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Abstract
Lubrication problems at lengthscales for which the traditional Navier–Stokes description fails can be solved using a modi-
fied Reynolds lubrication equation that is based on the following two observations: first, classical Reynolds equation failure 
at small lengthscales is a result of the failure of the Poiseuille flowrate closure (the Reynolds equation is derived from a 
statement of mass conservation, which is valid at all scales); second, averaging across the film thickness eliminates the 
need for a constitutive relation providing spatial resolution of flow profiles in this direction. In other words, the constitutive 
information required to extend the classical Reynolds lubrication equation to small lengthscales is limited to knowledge of 
the flowrate as a function of the gap height, which is significantly less complex than a general constitutive relation, and can 
be obtained by experiments and/or offline molecular simulations of pressure-driven flow under fully developed conditions. 
The proposed methodology, which is an extension of the generalized lubrication equation of Fukui and Kaneko to dense 
fluids, is demonstrated and validated via comparison to molecular dynamics simulations of a model lubrication problem.

1  Introduction

Molecular dynamics (MD) simulation (Allen and Tildes-
ley 1989; Frenkel and Smit 2002) has been a valuable asset 
in the study of nanoscale fluid mechanics and transport, 
finding extensive use by researchers studying a variety of 
nanoscale problems, ranging from flows around and through 
carbon-based nanostructured materials (Mattia et al. 2015; 
Guo et al. 2015; Secchi et al. 2016; Popadić et al. 2014) to 
boundary lubrication problems (Zheng et al. 2013; Berro 
et al. 2010; Savio et al. 2013). In some cases, the systems 
of interest are sufficiently small, that a direct simulation is 
feasible (Berro et al. 2010; Zheng et al. 2005). In other cases, 
when direct simulation is not possible, MD has been used 
to provide insight into the physics of these flows (Landman 
et al. 1996; Priezjev et al. 2005).

However, despite the insight gained on a number of 
aspects of nanoscale flow by MD studies, a general descrip-
tion of such flows beyond Navier–Stokes has yet to be 
developed for dense fluids. In fact, in many instances, 

different studies reach contradictory conclusions (Ghor-
banian et al. 2016), with the only clear consensus being 
that the Navier–Stokes description remains remarkably 
robust, at least up to scales as small as O(10 nm). This can 
be qualitatively explained by noting that, for a dense fluid, 
the characteristic fluid lengthscale, 𝜎̂ , is on the order of the 
molecular size; deviations from Navier–Stokes, expected 
as the characteristic flow lengthscale becomes smaller than 
O(10 𝜎̂) (Travis et al. 1997; Sofos et al. 2009; Ghorbanian 
and Beskok 2016), should therefore manifest themselves at 
lengthscales of O(1–10 nm), depending on the fluid. A simi-
lar argument correctly predicts Navier–Stokes breakdown in 
rarefied gases to occur at much larger, O(μm) , scales (Hadji-
constantinou 2006), owing to the significantly larger size of 
the mean free path compared to the molecular size.

The present paper focuses on a particular class of prob-
lems, namely of the lubrication type, for which progress 
can be made using the following observation, originally 
due to Fukui and Kaneko (1988): in lubrication problems, 
averaging across the film thickness (made possible by the 
small film thickness) eliminates the need for spatial resolu-
tion of flow profiles in the transverse film direction. In other 
words, knowledge of the flowrate due to the local pressure 
gradient is sufficient for closing the governing (lubrication) 
equation, thus reformulating the problem from one of find-
ing the general constitutive relation for the stress tensor to 
that of finding the fully developed flowrate in response to 
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a pressure gradient. The importance of this simplification 
cannot be overstated: lubrication theory (Leal 2007; Szeri 
2011) separates the effects of axial variations (captured by 
the lubrication equation) from the constitutive relation (for 
the flowrate), allowing the latter to be determined once and 
for all in the significantly simpler, lower-dimensional setting 
of the fully developed flow (with no axial variation).

As stated above, this approach has already been exploited 
by Fukui and Kaneko (1988) who have developed a “gen-
eralized lubrication equation” (GLE) for treating dilute 
gas lubrication problems. In their case, they used solutions 
of the Boltzmann equation to develop a description of the 
pressure-driven flowrate. Their extended lubrication equa-
tion has been used extensively by other researchers to study 
a variety of problems of practical interest, ranging from air 
bearings (Alexander et al. 1994) to squeeze film damping 
in electromechanical devices (Gallis and Torczynski 2004) 
and has been reviewed extensively (for example, see Cercig-
nani 2006; Szeri 2011). Although the dense-fluid lubrica-
tion research community has made significant strides toward 
treating nanoscale lubrication phenomena (Fillot et al. 2011; 
Savio et al. 2015, 2016) (as well as other complex physi-
cal phenomena, such as cavitation), it appears to have over-
looked the GLE approach and its potential. Our objective 
here is to highlight this potential, demonstrate the feasibility 
of the approach using an example test problem and finally 
highlight some of the challenges and open problems unique 
to the dense-fluid case.

