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Abstract

We present an efficient particle method for solving the Boltzmann equation. The key ingredients of this work are the
variance reduction ideas presented in Baker and Hadjiconstantinou [L.L. Baker, N.G. Hadjiconstantinou, Variance reduc-
tion for Monte Carlo solutions of the Boltzmann Equation, Physics of Fluids, 17 (2005) (art. no, 051703)] and a new col-
lision integral formulation which allows the method to retain the algorithmic structure of direct simulation Monte Carlo
(DSMC) and thus enjoy the numerous advantages associated with particle methods, such as a physically intuitive formu-
lation, computational efficiency due to importance sampling, low memory usage (no discretization in velocity space), and
the ability to naturally and accurately capture discontinuities in the distribution function. The variance reduction, achieved
by simulating only the deviation from equilibrium, results in a significant computational efficiency advantage for low-sig-
nal flows (e.g. low flow speed) compared to traditional particle methods such as DSMC. In particular, the resulting method
can capture arbitrarily small deviations from equilibrium at a computational cost that is independent of the magnitude of
this deviation. The method is validated by comparing its predictions with DSMC solutions for spatially homogeneous and
inhomogeneous problems.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Interest in numerical solution of the Boltzmann equation [1,2] has recently been revived in connection with
small-scale science and technology. In typical MEMS/NEMS applications, characteristic flow scales are no
longer much larger than the molecular mean free path, requiring modeling beyond the Navier–Stokes level
of description. Numerical solution of the Boltzmann equation for low-signal (e.g. low-speed) flows typical
of this regime [18,19] remains a formidable task; this is due to the fact that the prevalent method for solving
the Boltzmann equation, a stochastic particle simulation method known as the direct simulation Monte Carlo
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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(DSMC) [7], becomes very inefficient in low-signal flows due to the uncertainty associated with the statistical
sampling of hydrodynamic properties from particle data. More specifically, it can be shown [10] that, at con-
stant relative statistical uncertainty (a measure of signal to noise ratio), the computational cost of DSMC
increases as Ma�2 for Ma! 0, making noise-free simulation of low-speed, or more generally low-signal, flows
very expensive and in some cases intractable.

Deterministic methods for solving the Boltzmann equation are typically very computationally expensive
due to the high dimensionality of the distribution function in general and the additional high cost and storage
requirements associated with the numerical treatment of the Boltzmann collision integral in particular. More-
over, in problems of practical interest, the existence of propagating discontinuities in the distribution function
significantly reduces the number of viable approaches. Here we note the numerical solution method of Sone
et al. [14] who, by carefully treating the discontinuities in the distribution function, were able to provide accu-
rate solutions to a number of spatially dependent– albeit special1– problems of interest [14–16] on the basis of
the linearized Boltzmann equation. Extensions of this approach to higher spatial dimensions have been limited
to cases where the collision integral is replaced by the BGK collision model (e.g. see [17]).

In this paper we present an approach for solving the original Boltzmann equation using a Monte Carlo
method which retains the various desirable features associated with DSMC while addressing the serious lim-
itation suffered by Monte Carlo approaches in the limit of small deviation from equilibrium. The foundation
for the present approach was laid in a previous Letter [3] where Baker and Hadjiconstantinou presented the
general idea of variance reduction for Monte Carlo solutions of the Boltzmann equation. Specifically, it was
shown in [3] that by simulating only the deviation from equilibrium, it is possible to construct Monte Carlo
solution methods that can capture arbitrarily small magnitudes of this deviation at a computational cost that
is independent of the latter. These features were demonstrated (in the same Letter) by applying the variance
reduction technique to a finite volume formulation of the Boltzmann equation.

The new particle method presented here will be referred to as LVDSMC: low-variance deviational simula-
tion Monte Carlo. As mentioned above, this method incorporates variance reduction while retaining the algo-
rithmic structure and most basic features of DSMC. As discussed before [3], particle methods have a number
of advantages which include simplicity, an intuitive formulation which naturally employs importance sam-
pling, and very low memory usage. Moreover, their natural treatment of the advection process means that
they can easily handle and accurately capture traveling discontinuities in the distribution function.

Finally we note that ideas similar in spirit, namely simulation of the deviation from a Maxwell–Boltzmann
distribution to reduce the statistical uncertainty, have been used in the simulation of gyrokinetic equations
[20,21]. We also remark that Fokker–Planck-inspired, ‘‘quiet’’ Monte Carlo particle simulation methods have
been developed for solving the Euler system of equations [22] and the diffusion equation [23].

2. Boltzmann equation

Here we consider a hard-sphere [2] gas of molecular mass m and hard-sphere diameter d, at a reference tem-
perature T0 and reference number density n0. The mean free path is given by k0 ¼ 1=ð

ffiffiffi
2
p

pn0d2Þ, the most prob-
able molecular speed by c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT 0=m

p
, and the molecular collision time by s0 ¼

ffiffiffi
p
p

k=ð2c0Þ, respectively,
where k is Boltzmann’s constant. Let f(r,c, t) be the velocity distribution function [2], where r = (x,y,z) is
the position vector in physical space, c = (cx,cy,cz) is the molecular velocity vector, and t is time. In this paper
we limit our discussion to the case where no external fields are present; extension of this work to the presence
of external fields is straightforward. In the absence of external fields, the Boltzmann equation can be written
[2] in the following form:
1 Th
space
of
ot
þ c � of

or
¼ df

dt

� �
coll

ðr; c; tÞ ð1Þ
with
ese problems are one-dimensional in space and such that similarity transformations reduce the problem dimensionality in velocity
to two, while discontinuities in the distribution function are stationary and can be easily aligned with mesh-element boundaries.
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df
dt

