tc) is the
probability for a particle that is atx̃ at t5Dt/2 to be found at
x at t5tc . Due to the Maxwellian velocity distribution
q(xux̃;tc) has a particularly simple form that leads to

f ~x;tc!5A m

2pkT~ tc2 Dt/2!2E2L/2

L/2 1

L

3expS 2
m~x2 x̃!2

2kT~ tc2Dt/2!2D dx̃, ~8!

wherek is Boltzmann’s constant, andT is the temperature
The above expression reduces to a Maxwellian distribu
~centered atx50) if the cell sizeL→0. We can see that a
finite cell size modifies the particle distribution function an
thus, strictly couples to the finite time-step truncation err
In the interest of simplicity~the effect of finite cell size can
be fully quantified if the algebraic complexity is undertake!
and because the error due to a finite cell size in the li
Dt→0 is known,6 we will take L→0. In this limit the rela-
tive distance in they direction between a collision pair a
collision can be written as

~yi2yj !5S tc2
Dt

2 Dgy , ~9!

where gÄvi2vj is the precollision relative velocity of the
particles.

Figure 2 indicates that for this model to be dynamica
identical to the DSMC implementation, colliding particle
need to be shifted after their collisions by an amount t
corrects for their ballistic motion with postcollision veloc
ties instead of the precollision velocities for the appropri
amount of time (tc2Dt/2). The shift ensures that the mo
ecules have final positions (xi

f ,yi
f) and (xj

f ,yj
f) that are the

same as for DSMC~Fig. 1!. The amount each molecul
needs to be shifted is given by

Dr i5S tc2
Dt

2 D ~vi82vi !. ~10!
Downloaded 06 Nov 2007 to 18.80.2.80. Redistribution subject to AIP l
n

,
.

it

t

e

This shift introduces mass, momentum, and energy flu
that contribute to ‘‘enhanced’’ transport coefficients
shown below.

B. Calculation of transport coefficients

We now present the calculation of the viscosity of t
DSMC-equivalent continuous-time model as a function
the time step. Application of the Green–Kubo theory impli
that steady problems are considered, at least at the auto
relation decay time scale. This is not a very restrictive
sumption since typical hydrodynamic evolution takes pla
at time scales much longer than the latter time scale.

The momentum flux resulting from the particle shift ca
be written as

Jxy
s 5m(

c
~ui8Dyi1uj8Dyj !d~ t2tc!

5m(
c

S tc2
Dt

2 DDv igx8d~ t2tc!, ~11!

where g85vi82vj8 is the postcollision relative velocity be
tween particlei and particlej. Shifting the particles before o
after collision results in the same total potential contributi
to the stress tensor:

FIG. 2. Schematic of a representative collision between particles in
continuous-time model. The discontinuous jump in the trajectories re
sents the shift occurring along with the collision.
Jxy~ t !5mF(
i 51

N

uiv i1(
c

~Dui~yi2yj !1ui8Dyi1uj8Dyj !d~ t2tc!G ~12!

5mF(
i 51

N

uiv i1(
c

@Dui~yi1Dyi2~yj1Dyj !!1uiDyi1ujDyj #d~ t2tc!G ~13!

5mF(
i 51

N

uiv i1(
c

S tc2
Dt

2 D ~Duigy1Dv igx8!d~ t2tc!G . ~14!
icense or copyright, see http://pof.aip.org/pof/copyright.jsp
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Here Dv i is the change in velocity of particlei in the y
direction due to the collision.

Application of the Green–Kubo formula~2! again re-
sults in kinetic, cross, and potential terms. The kinetic term
again the dilute gas term@Eq. ~4!#. The cross term is zero
because DSMC is ‘‘centered’’ in time: The contribution
proportional to^(tc2(Dt/2)&c and hence zero because

E
0

DtS tc2
Dt

2 Ddtc50. ~15!

The potential contribution can be written as

hP5
m2G

2kT K F S tc2
Dt

2 D ~Duigy1Dv igx8!G2L
c

. ~16!

