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ABSTRACT: We develop and perform continuum mechanics
simulations of carbon nanotube (CNT) deployment directed
by a combination of surface topography and rarefied gas flow.
We employ the discrete elastic rods method to model the
deposition of CNT as a slender elastic rod that evolves in time
under two external forces, namely, van der Waals (vdW) and
aerodynamic drag. Our results confirm that this self-assembly
process is analogous to a previously studied macroscopic system, the “elastic sewing machine”, where an elastic rod deployed
onto a moving substrate forms nonlinear patterns. In the case of CNTs, the complex patterns observed on the substrate, such as
coils and serpentines, result from an intricate interplay between van der Waals attraction, rarefied aerodynamics, and elastic
bending. We systematically sweep through the multidimensional parameter space to quantify the pattern morphology as a
function of the relevant material, flow, and geometric parameters. Our findings are in good agreement with available experimental
data. Scaling analysis involving the relevant forces helps rationalize our observations.
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Since the discovery of carbon nanotubes (CNTs) a quarter
century ago,1 their unique mechanical, thermal, and

electrical properties have found applications in a wide array
of nanoelectronic circuits,2 and energy storage materials,3 as
well as conductive and high-strength composites.4 Structuring
of CNTs along prescribed geometries on surfaces is a
prerequisite for functional nanocircuitry and nanodevices.5

One method to achieve this goal is the controlled deposition of
CNT from liquid suspension, which can be accomplished by a
variety of techniques including chemically functionalized
nanolithographic templates,6 dispersion in nematic liquid
crystals,7 and dielectrophoresis.8,9 Alternative approaches to
patterned CNTs involve orientation-controlled growth by
chemical vapor deposition with the assistance of gas flow,
surface structure, or an external field.10 However, the most
successful approach to date for controlling single-wall CNT
geometry is nanotube epitaxy (surface-directed growth)11

combined with external force from rarefied gas flow.5,12−15

Recent experiments12−18 have demonstrated remarkable
flexibility in setting the geometry of the produced CNT
layouts, including serpentine-like shapes and circular patterns.
Furthermore, the size and periodicity of these patterns can be
tuned by the material and flow parameters. However, a
predictive framework that can be used to target and generate
patterns of desired size and geometry is notably lacking.
Computationally, molecular dynamics (MD) simulations

have been used to simulate the nonlinear mechanical response

of CNTs involving large strains and buckling,19,20 as well as
pattern formation.14,21 However, the computational cost of MD
limits the simulation to short time and length scales. This high
cost has inspired the development of continuum models for the
mechanics of CNT, such as finite element analysis22−24 and
hybrids of continuum and atomistic frameworks.25

The aspect ratio (arc-length to radius) of CNTs in self-
assembly can be on the order of 104−105.12−14 The geometric
nonlinearities of the self-assembled patterns and the slender-
ness of the structure call for an analogy with the theory of
Kirchhoff elastic rods.26 The linear elastic approximation in the
mechanics of CNT has been tested in experiments27 and
simulations.28 Energy scaling analysis, modeling the CNT as an
elastic rod, has also provided insight into the size of the
serpentines.29 Still, there is a timely need for a predictive
simulation tool that captures the essential physics of the pattern
formation process and allows for extensive parameter-space
exploration.
Here, we systematically investigate the formation of patterns

in CNT using a numerical scheme that adapts the discrete
elastic rods (DER)30 method to include van der Waals (vdW)
interactions with the substrate and external aerodynamic
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loading. We numerically sweep through parameter space to
quantify the pattern morphology as a function of the relevant
elastic, geometric, fluid, and vdW parameters. First, the radius
of static coils (Figure 1a and the Supporting Information, Movie

S1) on a planar substrate is numerically quantified, motivated
by recent experiments.14 Subsequently, a substrate with a
stepped (staircase-like) topography12 is introduced, resulting in
U-shaped periodic serpentines (Figure 1b and the Supporting
Information, Movie S2) for a range of flow velocities. For
smaller flow velocities, we observe a combination of serpentines
and loops; we refer to these as serpentine-coils (Figure 1c and
the Supporting Information, Movie S3). For flow velocities
above a threshold value, irregular serpentines form (Figure 1d
and the Supporting Information, Movie S4). We pay particular
attention to periodic serpentine patterns and quantify their
amplitude and wavelength. We also explore the formation of
serpentines as a function of flow direction. A scaling analysis
involving elastic, vdW, and aerodynamic forces determines the
dimensionless groups that dictate the size of these patterns.
Finally, we establish analogies between the current microscopic
system and other related problems where a filamentary

structure impacts a rigid substrate to form periodic patterns,
such as deployment of an elastic rod31−34 or a viscous
filament35 onto a moving substrate, direct writing of micro-
structured fibers,36 and manufacturing of spun-bonded non-
woven fabrics.37