� �
coll

ðr; c; tÞ ¼ 1

2

Z Z Z
ðd02 þ d01 � d2 � d1Þf1f2grd2Xd3c1 d3c2 ð2Þ
where r = d2/4 is the differential collision cross-section for hard spheres, f1 = f(r,c1, t), f2 = f(r,c2, t),
d1 = d3(c1 � c), d2 = d3(c2 � c), d01 ¼ d3ðc01 � cÞ and d02 ¼ d3ðc02 � cÞ. Here c1, c2 are the precollision velocities,
g = |c1 � c2| is the magnitude of the relative velocity vector, and c01; c

0
2 are the postcollision velocities, related to

the precollision velocities through the scattering angle X. Here, and in the remainder of the paper, integration
in velocity space extends from �1 to 1 unless otherwise stated; similarly, the solid angle integration is over
the surface of the unit sphere, unless otherwise stated.

2.1. Particle methods for solving the Boltzmann equation

The most prevalent Boltzmann solution method is a particle method known as direct simulation Monte
Carlo (DSMC). DSMC solves [9] the Boltzmann equation by simulating molecular motion as a series of
timesteps, each of length Dt, and during which a collisionless advection and collision substep are per-
formed [7]. This can be thought of as a splitting scheme in which the collisionless advection substep
integrates
of
ot
þ c � of

or
¼ 0 ð3Þ
while the collision substep integrates
of
ot
¼ df

dt

� �
coll

ð4Þ
During the advection substep, the positions of all particles are updated according to their velocities, while the
velocities remain constant. During the collision substep, the distribution function is updated by processing
binary collisions between collision partners chosen at random within the same computational cell. The colli-
sion rules can be derived [3] from (2): collisions occur between pairs of particles (1 and 2) drawn from the
underlying distribution (f1 and f2, respectively). The collision leads to the creation of 4 new particles:
d01; d

0
2;�d1;�d2. However, the newly created particles �d1, �d2 cancel the colliding particles and thus the algo-

rithm simply proceeds by updating particles 1,2! 1 0, 2 0. DSMC owes much of its success to this formulation,
which is not only simple and physically intuitive, but it also performs importance sampling, thus endowing it
with formidable computational efficiency.
3. Variance reduction in particle methods

Given the long list of advantages enjoyed by particle methods, but also due to historical reasons, a particle
method which incorporates variance reduction is highly desirable. In this section we discuss a basic particle
scheme incorporating variance reduction as a means of elucidating the major challenges associated with var-
iance reduction in particle schemes. Readers interested in pde-type solution methods incorporating variance
reduction are referred to [3,13].

As shown [3] before, a variance-reduced formulation is obtained by considering the deviation fd ” f � fMB

from an arbitrary Maxwell–Boltzmann distribution,
f MBðcÞ ¼ nMB

p3=2c3
MB

exp � ðc� uMBÞ2

c2
MB

" #
ð5Þ
In the work that follows this distribution will be identified with the local equilibrium distribution and thus
cMB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT MB=m

p
is the most probable speed based on the local equilibrium temperature TMB, and uMB is

the local equilibrium flow velocity. Upon substitution into Eq. (2), we obtain
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df
dt

� �
coll

ðr; c; tÞ ¼ df d

dt

� �
coll

ðr; c; tÞ

¼ 1

2

Z Z Z
d02 þ d01 � d2 � d1

� �
f MB

1 f d
2 þ f MB

2 f d
1 þ f d

1 f d
2

� �
grd2Xd3c1 d3c2

¼ LMBðf dÞ þ J ðf d; f dÞ ð6Þ
since the integral involving f MB
1 f MB

2 is identically zero. The last equality shows that the collision integral can be

written as the sum of a linear ½LMBðf dÞ� and a quadratic ½J ðf d; f dÞ� term. Separating terms and using the fact
that the linear terms are symmetric with respect to interchanging c1 and c2 gives
df
dt

� �
coll

ðr; c; tÞ ¼ 1

2

Z Z Z
d02 þ d01 � d2 � d1

� �
f d

1 ð2f MB
2 þ f d

2 Þgrd2Xd3c1 d3c2 ð7Þ
We thus seek to develop a particle formulation in which particles simulate the deviation from equilibrium
fMB. Collision rules for the deviational particles are to be rigorously derived from the ‘‘new’’, variance-reduced
collision integral (Eq. (7)). Particles may be positive or negative, depending on the sign of the deviation from
equilibrium at the location in phase space where the particle resides. As in DSMC, each computational devi-
ational particle represents an effective number of physical deviational particles, denoted as Neff. In the present
implementation, the effective number is common for all particles.

Based on our choice for the underlying equilibrium distribution, fMB, the advection substep may be differ-
ent [5,6,8] from DSMC. We will discuss the advection substep in Section 4.2, when our choice for the under-
lying equilibrium distribution fMB has been explained.

The first attempt towards deriving the new collision rules may proceed by writing (7) in the following form
df
dt

� �
coll

¼
Z Z Z

ðd01 þ d02 � d1 � d2Þf d
1 f MB

2 grd2Xd3c1 d3 c2

þ 1

2

Z Z Z
ðd01 þ d02 � d1 � d2Þf d

1 f d
2 grd2Xd3 c1 d3 c2 ð8Þ
This form of the collision integral suggests that two types of collisions must be considered: those involving a
deviational particle and the underlying Maxwell–Boltzmann distribution ðf MB

1 f d
2 Þ and representing the linear

term LMBðf dÞ, and those between two deviational particles ðf d
1 f d

2 Þ, representing the non-linear term J ðf d; f dÞ.
Let us consider the first type of collision briefly: from (8) we see that particle 1 drawn from fd collides with
particle 2 drawn from fMB and leads to the creation of four particles: sgnðf d