Here, we would be remiss to not discuss the work of Borg 
et al. (2013), who also proposed a general method for solving 
multiscale problems of high aspect ratio which would thus be 
applicable to the lubrication problems discussed here. Their 
approach is based on the homogeneous multiscale method 
(HMM) (Ren and Weinan 2005) which aims to minimize the 
computational cost by using MD simulation only in a frac-
tion of the computational domain. Although clearly related 
to the approach discussed here, the two approaches are also 
significantly different. The work by Borg et al. is in principle 
more general (can be applied to high aspect ratio problems 
other than of lubrication type), but relies on online MD simu-
lations; in contrast, we believe that a GLE approach would be 
preferable for treating lubrication problems for a number of 
reasons. First, beyond developing the closure that specifies 
the flowrate as a response to the pressure gradient, online MD 
simulations and numerical approximations [e.g., interpola-
tion between MD domains such as the one used in Borg et al. 
(2013)] are not required; in fact, this simplicity in some cases 
enables analytical solutions (as is the case for the validation 
problem considered here); moreover, the closure could also be 
obtained from experiments. Second, a GLE can be seamlessly 
integrated (both from a theoretical and a code development 
point of view) with other lubrication equation analyses (e.g., 
matching of solutions in different domains), but even more 

generally, with other analyses already developed to interface 
with lubrication equation treatments.

Although a comprehensive review of previous work on 
models of transport beyond the Navier–Stokes is outside the 
scope of our work, we would like to briefly discuss some 
recent findings that are relevant to our MD results discussed 
in Sect. 3. First we note that a number of recent studies sug-
gest that deviations from the traditional no-slip Navier–Stokes 
description are due to the presence of additional effects that can 
be taken into account within the Navier–Stokes constitutive 
framework, rather than complete failure of the latter (Yoshida 
and Bocquet 2016; Schlaich et al. 2017; Holland et al. 2015). 
These effects include (of course) slip, different viscosities in 
different regions of the physical domain (Schlaich et al. 2017) 
due to fluid layering (Wang and Hadjiconstantinou 2017), a 
reduction in the effective domain size due to the gap between 
the solid and fluid (Yoshida and Bocquet 2016; Ghorbanian 
et al. 2016) caused by the fluid-solid interaction (Wang and 
Hadjiconstantinou 2015, 2017), a reduction in the effective 
fluid density (Ghorbanian et al. 2016) due to fluid layering, 
and others. On the other hand, it is fair to say that no definite 
conclusion has been reached yet, since no general agreement 
exists on what these effects are and whether they are specific 
to the fluid-solid system under consideration or even the flow 
geometry. Moreover, some studies find changes to the consti-
tutive relation that are incompatible with the Navier–Stokes 
description (Travis et al. 1997) or of unclear origin (Ghor-
banian and Beskok 2016). As a result, in the context of the 
Navier–Stokes description we will use the term “failure” (or 
the related expression “beyond Navier–Stokes”) to refer to 
deviations from the traditional macroscale Navier–Stokes 
description that given the above discussion may not necessar-
ily be a result of complete failure of the Navier–Stokes con-
stitutive framework. In fact, as already pointed out before and 
extensively discussed below, the GLE is an attempt to enable 
solutions of a particular class of problems (lubrication) with-
out requiring a resolution to the above questions.

The present paper is organized as follows. In the next 
section (Sect. 2), we briefly review lubrication theory and 
show how it can be generalized to arbitrary lengthscales. In 
Sect. 3, we validate the GLE approach using an example lubri-
cant–wall combination and compare the results against full 
MD simulation. We conclude with Sect. 4, in which we review 
our results and discuss possible extensions and improvements, 
as well as more general directions for future work.

2 � Extending the Reynolds equation 
beyond Navier–Stokes

The narrow-gap assumptions that underlie classical lubrica-
tion theory (see Leal 2007; Cameron 1983; Szeri 2011 for 
a detailed description) remain applicable to a large class of 
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problems even at nanometer-size lengthscales (Gallis and 
Torczynski 2004; Alexander et al. 1994). We start the devel-
opment of a lubrication equation valid at those lengthscales 
by reviewing the main ingredients associated with the clas-
sical (Navier–Stokes-based) Reynolds equation.

2.1 � Background: the Reynolds equation

Consider an incompressible thin liquid film as shown in 
Fig. 1. Let x, y, z denote the cartesian coordinates along 
the �̂ , �̂ and �̂ directions, respectively, and u, v, w denote 
the components of the fluid velocity vector, � , in the same 
respective directions. As shown in Fig. 1, the film thickness 
is aligned with the �̂ direction. In the interest of simplicity, 
we will limit the discussion to flows of the type depicted in 
the figure, in which no flow exists in the �̂ direction (also 
�∕�z = 0 ) and only the lower boundary moves in the nega-
tive �̂ direction with speed U, while the gap height is char-
acterized by h = h(x).

Let h0 denote the characteristic film lengthscale in the 
transverse direction, �̂ , and L the characteristic lengthscale 
in the axial direction �̂ . Under the assumption 𝜀 = h0∕L ≪ 1 , 
the dynamical flow variables can be written in terms of 
their perturbation expansions in powers of � ; for example, 
the flow velocity in the axial direction can be expanded as 
u = u0 + �u1 + O(�2) . Considering only leading order terms 
and using impermeability constraints at the walls, the con-
tinuity equation can be integrated over the film thickness to 
obtain (Leal 2007)

where

is the (local) volumetric flow rate. The above discussion 
follows the derivation in Leal (2007); derivation of the 

(1)�h

�t
+

�Q0

�x
= 0

(2)Q0 = ∫
h(x)

0

u0dy

Reynolds Equation in the presence of slip at the boundaries 
is discussed in Burgdorfer (1959).