Problem Statement and DER Simulations. We model
the CNT as a Kirchhoff elastic rod,26 from hereon referred to
simply as rod. Figure 1e shows a schematic diagram and
associated discretization of our problem. The substrate lies
along the x−z plane, and at time t = 0, the rod of length H is
positioned perpendicularly to the substrate. Within the discrete
setting of the DER computational framework (discussed in
Section S3 of the Supporting Information), the rod is
discretized along its arc-length into N nodes with coordinates,
xi (0 ≤ i < N). An orthonormal material frame that is aligned
with the tangent, ti = ei/|ei|, is associated with each edge, ei =
xi+1 − xi, and its orientation with respect to the reference frame
(also aligned with the tangent) is represented by θi with 0 ≤ i <
N − 1. Elastic energies (bending, twisting, and stretching) are
derived in terms of xi and θi, representing a total of 4 N − 1
scalar variables. Discrete versions of the 4 N − 1 equations of
motion are derived by obtaining the gradient of the elastic
energies (i.e., forces on xi and moments on θi), and equating
them to the balance of inertial and external (van der Waals and
aerodynamic) forces.
As nodes are deposited onto the substrate, additional nodes

are injected at the free end of the rod (and, therefore, N
increases with time) to keep the height, H, fixed at the
prescribed value. For computational efficiency, all the deposited
nodes far beyond the point of contact with the substrate are
deleted from the simulation. In our simulations, we use a
distance of 25 μm (measured along the arc-length) from the
contact point as a condition for node deletion (more details in
the Supporting Information, Section S3).
Our starting point was an existing DER code38 that was

previously validated against experiments.32 We now detail the
modifications required to include the external forces and
boundary conditions of the current system.

van der Waals Interactions. The vdW energy between the
CNT and the substrate can be computed from a Lennard-Jones
potential.29,39 Without loss of generality, we choose the
coordinate system such that y = 0 corresponds to the minimum
of this energy landscape. This vdW energy becomes negligible
for y ≳ 10−3 μm, while the height of the CNT reported in
experiments is H ≈ 102 μm.12,14 Given this separation of length
scales, we took the edge length of the discrete rod, δ = |ei|, to be
between these two values: 10−3 μm ≪ δ ≪ H. The vdW force
can then be compared with an adhesive force that acts only
close to the contact point. A convergence study for this
discretization length, δ, has been performed (Section S4,
Supporting Information).
In order to model the contact between the rod and the

substrate, when a node penetrates the y = 0 plane, it is
considered deposited (represented by the filled circles in Figure
1e) and is then constrained vertically (y-coordinate is fixed at 0)
for the remainder of the simulation. The vdW force, Fv, acts
only on the xc node (indicated by a cross in Figure 1e), above
the contact point, xc−1. The vdW potential energy per length, ev,
of the contact edge xc − xc−1 can be evaluated numerically from
the Lennard-Jones potential between two carbon atoms.
Physically, ev is the required energy per unit length to move a
CNT from y = 0 (oriented parallel to the substrate) to y = ∞.
In order to simplify the calculation, we take the total vdW

Figure 1. ((a) Static coiling on a substrate. (b) Periodic serpentines,
(c) serpentine-coils, and (d) irregular serpentines can form when the
substrate has a stepped topography. All the parameters correspond to
the baseline cases at different normalized velocities. Scale bar: 2 μm.
The rod radius is scaled ×10 for visualization purposes. (e)
Discretization and relevant parameters. Inset: a stepped substrate is
necessary to generate serpentines.
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energy of the contact edge, Ev, to vary linearly with the contact
angle, β (angle between the contact edge and the substrate),

namely, β β= −δ
β

E ( )e
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v

0
, where β0 is the angle between the

edge xc − xc−1 and the substrate (x−z plane) when the node
xc−1 touched the substrate. The details of this linearization are
provided in Section S1 of the Supporting Information. The
corresponding vdW force on xc is
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where δy = eŷ·(xc − xc−1) is the projection of the edge of the
discrete rod at the contact point on the substrate.
Aerodynamic Loading from the Rarefied Gas Flow.