1 Þd
0
1; sgnðf d

1 Þd
0
2;�sgnðf d

1 Þd1;
�sgnðf d

1 Þd2. The existing particle 2 ½sgnðf d
1 Þd2� is cancelled by the new �sgnðf d

1 Þd2 particle, thus leading to
a net creation of three particles. The f d

1 f d
2 term can be interpreted and implemented analogously [5,6]. [Note

that if fMB = 0, fd > 0, we recover DSMC.]
The deviational scheme just described has already been developed [5,6] and extensively tested. It has

been found to be very efficient for Kn = k0/L J 1, where L is the flow characteristic lengthscale; in this
regime, collisions with the system walls lead to sufficient particle cancellation for the number of devi-
ational particles to stabilize. Unfortunately, for Kn < 1 the high rate of intermolecular collisions com-
pared to collisions with the system walls leads to a high net rate of particle creation that results in
a divergence in the number of particles, unless a particle cancellation scheme is introduced. Such a
scheme was introduced and shown to be capable of stabilizing the calculation [5,6]; unfortunately, par-
ticle cancellation schemes effectively introduce a velocity space discretization (with associated numerical
error – particularly obvious in the higher moments of the distribution [5,6] – and storage requirements);
this is a major disadvantage compared to DSMC, which does not require discretization in velocity
space.

The above-described weakness can be overcome by using a new formulation for the collision integral. This
formulation, and the resulting new particle scheme for solving the Boltzmann equation which requires no par-

ticle cancellation or velocity space discretization, are discussed in the next section.
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4. LVDSMC: low-variance deviational simulation Monte Carlo

LVDSMC is a time explicit particle method for solving the Boltzmann equation which retains the basic
algorithmic structure of DSMC. As in DSMC, space is discretized in a number of cells in which the collision
process is performed in a space-homogeneous fashion, while time integration is achieved by performing the
desired number of timesteps of duration Dt. Each timestep consists of the following substeps:

� Advection substep: Integrate (3) for a time increment Dt. Apply boundary conditions to particles interact-
ing with system boundaries.
� Collision substep: Integrate (4) for a time increment Dt.

In the remainder of this section we will describe the major ingredients of this new method in more detail.
We start with the collision substep since this contains the new collision integral formulation which is the core
of the new approach. We then discuss the advection substep with particular emphasis on the changes required
by the new collision integral formulation.

Extracting hydrodynamic quantities from the simulation can be performed every timestep or whenever
required. The process remains largely the same as DSMC with one difference: the contribution of the under-
lying Maxwell–Boltzmann distribution needs to be added to the sampled results since sampling the deviational
particles provides only the contribution of the deviation from equilibrium to hydrodynamic quantities.

4.1. The collision substep

4.1.1. A new collision integral formulation

The proposed technique rigorously avoids creating a large fraction of the deviational particles (that would
have otherwise been created by the collision process) by ‘‘consolidating’’ their net effect (after all possible can-
cellation has taken place) into a change in the local Maxwell–Boltzmann distribution.

The new formulation proposed here focuses on a different treatment of the linear part of the collision
operator, LMBðf dÞ. Focusing on the linear part of the collision operator is not restrictive since the present
method has been developed for, and holds an advantage over DSMC, in cases where the deviation from equi-
librium is small; this coincides with the regime where the contribution of the second-order term is typically
negligible. However, if desired, the proposed method may be extended to include the non-linear part of the
collision operator, by treating it as briefly described above and in more detail in previous work [5,6]. Our
preliminary results [8] indicate that upon addition of the non-linear term, the number of particles remains
bounded for Ma [ 1.

We proceed with the treatment of the linear term; unless otherwise stated, our discussion of the collision
operator below refers to LMBðf dÞ. Particle cancellation at each timestep is achieved by absorbing as large a
fraction of the action of the collision operator over one timestep as possible into the underlying local Max-
well–Boltzmann distribution by changing this distribution, and generating deviational particles to represent
only the remaining part (that cannot be expressed as a change of the local Maxwell–Boltzmann distribution).
The rationale for this choice is that the action of the collision operator is to drive the system towards local
equilibrium, namely, a Maxwell–Boltzmann distribution. In other words, in a homogeneous calculation start-
ing from a distribution away from equilibrium (and thus some arbitrary distribution of deviational particles)
the action of the collision operator should be such that the final state is that of a local Maxwell–Boltzmann
distribution – at the (conserved) system mass, momentum and energy–and zero deviational particles. To this
end, we write
Z Dt

0

LMBðf dÞdt � LMBðf dÞDt ¼ Df MB þ Df d ð9Þ
where
Df MB ¼ 1

nMB

DnMB þ 2
x

c2
MB

� DuMB þ
1

cMB

2
x2

c2
MB

� 3

� �
DcMB

� �
f MB ð10Þ
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and x = c � uMB. In other words, by changing the number density, mean velocity and temperature of the local
Maxwell–Boltzmann distribution, we absorb part of the action of the collision integral and, as will be seen
later, reduce the number of deviational particles generated drastically. A number of possibilities exist for
choosing the amounts DnMB, DuMB, DcMB; the particular choice made in this work is explained below.