The traditional Reynolds lubrication equation

is obtained through the substitution

in (1), where � denotes the fluid viscosity and p0 denotes 
the zeroth-order term in the expansion of the pressure field 
p = p0 + �p1 + O(�2) , related to u0 via the Navier–Stokes 
equation for fully developed—not changing in the flow 
direction, due to, for example, entrance effects—pressure-
driven flow

In expression (4), rewritten here

without the superscript 0, which will be henceforth omitted 
in the interest of simplicity, the first term represents the pres-
sure-driven (Poiseuille) component of the flow rate, while 
the second term represents the flow rate due to the motion 
of the lower boundary and will be referred to as the Couette 
component of the flowrate. They will be denoted by QNS

P
 and 

QNS
C

 , respectively, where the superscript NS highlights their 
origin in the Navier–Stokes description (5).

2.2 � Generalized lubrication equation

We begin by noting that Eq. (1) is a statement of mass con-
servation and is thus valid at all lengthscales; the assump-
tion of Navier–Stokes behavior only enters via (6). In other 
words, if an expression for Q = QP + QC valid beyond 
Navier–Stokes can be developed, the resulting lubrication 
equation will also be valid beyond Navier–Stokes.

We also note that provided the upper and lower bounding 
surfaces are identical in structure and as far as wall–fluid 
interactions are concerned, the Couette flowrate remains the 
same as above, that is, QC = QNS

C
 ; in particular, if −U �̂ is 

the relative velocity between the walls, QC = −Uh∕2.
To introduce a more general form for the pressure-driven 

component of the flowrate, we argue that it is reasonable 
to expect that the fluid response in fully developed flows is 
proportional to the pressure gradient and thus can be written 
in the form

(3)
�h

�t
=

�

�x

(

h3

12�

dp0

dx
+

Uh

2

)

.

(4)Q0 = −
h3

12�

dp0

dx
−

Uh

2

(5)
dp0

dx
= �

�2u0

�y2

(6)Q = −
h3

12�

dp

dx
−

Uh

2

(7)QP = − Q̃P(A, h, 𝜌, T ,B)
dp

dx
,

x̂

ŷ

ẑ

h(x)

U

Fig. 1   Sketch of a typical lubrication analysis geometry
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where A denotes the (set of parameters characterizing the) 
fluid of interest, B denotes the (set of parameters character-
izing the) boundary interaction for the particular fluid–wall 
combination considered, � denotes the fluid density and T 
denotes the temperature. The more general form of the lubri-
cation equation is thus

One might expect that Q̃P ∼ (hn) , with 1 ≤ n ≤ 3 , since 
n = 3 for Navier–Stokes with no-slip (and thus Q̃P ∝ h3 as 
h∕𝜎̂ → ∞ ), while n = 1 appears to be a reasonable lower 
bound, since the flowrate is expected to be proportional to 
the channel width. Recalling the dilute gas case (Fukui and 
Kaneko 1988) is instructive: in this case, the pressure-driven 
flowrate can be written as

where (Kn,B) is a dimensionless coefficient that depends 
on Kn = �∕h , where � = m∕(

√

2���2) is the mean free path, 
� is the hard-sphere diameter, R is the specific gas constant, 
and B represents the effect of the gas–wall interaction (e.g., 
via one or more accommodation coefficients) (Cercignani 
2006). Therefore, Q̃P(A, h, 𝜌,T ,B) = h2

√

2RT(Kn,B) , 
where A = {m, �}.

Unfortunately, vm =
√

2RT is unlikely to be an appropri-
ate characteristic molecular velocity for the dense-fluid case. 
In other words, Q̃P = h2vm(A, h, 𝜌,T ,B) is unlikely to cor-
rectly scale dense-fluid flowrate data. Despite progress toward 
developing quantitative models of flow under extreme nano-
confinement (see Schlaich et al. 2017 for an example involving 
water), in the absence of a general description for the flow-
rate, Q̃ can be scaled using the traditional macroscopic for-
mulation, namely Q̃P = h3∕(12𝜇(𝜌,T))F(A, h, 𝜌,T ,B) , where 
F(A, h, �, T ,B) is an arbitrary function to be determined by 
MD simulations or experiments for the fluid of interest and the 
requirement that F(A, h, �, T ,B) → 1 as h∕𝜎̂ → ∞.

We close by noting that although some “empiricism” is 
required currently, the simplification introduced by the GLE 
is still considerable: as with any constitutive relation, Q̃P need 
only be determined once, in a fully developed lower-dimen-
sional setting (from a plane Poiseuille flow). Once determined, 
Eq. (8) can be applied to arbitrary geometries (provided they 
satisfy the appropriate lubrication approximation criteria).