The aerodynamics of the gas flow in CNT self-assembly is in
the rarefied regime since the mean free path of the gas is
significantly larger than the tube radius.40 A force model
consistent with the rarefied nature of the flow is discussed next.
Each edge in the discrete rod is essentially a cylinder with
radius, r0, length, δ, and velocity, xi̇. In Section S2 of the
Supporting Information, we consider a cylinder moving with
velocity xi̇ through a rarefied flow of velocity v. If the angle
between the cylinder axis and the relative velocity, vr = v − xi̇, is
π/2 − α (see Figure 1e), the aerodynamic force per unit length
is

σμ α μ α= · + − ⊗σ CF v t t t t vsin ( ) cos ( )a r r (2)

where the coefficients μ and Cσ are described next. The
effective viscosity parameter μ resembles the dynamic viscosity
of continuum low Reynolds flow (also with units of [Pa s]),
and depends on the density of the gas, ρ∞, and the radius of the
CNT, r0, namely, μ = v0ρ∞r0, where v0 = 1345 ms−1 is evaluated
based on the composition of the gas mixture. The numerical
prefactor Cσ in eq 2 depends on the probability of diffuse
reflection, σ, of the CNT surface. For σ = 0, all the gas
molecules impinging on a surface are reflected specularly,
whereas σ = 1 corresponds to completely diffuse reflection. The
value of Cσ varies from 2.0 to 2.29, as σ changes from 0 to 1.
Given the relatively small variation (14%) in Cσ with σ, hereon,
we use σ = 1 and Cσ = 2.29, and leave a more detailed study on
the nature of the CNT surface for future work. We also note
that diffuse reflection (σ = 1) is an often-used assumption for
engineering (rough) surfaces.41

Physical Parameters for Baseline System. Guided by
the experiments reported in refs 12 and 14, we focus our
attention in the baseline case of a CNT with radius r0 = 1.356
nm corresponding to a chiral index of (20,20)42 and height H =
20 μm. The resulting vdW potential value ev = 4.39 × 10−10 J/m
(corresponding to a planar graphite substrate) is calculated
using the methodology of ref 29 outlined in Section S1.1 of the
Supporting Information. For a stepped substrate with a step
width s = 3 nm and slope angle θ = 0.22 rad (see Figure 1e),
the potential is estimated to be ev = 1.64 × 10−10 J/m (see
Section S1.2 of the Supporting Information). The mass per unit
length of the CNT is ρ = 8.1 × 10−15 kg/m.43 The effective
viscosity for a rarefied gas medium with density ρ∞ = 0.28 kg/
m3 is μ = 5.11 × 10−7 Pa s.
We now turn to the elastic properties of the CNT. The

bending stiffness can be evaluated from kb = πCr0
3. The in-plane

stiffness was taken as C = 345 J/m2 from ab initio
computation44,45 yielding kb = 2.7 × 10−24 N m2, which will
serve as our baseline case. We approximate the twisting

stiffness, kt, to be equal to the bending stiffness, kb;
28 no

variation in pattern morphology was observed as kt/kb was
varied between 0.1 and 10. The stretching stiffness of ks = 2.9 ×
10−6 N can be estimated from ks = 2Yπtr0,

46,47 with Y = 1 TPa
for the Young’s modulus, and t = 0.34 nm for the effective tube
thickness (interlayer spacing of graphite). As the prominent
mode of deformation is bending, the CNT dynamics has
negligible dependence on ks (Section S5, Supporting
Information). A detailed discussion on the axial stiffness of
CNT can be found in ref 48. Throughout our study, twisting
and stretching stiffness values are chosen such that the
dimensionless groups, kt/kb and ks/ev, remain fixed in their
baseline case (kt/kb = 1; ks/ev = {6.6 × 103, 1.8 × 104} for
planar and stepped substrates, respectively).
We model the slender CNT as an elastic rod and develop

vdW and aerodynamic force models based on Lennard-Jones
potential and molecular momentum transfer so that we can use
a discretization length much larger than a nanometer. As a
result, in scenarios involving distortion of cross-sectional shape
of CNT, e.g., kink formation19 and radial deformation of CNT
on substrate,22 the elastic rod model is inadequate (Section S7,
Supporting Information). In what follows, we explore the
pattern formation process and quantify the associated
characteristic length scales, as a function of the following
physical parameters: height of rod (H), CNT mass per unit
length (ρ), bending stiffness (kb), vdW potential between the
CNT and the substrate (ev), and effective viscosity of the
rarefied gas flow (μ).