We proceed by writing
½LMBðf dÞ�ðcÞ ¼
Z

K1ðx;x1Þf dðc1Þd3c1 �
Z

K2ðx;x1Þf dðc1Þd3c1 � mðxÞf dðcÞ ð11Þ
where
K1ðc; c1Þ ¼
2nMBd2ffiffiffi

p
p

c2
MB

1

j~c� ~c1j
exp �~c2 þ ð~c� ~c1Þ2

j~c� ~c1j2

" #
¼ 2nMBd2ffiffiffi

p
p

c2
MB

1

j~c� ~c1j
exp � ½~c � ð~c� ~c1Þ�2

j~c� ~c1j2

" #
ð12Þ

K2ðc; c1Þ ¼
nMBd2ffiffiffi
p
p

c2
MB

j~c� ~c1j exp½�~c2� ð13Þ

mðcÞ ¼
ffiffiffi
p
p

nMB d2cMB exp½�~c2� þ 2j~cj þ 1

j~cj

� �Z j~cj

0

exp½�n2�dn

� �
ð14Þ
and tilde denotes normalization by cMB, i.e. ~c ¼ c=cMB. These expressions are generalizations [8] of the original
expressions [12,2,4] to the case of a Maxwell–Boltzmann distribution for an arbitrary flow velocity. Although
as shown in [11] and discussed briefly above, within the linear approximation linearization about a Maxwell–
Boltzmann distribution with uMB = 0 is sufficient, the formulation presented here has the advantage of imple-
menting the linear term exactly, which is theoretically pleasing, but also makes the simulation of non-linear
flows possible (provided the effect of fd � fd collisions is also added); the disadvantage of the present formu-
lation is that the reference state (cMB, nMB, uMB) changes during the simulation, thus slightly increasing the
algorithmic complexity.

The first term in (11), can be interpreted as the gain term due to both the Maxwell–Boltzmann and the
deviational distribution; the second term is the loss term due to the fMB term; the last term is the loss term
due to fd. This last term can be directly implemented as a particle sink (deletion). We thus focus on imple-
menting the first two terms in Eq. (11) as a combined particle generation and local Maxwell–Boltzmann dis-
tribution change. The amount of change is chosen such that it absorbs the mass, momentum and energy
change due to the action of the first two terms, in the frame of the local Maxwell–Boltzmann distribution; in
other words,
Z

Df MBf1;x; jxj2gd3 c ¼ Dt
Z Z

½K1ðx;x1Þ � K2ðx;x1Þ�f dðc1Þf1;x; jxj2gd3c1d3c ð15Þ
Using the fact that mass, momentum and energy are conserved during collisions, the above leads to the fol-
lowing solution
DnMB ¼ Dt
Z

mðx1Þf dðc1Þd3c1

DuMB ¼
Dt

nMB

Z
x1mðx1Þf dðc1Þd3c1

DcMB ¼
Dt

3nMBcMB

Z
x2

1 �
3

2
c2

MB

� �
mðx1Þf dðc1Þd3c1

ð16Þ
Although other choices for DfMB are possible, and perhaps superior, the one adopted here is convenient (in
terms of allowing the above closed form solution) but also appears to work very well. Moreover, a strong
physical justification for this choice exists; it will be more clear after the complete algorithm is described
and discussed in Sections 4.1.2 and 4.1.3.
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4.1.2. Collision algorithm

Let us define the following short-hand notation:Z

K1f d � K1ðx;x1Þf dðc1Þd3c1

K2f d �
Z

K2ðx;x1Þf dðc1Þd3c1

�mf d � mðxÞf dðcÞ

ð17Þ
Using this notation, the linear part of the collision algorithm can then be described as
LMBðf dÞDt ¼ Dt½K1 � K2�f d � Df MB|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
generation of particles

þ Df MB|fflffl{zfflffl}
changing of the Maxwell–Boltzmann distribution

� �mf dDt|fflffl{zfflffl}
deletion of particles
Based on this rearrangement, the collision algorithm proceeds as follows:

� Delete deviational particles of velocity c with probability proportional to m(x)Dt.
� Change the underlying Maxwell–Boltzmann distribution by the amount given in Eq. (16). The integrals in

(16) are calculated by sampling a subset of the deviational particles in the cell.
� Generate deviational particles according to the distribution
fDt½K1 � K2�f d � Df MBg ð18Þ
This is achieved through an acceptance–rejection technique [8]. The challenge lies in the fact that the explicit
functional form of this distribution is not known, but needs to be calculated ‘‘on the fly’’. This is achieved
by sampling a subset of the deviational particles in the cell, since evaluating this distribution function will
have to be repeated a large number of times. The essence of the acceptance–rejection algorithm is then as
follows: we choose randomly N1 velocities c, which will be the velocities of candidate particles to be created.
These velocities are drawn from an arbitrary distribution g(c), which is chosen so as to be greater than
jDt½K1 � K2�f d � Df MBj for all c; the number of candidate velocities N1 is equal to N�1

eff

R
gðcÞd3 c. For a gi-

ven c, we loop over a number of numerical particles in order to compute Dt½K1 � K2�fd as discussed above.
The particle of velocity c is created if jDt½K1 � K2�f d � Df MBj > RgðcÞ, where R is a uniform random num-
ber in [0,1]. The sign of the particle is determined from sgn½Dt½K1 � K2�fd � Df MB�.

4.1.3. Discussion

It has to be noted that kernel K1 is singular at the point c = c1 and diverges as 1/|c � c1|. This singularity
complicates particle generation through an acceptance/rejection procedure, since this method applies to
bounded distributions. To deal with this difficulty, we set a cutoff relative velocity vc and define a modified
kernel. The modified kernel is defined such that it is constant "c for which |c � c1| < vc, and equal to the mean
value of the kernel over the volume of a sphere centered on c1, and of radius vc. This mean value is equal [8] to
3nMBd2erfð~c1Þ=ð2c1vcÞ. Our numerical results are insensitive to the value of vc as long as it is small: in our com-
putations we used vc = 0.1c0; changing vc to 0.01c0 has no discernible effect.