3 � Validation

In this section we validate the ideas discussed in Sect. 2.2 
by comparing solutions of the GLE for a particular fluid-
solid combination with MD simulations of the same system 

(8)
𝜕h

𝜕t
=

𝜕

𝜕x

(

Q̃P(A, h, 𝜌, T ,B)
dp

dx
+

Uh

2

)

(9)QP = − h2
√

2RT(Kn,B)dp
dx

in a model lubrication geometry. The working fluid in this 
validation problem is n-hexadecane, while the solid walls 
are iron. In the following subsection we use MD simulations 
for determining Q̃P for the n-hexadecane-iron fluid–wall 
system. In Sect. 3.2 we obtain an analytical solution of (8) 
for the model problem based on the constitutive relation of 
Sect. 3.1. In Sect. 3.3 we compare MD simulation results 
with the obtained analytical solution.

3.1 � Determining Q̃P

In order to determine the unknown constitutive relation 
Q̃P(A, h, 𝜌, T ,B) we perform MD simulations in 2-D channels 
under fully developed conditions for a wide range of h val-
ues, namely 1 nm ≲ h ≲ 11 nm , at a pressure of p0 = 80 MPa 
and temperature of T0 = 450 K. More details on the MD 
simulations can be found in “Appendix A”.

Our validation problem was designed with typical 
lubrication problems in mind, in which the wall–fluid 
interaction does not vary as a function of space and thus 
no variation in B need be considered. Moreover, we note 
that in typical nanoscale problems flow velocities are suf-
ficiently small to make the isothermal assumption well 
justified. Given the above, as explained in detail in the 
“Appendix”, care was taken to ensure that our validation 
problems were also consistent with these assumptions. 
Specifically, U was sufficiently small for temperature and 
density variations to be small [the latter due to incom-
pressibility of the dense fluid (Szeri 2011)], justifying the 
approximation Q̃P(A, h, 𝜌, T ,B) ≈ Q̃P(A, h, 𝜌0, T0,B0) . By 
verifying that shear rates in all our simulations were suf-
ficiently small for linear response to be valid (see “Appen-
dix”), we can thus expect variations in Q̃P to come only 
from variations in h, that is, we can proceed by taking 
Q̃P(A0, h, 𝜌0, T0,B0) = Q̃P(h).

One possible form for Q̃P(h) follows from using the fact 
that the flowrate must approach the well-known slip-cor-
rected Poiseuille flowrate for h∕𝜎̂ ≫ 1 . Specifically, we use 
the form

where Ls denotes a slip length, while F(h) is responsible 
for capturing deviations from the slip-corrected Poiseuille 
flowrate and thus needs to satisfy the requirement F(h) → 1 
as h∕𝜎̂ ≫ 1 . Here it is important to note that the form (10) 
does not imply an underlying assumption of slip flow, since 
F(h) is still arbitrary (to be determined for each fluid from 
MD or experimental data). Writing (10) is akin to setting 
out to describe the dilute gas data with an expression of 
the form Q̃P = h3(1 + 6LS∕h)

√

2RT�∕12𝜇 , which amounts 
to the rescaling � = 12�∕(h + 6LS) . Clearly, the two are 

(10)Q̃P =

(

h3

12𝜇

(

1 +
6Ls

h

)

)

× F(h),
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equivalent and do not imply the presence of any restrictions 
on Q̃P.

Our MD simulation results for the flowrate are sum-
marized in Fig. 2. Surprisingly, we find that choosing 
F = 1 ∀ h results in a good least-squares fit to the flowrate. 
In other words, for the particular system studied here the 
constitutive relation for the flowrate is given by

where �∗ = 0.67  mPas and L∗
s
= 3.0 nm have been deter-

mined by a least-squares fit to the MD data shown in the 
figure.

This finding, namely that the MD flowrates can be 
described by a slip-corrected Navier–Stokes expression 
(11) [i.e., that F = 1 in (10)] for all h is a rather unex-
pected and perhaps fortuitous result, likely specific to the 
fluid-solid system considered here. We note that the values 
�∗ = 0.67 mPas and L∗

s
= 3.0 nm, determined from a least-

squares fit to all flowrate data ( 1.4 nm ≤ h ≤ 10.8 nm ), are 
quite different from the viscosity and slip length obtained 
by fitting the slip-corrected Poiseuille velocity profile to 
our y-resolved MD data for h ≳ 6 nm where the slip flow 
description is expected to be valid.

(11)Q̃∗
P
=

h3

12𝜇∗

(

1 +
6L∗

s

h

)

.