Static Coiling. Before studying more complex patterns, we
first consider the deposition of a CNT on a substrate without a
freestream velocity. Shadmi et al.14 first investigated this
scenario experimentally, accompanied by molecular dynamics
simulations. We ignore the self-interaction of CNTwhen the
falling CNT and its already deposited portions come in contact,
they may reorient due to vdW forces.14 We leave the extension
of the simulations to account for this interaction to future
study.
We note that the vdW forces from a perfectly planar

substrate do not resist motion in the x−z plane. Indeed, in our
simulations, we find that coils do not form on such a perfect
substrate. On the other hand, we expect that imperfections will
invariably be present in any experiment. For example, already
deposited portions of a rod increase the roughness of the
substrate and impede motion. To model such imperfections, all
three degrees of freedom of a node are fixed upon contact with
the substrate. Furthermore, near the contact point, the rod is
initialized in the curved configuration shown in Figure 2a with
radius of curvature Ri ≈ 0.5 μm ≪ H. This induced
imperfection is sufficient for the vdW interaction to self-initiate
deployment. As shown in Section S6 of the Supporting
Information, the pattern size does not depend on Ri.
In Figure 2, we present a time-series of snapshots of the coil

formation process in our baseline case. After an initial transient
regime (Figure 2a−c) that lasts ≈2 × 10−6 s, the rod forms
circular coils with a radius of R0 = 0. 60 ± 0.01 μm (Figure 2d).
For generality, we now seek a dimensionless description of the
coiling radius and the physical parameters. Balancing the
bending and the vdW forces45 yields the characteristic vdW-
bending length,

=L
k
evb

b

v (3)
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This characteristic length scale sets the curvature of the rod
near the contact point. The parameters of the baseline case
yield Lvb = 0.078 μm. Note that Lvb is analogous to the gravito-
bending length (arising from the balance between gravity and
bending forces), which was found to govern the periodicity and
size of the patterns observed in the macroscopic system of a
falling elastic rod on a moving belt, also known as the elastic
sewing machine.32,33 Hereafter, an overbar denotes a non-
dimensional quantity (i.e., quantities with units of length are
normalized by Lvb); e.g., H̅ = H/Lvb. Given the number of
parameters in this problem, namely, {R0, H, ev, ρ, μ, kb}, we can
write

̅ = ̂ ̅ ̅R R H I( , )0 0 (4)

where ̅ = ρ
μ

I e
k

v
2

b
2 can be interpreted as the dimensionless inertia.

We proceed by obtaining numerical data to characterize the
relation in eq 4 and thus obtain the functional dependence of
the coiling radius, R0, on the relevant physical parameters. In
Figure 3a, having fixed H̅ = 253 and I ̅ = 2200 (baseline values),
we plot the normalized coiling radius, R̅0, as a function of Lvb.
We vary Lvb by changing one of the two parameters (bending
stiffness in the range 2.7 × 10−25 ≤ kb [N m2] ≤ 2.7 × 10−23

and the vdW potential in the range 4.39 × 10−11 ≤ ev [J/m] ≤
4.39 × 10−9 J/m), and keep the second one fixed at its baseline
value. As the value of kb (or ev) is varied, the height, H, and
mass per length, ρ, are scaled appropriately so that the
dimensionless groups H̅ and I ̅ remain constant. We find that,
regardless of the value of Lvb, the normalized coiling radius
remains constant at R̅0 = 7.64 ± 0.01, and thus confirms the
nondimensionalization scheme introduced in eq 4.
Next, we perform a series of simulations to investigate the

variation in the coiling radius with height within the
experimentally relevant range (102 < H̅ < 104), and keep all
the other parameters fixed at the baseline values. In Figure 3b,
we plot R̅0 versus H̅, for I ̅ = 2200 (baseline value). All the data
beyond a threshold height (H̅ ≳ 200) is found to collapse onto
a curve that is consistent with a power-law

̅ = ̅ γR aH0 (5)

where a = 2.5 ± 0.4 and γ = 0.21 ± 0.02 are numerical
constants obtained by fitting the data.
Similarly to the procedure followed to obtain the data in