We now discuss, briefly, the rationale for our particular choice for DfMB given by Eq. (15) and leading to Eq.
(16). This choice is based on the following two observations: first, a mechanism for deleting particles exists within
the algorithm (namely �mf d); second, in flows where the final distribution is a Maxwell–Boltzmann distribution
(say �f MB), if fd is constrained to have no net mass, momentum and energy, it has to be zero since it is also con-
strained to be equal to the difference of two Maxwell–Boltzmann distributions ðf d ¼ f � f MB ¼ �f MB � f MBÞ.
In other words, we expect that for problems where a local equilibrium solution exists, through this formulation,
the algorithm will be able to arrive at this solution (i.e. f MB ¼ �f MB; f d ¼ 0). Given the above, one may expect that
in general problems, this method will make fMB go to an appropriate Maxwell–Boltzmann distribution so as to
make fd small.

4.2. The advection substep

Recall that in this paper we assume that external fields are zero or negligible. The presence of such fields
requires straightforward extensions that will be presented in a future publication.
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Using the definition fd = f � fMB in (3) yields the following equation:
of d

ot
þ c � of d

or
¼ �c � of MB

or
ð19Þ
governing the deviational distribution function during the advection substep. This equation shows that if
fMB is independent of space, the advection substep for deviational particles is identical to that of physical
(DSMC) particles. Here, however, we allow fMB to vary between cells, leading to discontinuities of this
function at the boundaries between cells which leads to fluxes of deviational particles across these
boundaries.

The solution to this equation can be written as a superposition of a free molecular advection for the devi-
ational particles (solution of the homogeneous equation) and a correction term accounting for the contribu-
tion of the right-hand-side. The latter is implemented as a deviational particle flux term at cell boundaries, as
explained in detail below.

In summary, the advection substep consists of the following steps:

� Free molecular advection of deviational particles.
� Generation and advection of deviational particles at cell interfaces to ensure molecular flux conservation as

required by the inhomogeneous term in (19).
� Imposition of boundary conditions for particles interacting with system boundaries.

Below we discuss the last two steps in more detail.

4.2.1. Ensuring molecular flux conservation

To simplify the notation and without loss of generality let us assume that the interface between two cells
contains the origin r = 0. The term �c Æ ofMB/or can be evaluated to (c Æ n)(fMB(l) � fMB(r))d(n Æ r), where n

denotes the unit normal to the interface, and l and r denote the ‘‘left’’ (n Æ r < 0) and ‘‘right’’ (n Æ r > 0) cell,
respectively. The particular solution of (19) due to this term is
½f MBðlÞðcÞ � f MBðrÞðcÞ�sgnðc � nÞ if 0 6 ðn � rÞ=ðc � nÞ 6 Dt

0 otherwise

(

The distribution of deviational particles corresponding to this solution can be generated using a variety of
methods including a modification of the ‘‘reservoir’’ approach widely used in DSMC to model open bound-
aries [24]. In the present work, we generate the required deviational particles by drawing particles from the
(fluxal) distribution
ðc � nÞ½f MBðlÞðcÞ � f MBðrÞðcÞ� ð20Þ

and spreading them out over a domain 0 6 (n Æ r)/(c Æ n) 6 Dt by advecting them for a randomly chosen frac-
tion of a timestep.

In order to treat the most general case, in the present work, generating particles according to (20) is accom-
plished using the acceptance–rejection scheme described below and in [8]. Note, however, that in a number of
cases of practical interest e.g. isothermal flow with no flow normal to cell interface, generation of the velocity
components directly from the desired distribution is possible, leading to a significantly more efficient imple-
mentation. Generation of the fluxes due to fMB(l) and fMB(r) separately using standard (and efficient) DSMC
methods and allowing the resulting particles to cancel as a result of the action of the collision operator is
another possibility that merits investigation.

Let R1 and R2 denote random numbers uniformly distributed in [0, 1], S be the area of the cell interface and
V c ¼ 8c3

max. Also, let M be the ceiling of the function |(c Æ n)[fMB(l)(c) � fMB(r)(c)]| and cmax a cutoff velocity such
that the value of the distribution (20) is negligible if the absolute value of any of the components of c exceeds
cmax. The acceptance–rejection technique used here can be summarized as follows:

� Repeat N = SMVcDt/Neff times



T.M.M. Homolle, N.G. Hadjiconstantinou / Journal of Computational Physics 226 (2007) 2341–2358 2349
– Choose a candidate velocity cc where each component is chosen from a uniform distribution in
[�cmax,cmax]

– If jðc � nÞ½f MBðlÞðcÞ � f MBðrÞðcÞ�j > R1M , create a particle

* of velocity cc

* of sign sgn[(cc Æ n)[fMB(l)(cc) � fMB(r)(cc)]

* at a position such that n � r ¼ Dtðcc � nÞR2

4.2.2. Boundary conditions

In this work we consider diffuse boundary conditions, although the method is in no way limited to these;
extensions to other wall boundary conditions will be presented in a future publication. The boundary treat-
ment requires consideration of both deviational particles and the flux of particles due to the underlying fMB.

More specifically, the wall distribution, parametrized by the wall properties uwall; cwall ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT wall=m

p
and nwall, is written as f wall ¼ nwallF wallðcÞ ¼ nwallðpc2

wallÞ
�3=2 exp½�ðc� uwallÞ2=c2

wall�, where the quantity nwall

is determined by the requirement that the mass flux into the wall is equal to the mass flux leaving the
wall. The algorithm used here for evaluating nwall considers deviational particles and the flux of particles
due to the underlying fMB separately – by writing nwall ¼ nMB

wall þ nd
wall and evaluating each term from the

corresponding mass-flux balance – and is an adaptation of the algorithm already explained in detail
before [5,6,8].