Selected y-resolved velocity profiles are shown in Fig. 3. 
This figure shows that the coefficients �∗ = 0.67 mPa s 
and L∗

s
= 3.0 nm , are not necessarily able to describe the 

y-resolved flow profiles in all cases. In particular, we find that 
for “large” h (specifically, h ≳ 6 nm), individual y-resolved 
profiles are well described by a slip-corrected Poiseuille 
profile with parameters 𝜇̂ = 0.46 mPa s and L̂s = 1.6 nm . In 
the range 3 nm ≲ h ≲ 6 nm , although the velocity profiles 
appear parabolic, the coefficient of viscosity and slip length 
extracted from fits of y-resolved MD data to slip-corrected 
Poiseuille profiles are film thickness (h) dependent; this is 
consistent with previous reports (Ghorbanian and Beskok 
2016). For h ≲ 3 nm , the velocity profiles are not parabolic. 
In other words, �∗ = 0.67 mPa s and L∗

s
= 3 nm must be 

interpreted as parameter values that reproduce the flowrate 
data when used in (11) but do not correspond to viscos-
ity and slip length values in the Navier–Stokes sense. The 
relatively small difference between Q̃∗

P
 and the slip flowrate 

Q̃S
P
 (obtained using parameters 𝜇̂ and L̂s ) shown in Fig. 2, is 

also consistent with the findings of Ghorbanian and Beskok 
(2016) which suggest that the flowrate may exhibit smaller 
deviations from macroscopic results than other quanti-
ties, because as an integral quantity it is more sensitive to 
cancelation of competing effects.

3.2 � The barrel drop problem

Figure 4 shows the “barrel drop” geometry used for valida-
tion of the ideas presented in this paper. In this problem, 
flow occurs due to the motion of the lower wall in the nega-
tive �̂ direction with velocity U, as assumed in the lubrica-
tion Eq. (8). The upper wall is stationary and of parabolic 
shape. Thus, the gap height as a function of the axial coor-
dinate is given by h(x) = h0 + a(x − Lx∕2)

2 , where Lx is the 
length of the domain in the �̂ direction.

In a general case, equation (8) would have to be solved 
numerically (say, using a finite volume scheme). In this case, 
however, the simplicity of the barrel drop geometry and the 
constitutive relation (10) makes a semi-analytical solution 
for the pressure distribution possible. Using the fact that 
�h∕�t = 0 , we integrate (8) once to obtain the constant volu-
metric flowrate

where Q̃∗
P
(h(x)) is given in (11). Solving for the pressure, 

we obtain

The flowrate Q can be calculated from the following 
expression,

(12)Q = −
Uh(x)
2

−
dp

dx
Q̃∗

P
(h(x))

(13)p(x) = p0 − ∫
x

0

2Q + Uh(x�)

Q̃∗
P
(h(x�))

dx�

Fig. 2   Flowrates for a range of channel heights 
1.4 nm ≤ h ≤ 10.8 nm . Comparison between the MD simula-
tion results (denoted by Q̃MD

P
 ) and expression (11) (denoted by Q̃∗

P
 ). 

Expression (10) with F = 1 and parameters 𝜇 = 𝜇̂ and Ls = L̂s (slip 
flow with parameters extracted from large channels) is also shown 
and is denoted by QS

P
 . All results are normalized by Q̃NS

P
 (no-slip 

Navier–Stokes flowrate)
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obtained on applying periodic boundary conditions 
p(0) = p(Lx) on the pressure. The constant p0 can be calcu-
lated from the force balance

where N denotes the total normal force per unit depth (in the 
z direction) acting on the top surface (assumed given). Due 
to the symmetry of the film thickness profile about x = 0 , the 
above relation reduces to (Chandramoorthy 2016):

(14)Q = −
∫

Lx

0

Uh(x�)[Q̃∗
P
(h(x�))]−1dx�

∫
Lx

0

2[Q̃∗
P
(h(x�))]−1dx�

(15)∫
Lx

0

p(x)dx = N

(16)p0Lx = N

Finally, the analytical pressure distribution can be obtained 
from (13), using Q and p0 from (14) and (16).

3.3 � Results

In this section we compare the pressure distribution (13) 
against the corresponding MD result, denoted by pMD . Two 
such comparisons are performed here for different minimum 
gap heights ( h0 ). The first one is for a minimum gap height 
h0 = 3.8 nm , while the second one is for h0 = 1.6 nm . In the 
first comparison, shown in Fig. 5, h0 is sufficiently large to 
avoid the presence of solvation and disjoining effects which 
make direct comparison of the pressure fields difficult. The 
pressure computed from the MD simulation agrees with the 
analytical pressure distribution closely. Here we recall that, 
according to our MD results, for h ≲ 6 nm , y-resolved veloc-
ity profiles cannot be described by a fixed (h-independent) 

Fig. 3   Normalized velocity 
profiles for films of different 
thicknesses in “pressure-driven” 
flow. Blue circles denote MD 
simulation data, while the red 
lines are the velocities predicted 
by slip-corrected Navier–Stokes 
with parameters L∗

s
 and �∗ . The 

channel widths considered in 
the order left to right, top to 
bottom are 1.4, 2.9, 4.8, 6.4, 7.8 
and 10.8 nm (color figure 
online)

Fig. 4   A schematic model of 
the “barrel drop” lubrication 
geometry, which is used in the 
MD validation problem. Lx is 
the size of the MD simulation 
box in the axial direction �̂ . The 
section at A-A′ shows the x − z 
plane along which the pressure 
is measured using the method of 
planes (Cheung and Yip 1991) 
(see “Appendix A.3”) x̂

ŷ
−ẑ

A
A
Lx0

h(x) = h0 + a(x− Lx/2)2
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viscosity and slip length, and thus, a lubrication approach 
based on the traditional Reynolds equation would not be valid.