Figure 3b, we also perform a parameter sweep and
independently vary the mass per length, ρ, and the effective
viscosity, μ, while keeping the remaining nondimensional

parameters fixed such that H̅ = 253. Figure 3c shows the
relation between R̅0 and the dimensionless inertia I,̅ for H̅ =
253. We observe that, when 1 ≲ I ̅ ≲ 103, the coiling radius
remains nearly constant. As I ̅ increases beyond 103, and inertial
effects become important, R̅0 only exhibits a moderate increase
(R̅0 increases by 35% as I ̅ increases from 2 × 102 to 8 × 103).
Furthermore, when I ̅ ≲ 1, the deposited CNT patterns are
irregular, instead of circular coils described above. This can be
attributed to the role of the aerodynamic drag on the formation
of coils: as I ̅ decreases, the resistance to motion due to drag is
reduced, and beyond a threshold, the drag becomes inadequate
to hold the growing CNT in place to form coils.
Overall, the coiling radius is well-described by the empirical

relation in eq 5, over a wide range of the parameter space (H̅
≳102 and 1 ≲ I ̅ ≲ 104) that encompasses the parameter range
relevant to recent experiments.14 The coiling radii plotted in
Figure 3a−c vary between 0.5 and 1.0 μm. Shadmi et al.14

reported experimental coiling radii in the range 0.5−5 μm, in
remarkable agreement with our simulations, with no adjustable
parameters. At present, a more direct comparison with
experimental results is not feasible due to a lack of published

Figure 2. Snapshots from our simulation showing the formation of
static coils of the CNT (Supporting Information, Movie S1) at (a) t =
0 s, (b) t = 1.0 × 10−6 s, (c) t = 1.3 × 10−6 s, and (d) t = 5.0 × 10−6 s.
The physical parameters correspond to the baseline setup. Deposited
portion of the CNT beyond 100 nm from the contact point is not
shown in the visualization.

Figure 3. (a) Normalized coiling radius, R̅0, as a function of vdW-
bending length, Lvb, at H̅ = 253 and the dimensionless inertia I ̅ = 2200.
(b) Normalized coiling radius, R̅0, vs normalized height, H̅, at ρev

2/[kb
μ2] = 2200. (c) Normalized coiling radius, R̅0, versus I,̅ at H̅ = 253.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.7b04676
Nano Lett. 2018, 18, 1660−1667

1663

http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.7b04676/suppl_file/nl7b04676_si_002.zip
http://dx.doi.org/10.1021/acs.nanolett.7b04676


precise experimental data in the literature for the elastic moduli
of CNTs, as well as the other physical parameters: H, μ, r0, ev.
Serpentine Patterns. Thus far, we have considered a

quiescent rarefied gas medium and a perfectly sticky substrate.
Motivated by experiments reported by Geblinger et al.,12 we
now expand our model system to include the following: (i) a
freestream velocity of the gas, ve ̂x, along the x-axis
(perpendicular to the steps), and (ii) a staircase-like substrate
with a step-size, s, defined as the distance between two
subsequent ridges (inset of Figure 1e), in lieu of a sticky planar
substrate used for static coiling. Since the topography does not
vary along the z-axis, the rod may slide after deposition on the
substrate (details are provided in Sections S1 and S3 of the
Supporting Information). Such sliding dynamics were also
observed in the molecular dynamics simulations of serpentine
formation by CNT.21 The two new parameters, v and s, call for
two additional dimensionless groups: the normalized flow
velocity, v ̅ = vμH/ev, and the normalized step-size, s ̅ = s/Lvb,
where the vdW-bending length is Lvb = 0.13 μm. For the
baseline case, we take s = 3 nm (i.e., s ̅ = 0.023),21 and vary the
dimensionless flow velocity in the range 0 ≤ v ̅ ≤ 0.13, which is
treated as the primary control parameter.
Prior to reporting our numerical results for the serpentine

patterns, we describe the numerical scheme employed to
include the stepped substrate (details in Section S1.2 of the
Supporting Information). We first note the separation of length
scales, s ≪ Lvb ≪ H and our choice of discretization length δ ∼
Lvb (Section S4, Supporting Information). Since the substrate
corrugation length scale, quantified by s, is negligible compared
to the discretization length, the rod is, effectively, deposited on
a flat substrate at y = 0. Once a node of the rod has been
deposited and its y-coordinate fixed at y = 0, we examine the
effect of the corrugation only on the deposited nodes. As
detailed in Section S1.2 of the Supporting Information, we
invoke the concept of critical curvature, κc