In the case of deviational particles colliding with the wall, the algorithm is much like that of DSMC, except
pairs consisting of a positive and negative particle can be cancelled because it is only the net mass flux (deter-
mining nd

wall) that is of interest. The net number of deviational particles striking the wall is sent back into the
domain drawn from Fwall(c).

The effect of the underlying Maxwell–Boltzmann distribution is more subtle; the presence of this distribu-
tion implies both a molecular flux incident upon the wall, and a molecular flux leaving the wall. Thus, devi-
ational particles need to be created according to the distribution given by the difference between the wall
distribution ½nMB

wallF
wallðcÞ� and the underlying Maxwell–Boltzmann distribution of the neighboring cell

[fMB(r)(c)], as described in Section 4.2.1; here, we have again assumed, without loss of generality, that the inter-
face between the wall and the neighboring cell contains the origin r = 0 and that the wall extends over n Æ r 6 0.
Following the result of Section 4.2.1, deviational particles entering the domain from the wall (c Æ n > 0) are
drawn from ðc � nÞ½nMB

wallF
wallðcÞ � f MBðrÞðcÞ� and are spread out into the region 0 6 n Æ r 6 (c Æ n)Dt by being

advected for a random fraction of a timestep. Here, nMB
wall is determined from
Z
c�n<0

ðc � nÞf MBðrÞðcÞd3c ¼
Z

c�n>0

ðc � nÞnMB
wallF

wallðcÞd3c ð21Þ
5. Numerical results

5.1. Validation

We performed a number of tests to validate this method; all tests yielded excellent agreement with DSMC
solutions. Below we present a representative sample of our validation results. In all our calculations, integrals
(16) and (17) were evaluated by randomly sampling 100 particles in each cell, and all particles when the num-
ber of particles was smaller than 100.

To isolate the effects of collisions and thus validate the new treatment of the collision integral, we study the
homogeneous relaxation of the gas from an initial condition of
f i ¼ n0

2ðpc2
0Þ

3=2
exp �

ðcx � aÞ2 þ c2
y þ c2

z

c2
0

 !
þ exp �

ðcx þ aÞ2 þ c2
y þ c2

z

c2
0

 !" #
ð22Þ
The initial number of particles was approximately 9250. We monitor the relaxation by plotting the evolution
of hc4

xi as a function of time (due to mass, momentum, and energy conservation as well as symmetry consid-
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erations, lower moments provide less interesting variations). This test highlights the basic principle on which
LVDSMC is based: starting from an initial fMB = f0 and a number of deviational particles representing fi � f0,
the simulation proceeds to a final equilibrium state characterized by a Maxwell–Boltzmann distribution at the
final temperature, given by Tf = T0 + ma2/(3k), and zero deviational particles. A comparison between
LVDSMC and DSMC results for ma2/(3kT0) = 0.0048 is shown in Fig. 1. The agreement is excellent.

We also performed a number of validation tests for spatially dependent problems. Here we show LVDSMC
results for an impulsively started shear flow, in which at time t = 0 two infinite, diffuse walls in the y–z plane
and at x = 0 and x = L respectively, start moving in the y-direction with velocities ±U. Figs. 2–4 show a com-
parison with DSMC results at different Knudsen numbers (Kn) for the normalized flow velocity uy/U and
shear stress sxy=ðqc2

0Þ at various time instants, including steady state for Kn = 1 and Kn = 10. The same spatial
and time discretization as well as comparable number of simulation particles was used in the two methods.
The agreement between the results is excellent.

Fig. 5 shows the evolution of the number of particles in two cells in a Kn = 1 calculation. The figure shows
that under the new collision integral formulation, the number of particles per cell becomes constant at steady
state.

5.2. Quantifying the variance reduction

In this section we report on the variance reduction (compared to DSMC) observed in our LVDSMC sim-
ulations. When the deviation from equilibrium is small, the statistical uncertainty in DSMC is dominated by
the equilibrium fluctuations and does not depend on the deviation from equilibrium. On the contrary, in
LVDSMC the statistical uncertainty depends on the local deviation from equilibrium. Thus, to facilitate com-
parison, we have chosen to report the variance reduction observed in steady shear flows. Characterization of
the variance reduction in more complex flows as well as theoretical analysis of the statistical uncertainty in
LVDSMC will be undertaken in future work.

We have performed comparisons for both the flow velocity and the shear stress. Fig. 6 presents simulation
results for the variance reduction in the flow velocity achieved by LVDSMC at two different Knudsen num-
bers, namely Kn = 0.4 and Kn = 2.5. The figure reports Ru = VarDSMC(uy)/VarLVDSMC(uy), where Var(uy) is
0 1 2 3 4 5 6 7 8 9 10
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Fig. 1. Comparison between DSMC (stars) and LVDSMC (solid line) results for homogeneous relaxation from initial distribution fi.
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Fig. 2. Velocity profiles (top) and shear stress profiles (bottom) in impulsively started shear flow (Kn = 0.1, U = 0.05c0) at various times.
The continuous line represents the present method, while dots represent standard DSMC results.
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the variance in the cell-averaged flow velocity observed in an ensemble of calculations. Fig. 7 presents simu-
lation results for the variance reduction in the shear stress achieved by LVDSMC, for the same Knudsen num-
bers; it reports Rs = Var DSMC(sxy)/VarLVDSMC(sxy), where Var(sxy) is the variance in the cell-averaged shear
stress observed in an ensemble of calculations. VarDSMC(uy) and VarDSMC (sxy) have been calculated using
equilibrium statistical mechanics [10]; the theory used neglects the contribution of the deviation from equilib-
rium (this is an excellent approximation in DSMC as our results confirm).

R is a measure of the theoretical reduction in computational cost achieved by LVDSMC. The figures show
that, as expected, the variance reduction (and thus the computational savings) grow as Ma�2 for Ma! 0.
They also show that the variance reduction is weakly dependent on the Knudsen number and that the variance
reduction in the flow velocity is slightly higher than the variance reduction in the shear stress.