As stated above, validation at smaller gap heights is compli-
cated by the appearance of solvation (structuring) and disjoin-
ing pressure effects (Israelachvili 2011; Kato and Matsuoka 
1999). Disjoining pressure effects are caused by long-range 
(van der Waals) forces and have been considered in a variety 
of contexts, most notably wetting (de Gennes 1985). Solvation 
forces result from the entropic contribution of fluid layering 
at the wall (Israelachvili 2011); as a result, they are important 
when the characteristic lengthscale h is comparable to the lay-
ering thickness, that is, only under extreme confinement (Kato 
and Matsuoka 1999; Gravelle et al. 2016).

Figure  6 shows pMD for the barrel drop case with 
h0 = 1.6 nm ; although both solvation and disjoining effects 
are important at this scale, solvation effects are particularly 
evident in the regions corresponding to h ≲ 3 nm due to their 
distinctive oscillatory nature.

Solvation and disjoining pressure effects can be included 
in the proposed formulation by solving Eq. (8) subject to the 
boundary conditions p(0) = p(Lx) and

where ps(h(x)) denotes the solvation pressure and

(17)N = ∫
Lx

0

[p(x) + ps(h(x)) + pd(h(x))] dx

(18)pd(h(x)) =
AH

6�h3(x)

is the disjoining pressure, where AH denotes the Hamaker 
constant (Israelachvili 2011).

It is important to note that although ps and pd are of O(�0) , 
they are not included in the GLE (8) because, as discussed in 
Sect. 2.1, the (local) flowrate Q is calculated from the response 
to the zeroth-order balance (5), while

is of order �1.
Although the molecular origin of the solvation pressure 

is well understood (Israelachvili 2011; Henderson 1986), 
reliable expressions for predicting its magnitude for various 
fluids are not available. However, Gravelle et al. (2016) have 
recently shown that an expression of the form

developed for a hard-sphere fluid in two dimensions, can 
be used to describe this effect in water, provided �∞ , origi-
nally defined as the bulk fluid density far from the wall, was 
treated as an adjustable parameter. In the above expression, 
� is a parameter related to the fluid structure and is thus 
expected to be of order 𝜎̂ . We use p2D

s
 above to model ps , 

with the value of � and �∞ determined from our simula-
tion data. To determine � we use the Fourier transform of 
pMD − p , shown in Fig. 7, which exhibits a single peak at 

(19)d

dx
(pd + ps) =

d(ps + pd)

dh

dh

dx

(20)p2D
s
(h(x)) = − �∞kBT cos (2�h(x)∕�) exp (− h(x)∕�).

Fig. 5   Comparison between the semi-analytical solution p(x) given 
by (13) and the pressure computed from the MD simulation, pMD(x) , 
for the “barrel drop” problem with h

0
= 3.8 nm

Fig. 6   Comparison between the semi-analytical solution p(x) given 
by (13) and the pressure computed from the MD simulation, pMD(x) , 
for the “barrel drop” problem with h

0
= 1.6 nm As h → 𝜎̂ , disjoin-

ing and solvation effects become important. The latter are particularly 
apparent
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0.4 nm, confirming the sinusoidal dependence of ps on h 
and suggesting � = 0.4 nm . This value is known from sur-
face force measurements and MD simulations (Ribarsky 
and Landman 1992; Christenson et al. 1987) to be close to 
the thickness of a layer of n-hexadecane confined between 
crystalline substrates.

Using this value for � and treating �∞ and AH as adjustable 
(fitting) constants, we show in Fig. 8 that the decomposition 
p + ps + pd can model pMD for h as low as 1.6 nm.

4 � Discussion and conclusions

We have discussed a generalized lubrication equation frame-
work for the solution of dense-fluid lubrication problems at 
the nanometer scale. The framework is based on the obser-
vation that under the lubrication approximation, the closure 
required is significantly less difficult to obtain than for the 
general flow case.

In the example considered here, it was assumed that the 
two solid surfaces interact with the fluid identically and 
thus the Couette component of the flowrate, by symmetry, 
remains equal to its Navier–Stokes no-slip value. The pro-
posed methodology can be extended to cases where interac-
tions are asymmetric by developing a constitutive relation 
for the Couette component of the flowrate. Although in the 
example lubricant–wall model studied here the flowrate was 
reproduced using a slip flow-based relationship, the GLE is 
in no way reliant on the validity of a slip flow description. As 
an example, see the dilute gas case (Eq. (9)) and the related 

discussion in Sect. 2.2. Developing a general scaling relation 
for Q̃P in terms of the governing molecular parameters for 
dense fluids is the subject of future work, although signifi-
cant progress has been made for particular fluid-solid sys-
tems (see Sect. 1). Such a relation would potentially reduce 
the number of simulations/experiments required to describe 
Q̃P(A, h, 𝜌,T ,B) for a particular fluid.

Developing a constitutive relation and solving the result-
ing GLE is considerably more tractable than brute-force MD 
simulations for problems of practical interest. In fact, the 
latter is usually impossible, both because of the cost associ-
ated with the number of particles required for such simula-
tions, but also because the characteristic timescales of such 
systems are much longer. For example, the cost associated 
with the GLE (primarily MD simulations for constructing 
the constitutive relation) is smaller than the cost of one bar-
rel drop simulation, even though the latter is at lengthscales 
much smaller than actual problems of practical interest 
(deliberately chosen for validation purposes, to ensure that 
an MD solution was feasible). Once the constitutive relation 
is developed, additional solutions of the GLE come at a cost 
that is essentially negligible (compared to MD simulations).