This expression assumes that there is no correlation bey
the first collision between molecules. The uniform collisi
in time gives

K S tc2
Dt

2 D 2L
c

5
~Dt !2

12
, ~17!

whereas

^~Dugy1Dvgx8!2&c5
16

5 S kT

m D 2

. ~18!

The expression for the viscosity including the time-st
contribution is thus

h5
5

16s2
AmkT

p S 11
32

150p

~c0Dt !2

l2 D , ~19!

wherec05A2kT/m is the most probable speed.
The calculation of other transport coefficients follow

along the same lines. Potential contributions are proportio
to ^(tc2 Dt/2)2&c5(Dt)2/12 and cross contributions vanis
because DSMC is centered in time. The pressure is u

FIG. 3. Error in coefficient of viscosity as a function of the scaled~by l/c0)
time step~from Ref. 8!. Circles denote the normalized error in momentu
flux (E2

v! in the simulations of Garcia and Wagner~Ref. 8!, and the solid line
is the prediction of~19!.
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fected by the time step as we would normally expect: T
virial ^Dui(yi2yj )1ui8Dyi1uj8Dyj&c is proportional to
^(tc2 Dt/2)&c50.

A similar calculation for the thermal conductivityk
yields

k5
75k

64s2
A kT

pmS 11
64

675p

~c0Dt !2

l2 D . ~20!

The diffusion coefficient can be calculated using the E
stein formula

D5
1

2t S 1

N (
i

N

~xi~ t !2xi~0!!2D , ~21!

where a long time limit is assumed. Applying this formula
the continuous-time model reveals that the shift@Eq. ~10!#
for bothcolliding particles required for every collision, lead
to a ‘‘potential-like’’ term Dr id(t2tc)5(tc2 Dt/2)Dvid(t
2tc) that yields an error proportional to (Dt)2. The resulting
expression for the diffusion coefficientD is

D5
3

8ns2
A kT

pmS 11
4

27p

~c0Dt !2

l2 D , ~22!

wheren is the number density.

IV. COMPARISON WITH NUMERICAL SIMULATIONS

Garcia and Wagner8 performed steady state and transie
numerical simulations in a variety of configurations to me
sure the truncation error as a function of the time step.
those simulations the cell size was taken to beL5l/5 so that
the cell size contribution is negligible, and the time step w
varied fromDt5l/(2c0) to Dt516l/c0 . The error is de-
fined as the normalized deviation in the flux corresponding
the transport coefficient with respect to the exact result. T
exact result is taken to be a very accurate simulation w
Dt5l/(8c0).

Figure 3 shows the comparison between the numer
results of Garcia and Wagner for the viscosity coefficient a
the theoretical prediction@Eq. ~19!# for steady Couette flow.
The agreement is very good forDt→0. For Dt@l/c0 the
error deviates from the quadratic time step dependence.
cia and Wagner8 point out that this is due to the upper boun
set on the transport coefficients by the collisionless limit t
is indicated on the same graph. The predictions given h
for the thermal conductivity@Eq. ~20!# and diffusion coeffi-
cient @Eq. ~22!# are also in very good agreement with th
numerical results of Garcia and Wagner8 in steady state. The
transient calculations of Garcia and Wagner also exhib
quadratic error in the time step; however, no comparis
with our results was presented.

V. CONCLUDING REMARKS

We have presented a formulation that allows the cal
lation of the transport coefficient dependence on the ti
step. The calculations predict that the error in thetransport
coefficientsis of orderDt2, and that forDt;l/c0 the trun-
icense or copyright, see http://pof.aip.org/pof/copyright.jsp
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cation error is approximately 5%, which confirms the emp
cal observations that accurate solutions require a time
that is a small fraction of the mean free time. The theo
presented relies on the application of the Green–Kubo the
and is thus valid for problems that appear steady at the
tocorrelation decay time scale.

The results of this paper have been verified by extens
numerical simulations8 of steady state configurations; th
agreement between simulations and theory is very good
Dt→0. For Dt@l/c0 the error approaches the value set
the collisionless limit.
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