The actual cost of our LVDSMC simulations is artificially inflated due to the use of very inefficient accep-
tance–rejection techniques (with very conservative upper bounds) both in the collision and advection routines.
Despite this, in our validation simulations of Section 5.1 where DSMC and LVDSMC simulations were run
with the same discretization, we observed a speedup of at least one order of magnitude (these tests were per-
formed at U = ±0.05c0, the lowest value of U that we could simulate to the desired statistical uncertainty using
DSMC). We expect the speedup to be much closer to the theoretical values once tight bounds for the accep-
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tance rejection approaches (e.g. by making M = M(c) and modifying the procedure accordingly in Section 4.2)
or direct methods for generating random numbers from the desired distribution are implemented.

Finally, we remark that, assuming that for U > 0.05c0 the non-linear effects do not drastically alter the trend
shown by Figs. 6 and 7, these results suggest that LVDSMC may hold a computational advantage over
DSMC well into the weakly non-linear regime.
6. Final remarks

As briefly discussed in Section 4.1, the linear form of the collision integral given in (11) differs from previous
expositions [2,4] where it is simplified by assuming that the Maxwell–Boltzmann distribution has zero macro-
scopic velocity (uMB = 0). As stated above, we have retained a more general formulation for a number of rea-
sons: because our underlying Maxwell–Boltzmann distribution evolves during the simulation, the linear
formulation about the current fMB has the advantage of being physically consistent. Moreover, it does not
neglect any second-order term and it can be combined with an implementation of the quadratic term
½J ðf d; f dÞ� to provide solutions of the full Boltzmann equation (e.g. for weakly non-linear flows). If none
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of these features are of interest, and the local Maxwell–Boltzmann distribution is expected to remain close to
the original one, the algorithm may be simplified by linearizing the collision integral about global equilibrium,
f 0ðcÞ ¼ n0ðpc2

0Þ
�3=2 exp½�ĉ2�, to obtain
L0ðf dÞ ¼
Z

K0
1ðc; c1Þf dðc1Þd3c1 �

Z
K0

2ðc; c1Þf dðc1Þd3c1 � m0ðcÞf dðcÞ ð23Þ
where ĉ ¼ c=c0, and K0
1, K0

2 and m0 can be obtained by substituting nMB! n0, cMB! c0 and ~c! ĉ in the
expressions for K1, K2 and m, respectively. Complete expressions for K0

1, K0
2 and m0 can also be found in the

Appendix.
Note that linearization about global equilibrium is possible because
L0ðf dÞ ¼ L0ðf � f MBÞ ¼ L0ðf � f 0Þ � L0ðf MB � f 0Þ ð24Þ
and the last term is of second order since L0ðf MB � f 0Þ þ J ðf MB � f 0; f MB � f 0Þ ¼ 0. In a similar fashion,
under these conditions, the algorithm may be further simplified by taking x! c in Eqs. (15) and (16) (and
Eq. (17)).
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Fig. 6. Variance reduction in steady Couette flow at Kn = 0.4 (stars) and Kn = 2.5 (circles). Ru is the ratio of the variance in flow velocity
in DSMC and LVDSMC calculations (using the same number of particles per cell). Numerical data for the LVDSMC results were
obtained with approximately 650 particles per cell.
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Fig. 5. Number of particles in a cell as a function of time for a Kn = 1 calculation. Solid line denotes cell centered on x = �0.31 and
dashed line denotes cell centered on x = �0.11.

2354 T.M.M. Homolle, N.G. Hadjiconstantinou / Journal of Computational Physics 226 (2007) 2341–2358
This approach has been presented and validated in [11] using the same problems as the ones presented
above. Similarly excellent agreement with DSMC results is observed.

The addition of the non-linear collision term will be presented in a future publication.
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Fig. 7. Variance reduction in steady Couette flow at Kn = 0.4 (stars) and Kn = 2.5 (circles). Rs is the ratio of the variance in shear stress in
DSMC and LVDSMC calculations (using the same number of particles per cell). Numerical data for the LVDSMC results were obtained
with approximately 650 particles per cell.
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7. Conclusions

In summary, we have developed a new particle method for solving the Boltzmann equation. This method
can capture arbitrarily small deviations from equilibrium at constant computational cost; this is achieved
by simulating only the deviation from equilibrium. The method is closely related to DSMC and deviates
only in ways necessary to consider the deviation from equilibrium. A very important feature of this method
is that, similarly to DSMC, it requires no discretization in the particle velocities (e.g. for particle cancella-
tion). In LVDSMC this is achieved by writing the action of the collision integral in the form of a change in
the local equilibrium distribution function (representing the net effect of cancellation of a number of devi-
ational particles) and an ‘‘irreducible’’ set of deviational particles (the remaining particles that cannot be
cancelled).

LVDSMC has been validated using DSMC solutions of homogeneous relaxation model-problems and
space-dependent time-evolving flows. The validation results show that, compared to DSMC, LVDSMC can
achieve comparable accuracy using comparable discretization at significantly smaller computational cost in
the limit of low-speed flows, due to the significantly lower statistical uncertainty resulting from simulating only
the deviation from equilibrium.