For very small film heights, solvation and disjoin-
ing effects become important. Fortunately, as in previous 
work (Gravelle et al. 2016; Kato and Matsuoka 1999), it 
was shown that these effects can be satisfactorily accounted 
for by linearly superposing their contribution to the hydro-
dynamic pressure, requiring minimal modification of the 

Fig. 7   The Fourier transform of pMD − p clearly shows a peak at 
1∕h = 2.5 (corresponding to 0.4 nm), indicating the dominant wave-
length associated with the spatial variation of solvation effects

Fig. 8   Comparison between p(x) + ps(h(x)) + pd(h(x)) , given by (13) 
and (20), respectively, and the pressure computed from the MD simu-
lation, pMD(x) , for the “barrel drop” problem with h

0
= 1.6 nm
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lubrication equation. Although in both cases (present and 
previous work Gravelle et al. 2016) good agreement with 
MD simulations was found by fitting the result for hard 
spheres in two dimensions, it is clear that our ability to 
model solvation effects for more realistic fluids is very lim-
ited and needs to be improved.
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Appendix A. MD simulations

All MD simulations in this work were performed using the 
software package LAMMPS (Plimpton 1995).

As explained in Sect. 2.2, the constitutive relation was 
developed by studying fully developed flow in two-dimen-
sional channels. The validation was performed in the barrel 
drop geometry of Fig. 4, which is a significantly larger-scale 
problem. In both cases, the model lubricant is n-hexadecane, 
simulated using the TraPPE potential (Martin and Siepmann 
1999), while the system solid boundaries are atomically 
smooth iron (BCC Fe) walls, simulated using the Embedded 
Atom Method—Finnis Sinclair (Mendelev 2010; Mendelev 
et al. 2003; Ackland et al. 1997) potential. The Lennard-
Jones (LJ) parameters used between well-separated pseudo-
atoms, i.e, a pair of pseudo-atoms separated by three or more 
pseudo-atoms within the same molecule or a pair belong-
ing to two different molecules within the fluid, are given in 
Table 1. The LJ parameters of interaction between atoms of 
unlike types were calculated using the Lorentz–Berthelot 
mixing rules.

Bond stretching in the fluid molecules was modeled via a 
harmonic potential of the form, Uij =

kr

2
(rij − r0)

2 , where 

r0 = 1.54Å is the equilibrium bond length and kr , the bond 
stretching parameter taken here to have the value 
19.5139 eV/Å2 (chosen from Lòpez-Lemus et al. 2006). The 
bending energy associated with variations of the angle 
between 3 adjacent atoms connected through bonds was 
modeled through a harmonic potential (Martin and Siep-
mann 1999) of the form Ubend =

k�

2
(� − �0)

2 , where the 

bending parameter k� is taken as 2.6925 eV and the equilib-
rium angle, �0 = 114◦ . The torsional potential that arises due 

to the bending of the dihedral angle, � , was given by an 
OPLS style potential (Watkins and Jorgensen 2001): 
Utorsion =

c1

2
(1 + cos�) +

c2

2
(1 − cos(2�)) +

c3

2
(1 + cos(3�)) . 

The parameters were taken from Martin and Siepmann 
(1999) to be:

The interactions between the solid and the liquid atoms 
were modeled using the LJ potential. The parameters for the 
wall–fluid interaction potential were computed through the 
Lorentz–Berthelot mixing rules, using the self-interaction 
parameters listed in Table 1. Note that the self-interaction 
parameters for Fe were taken from Berro et al. (2010) (devel-
oped for more realistic simulation of Fe oxide surfaces) and 
are different from those reported in the literature for BCC 
Fe (see Zhen and Davies (1983), for example).

Appendix A.1. Channel flow

The simulations were performed in channels of length 
99.94Å in the flow direction, �̂ , and width 71.38Å , in the �̂ 
direction. The channel width in the transverse �̂ direction, 
denoted by h, varied between 1.4 and 10.8 nm. Fluid motion 
was generated by applying a body force per unit mass in the 
flow direction, g, while periodic boundary conditions were 
imposed in the flow direction, �̂ , thus eliminating entrance 
effects and making the flow fully developed by construc-
tion. Periodic boundary conditions were also applied in the 
homogeneous (depth) direction, �̂ . In the transverse, �̂ , direc-
tion, the fluid was bounded by two solid walls. Each wall 
consisted of eight layers of atomically smooth BCC Fe (001) 
surface, of thickness 22.84Å . The two layers furthest away 
from the fluid were frozen (using LAMMPS’s fix rigid) 
and provided the wall structure; the adjacent three layers 
of atoms were responsible for maintaining the simulation 
temperature at 450 K and were thus thermostatted using a 
Nosé–Hoover thermostat. No constraints were imposed on 
the three layers closest to the liquid. The fluid pressure was 
maintained at 80 MPa, by applying a normal force to the 
frozen solid layers. To avoid thermostat-induced artifacts 
(Pahlavan and Freund 2011), no thermostat was applied 

c1 = 0.05774 c2 = − 0.0117524, c3 = 0.136382

Table 1   The LJ parameters of interaction between different atomic 
species used in the paper

Type of pseudo-
atom i

Type of pseudo-
atom j

� (Å) � (eV)

CH
2

CH
2

3.95 0.003964
CH

3
CH

3
3.75 0.008445

CH
3

CH
2

3.85 0.0058
Fe Fe 2.2 0.02947
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to the fluid molecules during the data sampling phase. (A 
Langevin thermostat was used for the initial equilibra-
tion phase.) Viscous heat generated within the fluid was 
removed by the thermostatted wall molecules. To ensure 
small temperature variations, the maximum fluid velocity 
was on the order of 50 m/s or less, resulting in a maximum 
temperature variation of O(5 K), which is sufficiently small 
for the isothermal assumption to be valid. We have deter-
mined empirically that taking the body force to be suffi-
ciently small so that temperature variations were small (and 
thus, nonlinearities due to temperature-dependent transport 
coefficients were negligible) also ensured linear response, 
for which pressure-driven and body force-driven flow are 
expected to be equivalent. This equivalence was validated by 
our results of Sect. 3.1. We also note that actual flow speeds 
encountered in nanoscale flows are much smaller (usually 
by many orders of magnitude) than the flow velocities used 
here [which are large in order to improve signal to noise ratio 
(Hadjiconstantinou et al. 2003)]; in other words, isothermal 
flow and linear response assumptions are even more justified 
for real flows.

Simulation results are shown in Figs. 2 and 3 and dis-
cussed in Sect. 3.1. In Fig. 3, |dp/dx| represents the “effective 
pressure gradient magnitude” ( = �g).

Appendix A.2. Barrel drop

The geometry of the barrel drop profile is shown in Fig. 4. 
Fluid flow was generated by the motion of the lower solid 
boundary at a speed of U = 60m/s . Both the upper parabolic 
surface and the lower plane surface consisted of rigid, ther-
mostat and deformable layers, with constraints (including 
thermostating) analogous to those discussed in the previ-
ous section on channel flow. Specifically, heat was removed 
from the system by thermostating the three wall layers fur-
thest away from the fluid in each wall, and no thermostat 
was applied to the fluid during the data sampling phase. 
The extent of the simulation box in the two lateral direc-
tions, �̂ and �̂ , was Lx = 59.9 nm and Lz = 25.6 nm , respec-
tively. Based on a characteristic lengthscale Lc = 40 nm , 
the non-dimensional value of the curvature parameter is 
aL2

c
∕h0 = 1.845.

Appendix A.3. Computation of pressure in MD 
simulations

As is well known from previous work (Cheung and Yip 1991; 
Todd et al. 1995; Cleri 2001), the Irving–Kirkwood (IK) for-
mula for the stress tensor in a fluid exhibits spurious oscil-
lations near hard system boundaries such as solid walls. As 
a result, in the present work the fluid pressure is measured 
by calculating the pyy component of the configurational part 
of the stress tensor, as the sum of all molecular forces acting 

across a flat (imaginary) dividing plane whose normal is in 
the �̂ direction. Specifically, we are using an approach known 
as the method of planes (MOP) (Todd et al. 1995), in which 
the configurational part of the stress tensor at location y is 
calculated by

where yi and yj are the components of the position vectors 
of atoms i and j in the �̂ direction at time t, respectively, and 
F
y

ij
 represents the �̂-component of the force on atom i due to 

atom j. The force component Fy

ij
 contributes to the configu-

rational pressure only if it acts across the plane at y. The 
pressure is then given by p = pyy ; we have independently 
verified, via simulations in 2D channels that the stress tensor 
remains isotropic even at these small scales. The above defi-
nition assumes pairwise forces between contributing atoms. 
Stress tensor definitions for systems of particles interacting 
through many-body forces have only been developed for the 
virial IK-based formulation (Thompson et al. 2009). To 
overcome this limitation, here we use the fact that, in the 
lubrication approximation, the fluid pressure is independent 
of y. We have thus placed the sampling plane in the narrow 
gap between wall and liquid, which ensures that any pair of 
contributing atoms is never both solid or liquid. An addi-
tional benefit associated with this choice is that no atom 
crossings occur across this sampling plane, meaning that the 
kinetic term

does not contribute. In the above equation, mi is the mass of 
particle i and vi is the component of the particle velocity of 
particle i in the �̂ direction at time t.

Although derived for infinitely large planes, in the case of 
the barrel drop geometry, in order to resolve the pressure vari-
ation in the flow direction, we have applied expression (A.1) 
locally, that is, over bins of finite extent in the flow ( ̂� ) direc-
tion. The number of bins was chosen to balance the need for 
good axial resolution of the pressure with the need for the 
number of bins to be as small as possible so that the change 
in pressure across consecutive bins is small. Specifically, we 
used 100 bins, with each bin spanning 0.6 nm in the �̂ direction 
and the size of the periodic box, 25.6 nm , in the �̂ direction.
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