Extension of LVDSMC to interaction models beyond the hard-sphere model as well as theoretical charac-
terization of the statistical uncertainty associated with this method will be the subject of future work.
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Appendix A. Kernels for a shifted Maxwell–Boltzmann distribution (uMB 6¼ 0)

We start with the linearized form of the collision integral about a Maxwell–Boltzmann distribution fMB
LMBðf dÞ ¼
Z Z Z

ðd02 þ d01 � d2 � d1Þf d
1 f MB

2 grd2Xd3c1 d3 c2 ð25Þ
It is known [12,2,4] that when the equilibrium state is that of global equilibrium, f 0ðcÞ ¼ ðpc2
0Þ
�3=2 expð�ĉ2Þ,

the collision integral can be written as
L0ðf dÞ ¼
Z

K0
1ðc; c1Þf dðc1Þd3c1 �

Z
K0

2ðc; c1Þf dðc1Þd3c1 � m0ðcÞf dðcÞ ð26Þ
where the kernels K0
1, K0

2 and the collision frequency m0 are given below.
Here we give the form of this expression when the local Maxwell–Boltzmann distribution is given by the

more general expression f MB ¼ nMBðpc2
MBÞ

�3=2 exp½�ðc� uMBÞ2=c2
MB� ¼ nMBðpc2

MBÞ
�3=2 exp½�~x2�.

We will be using the fact that, for a given set of precollision and postcollision velocities, c1; c2 ! c01; c
0
2, in a

frame moving with velocity uMB we can write x1;x2 ! x01;x
0
2, where xi = ci � uMB, x0i ¼ c0i � uMB and i = 1, 2.

A.1. Kernel K2

Kernel K2 comes from the term
�
Z Z Z

d2f d
1 f MB

2 grd2Xd3 c1 d3 c2 ¼ �
Z Z

f dðc1Þf MBðcÞjc� c1jrd2Xd3 c1 ð27Þ
When f MBðcÞ ¼ f 0ðcÞ ¼ n0ðpc2
0Þ
�3=2 exp½�ĉ2�, Eq. (27) becomes
�
Z Z

f dðc1Þn0ðpc2
0Þ
�3=2 exp½�ĉ2�jc� c1jrd2Xd3 c1
and kernel K0
2 can be identified as
K0
2ðc; c1Þ ¼

n0d2ffiffiffi
p
p

c2
0

jĉ� ĉ1j exp½�ĉ2�
When f MBðcÞ ¼ nMBðpc2
MBÞ

�3=2 exp½�~x2�, Eq. (27) becomes
�
Z Z

f dðc1ÞnMBðpc2
MBÞ

�3=2 exp½�~x2�jc� c1jrd2Xd3 c1

¼ �
Z Z

f dðc1ÞnMBðpc2
MBÞ

�3=2 exp½�~x2�jx� x1jrd2Xd3 c1 ¼ �
Z

K2ðx;x1Þf dðc1Þd3c1
A.2. Kernel K1

Kernel K1 results from the ‘‘gain’’ term
Z Z Z
ðd02 þ d01Þf d

1 f MB
2 grd2Xd3 c1 d3 c2 ð28Þ
When f MBðcÞ ¼ f 0ðcÞ ¼ n0ðpc2
0Þ
�3=2 exp½�ĉ2�, Eq. (28) becomes
Z Z Z

½dðc01 � cÞ þ dðc02 � cÞ�n0ðpc2
0Þ
�3=2 exp½�ĉ2

2�f dðc1Þjc1 � c2jrd2Xd3 c1 d3 c2
which can be shown [8,2] to equal
Z
K0

1ðc; c1Þf dðc1Þd3 c1
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with
K0
1ðc; c1Þ ¼

2n0d2ffiffiffi
p
p

c2
0

1

jĉ� ĉ1j
exp �ĉ2 þ ðĉ� ĉ1Þ2

jĉ� ĉ1j2

" #
When f MBðcÞ ¼ nMBðpc2
MBÞ

�3=2 exp½�~x2�, Eq. (28) becomes
Z Z Z
½dðc01 � cÞ þ dðc02 � cÞ�nMBðpc2

MBÞ
�3=2 exp½�~x2

2�f dðc1Þjc1 � c2jrd2Xd3 c1 d3c2

¼
Z Z Z

½dðx01 � xÞ þ dðx02 � xÞ�nMBðpc2
MBÞ

�3=2 exp½�~x2
2�f dðc1Þjx1 � x2jrd2Xd3 x1d3x2

¼
Z

K1ðx;x1Þf dðc1Þd3x1 ¼
Z

K1ðx;x1Þf dðc1Þd3c1
A.3. Collision frequency function (m)

The function m is derived from the term
�
Z Z Z

d1f d
1 f MB

2 grd2Xd3c1 d3 c2 ¼ �f dðcÞ
Z Z

f MBðc2Þjc� c2jrd2Xd3 c2 ð29Þ
When f MBðcÞ ¼ f 0ðcÞ ¼ n0ðpc2
0Þ
�3=2 exp½�ĉ2�, Eq. (29) becomes
�f dðcÞ
Z Z

n0ðpc2
0Þ
�3=2 exp½�ĉ2

2�jc� c2jrd2Xd3 c2 ¼ �m0ðcÞf dðcÞ
and the collision frequency m0(c) can be identified as
m0ðcÞ ¼
Z Z

n0ðpc2
0Þ
�3=2 exp½�ĉ2

2�jc� c2jr; d2Xd3 c2 ¼
ffiffiffi
p
p

n0 d2c0 exp½�ĉ2� þ 2ĉþ 1

ĉ

� �Z jĉj

0

exp½�n2�dn

� �
When f MBðcÞ ¼ nMBðpc2
MBÞ

�3=2 exp½�~x2�, Eq. (29) becomes
�f dðcÞ
Z Z

nMBðpc2
MBÞ

�3=2 exp½�~x2
2�jc� c2jrd2Xd3 c2

¼ �f dðcÞ
Z Z

nMBðpc2
MBÞ

�3=2 exp½�~x2
2�jx� x2jrd2Xd3 x2 ¼ �mðxÞf dðcÞ
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