32 and summarize it
next. The curvature between a deposited edge, ei, and the z-axis,
eẑ (parallel to the steps), is 2tan(ψ/2)/δ where δ is the edge
length, and ψ is the angle between ei and eẑ such that tan ψ =
(ei·ex̂)/(ei·eẑ) (see Figure 1e for a schematic of ψ).49 If this
curvature falls below a critical value, κc, such that 2tan(ψ/2) <
κcδ, then the edge reorients along the step direction (z-axis).
Since κcδ ≪ 1 throughout our study, we can simplify this
condition to (ei·ex̂)/(ei·eẑ) < κcδ. In the baseline case, the
normalized critical curvature is κc̅ ≔ κcLvb = 0.2. Even though
using a threshold curvature is a simplification, our results below
show that the amplitude and periodicity of the pattern are not
sensitive to the choice of κc.
We now explore the phase boundaries for the various types

of observed patterns, as well as the amplitude and wavelength
of the serpentines (see Figure 1), as functions of the four
dimensionless groups: {κc̅, v,̅ H̅, I}̅. In Figure 4a, we construct a
phase diagram on (κc̅, v)̅, with the other two groups fixed at
their baseline values for the stepped substrate: H̅ = 155 and I ̅ =
300. We vary κc̅ and v ̅ by individually varying κc and v,
respectively, while fixing all other parameters. In Figure 4a, we
observe that, at a fixed value of κc̅, serpentine-coils (Figure 1c)
form at lower values of normalized velocity, v.̅ Past a threshold
of the flow velocity, periodic serpentines (Figure 1b) emerge.
Irregular serpentines (Figure 1d) are then observed past a
second threshold. It is interesting to note that, for 0.1 ≲ κc̅ ≲
0.15, periodic serpentines appear over a wide range of v.̅ This
points to the importance of substrate choice and the physical

properties of CNT for optimal generation of periodic
serpentine patterns.
In Figure 4b, we plot the normalized amplitude, A̅, versus the

normalized velocity, v,̅ at different values of κc̅. All the data
collapses onto a single curve, even though the region of stability
of serpentine varies with κc̅. For example, as the velocity
increases from v ̅ ≈ 0 to v ̅ ≈ 0.07, the amplitude decreases from
A̅ ≈ 100 to A̅ ≈ 25. Beyond v ̅ ≈ 0.07, there is a slight increase
in A̅. In Figure 4c, we present a plot of the normalized
wavelength of the serpentines, λ,̅ versus v.̅ Again, we find the
data follows a master curve, with λ ̅ increasing from λ ̅ ≈ 4 to λ ̅ ≈
25.
Overall, the above results offer a rich design space for

microfabrication applications with approximately 400% varia-
tion in amplitude and wavelength. The amplitude and
wavelength of the serpentines in the baseline case vary in the
ranges 3 ≲ A [μm] ≲ 13 and 0.5 ≲ λ [μm] ≲ 3. These results
are consistent with the serpentine shapes measured exper-
imentally by Geblinger et al.12 Moreover, the agreement
between our simulations and experiments provides further
support for the validity of our computational framework.
We now turn to exploring the remaining two dimensionless

groups, normalized height, H̅, and dimensionless inertia, I,̅ and

Figure 4. (a) Phase diagram on (v,̅κc̅), with the colors corresponding
to different patterns. (b) Normalized amplitude, A̅, vs normalized
velocity, v,̅ at different values of normalized critical curvature, κc̅. The
dimensionless groups, {H̅, I}̅, were fixed at the baseline case. (c)
Normalized wavelength, λ,̅ from the same data.
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fix the freestream velocity at v ̅ = 0.037 and κc̅ = 0.2 (baseline
values). In Figure 5a, we plot the amplitude and wavelength as

a function of the normalized height, H̅, at I ̅ = 300. In our
scheme for parameter-space exploration, we vary the height, H,
while also scaling the velocity, v (and viscosity, μ), to keep the
dimensionless group v ̅ (and I)̅ constant. All other physical
parameters are fixed at their baseline values. The range of
height explored here (70 ≲ H̅ ≲ 700, i.e., 8 μm ≲ H ≲ 100 μm)
was chosen to contain the range over which experimental data
is available.12,14 As shown by solid lines in Figure 5a, we find
that, for H̅ ≳ 200, the amplitude (wavelength) scales reasonably
well as A̅ ∼ H̅ζ (λ ̅ ∼ H̅η), where ζ = 0.72 ± 0.06 (η = 0.67 ±
0.16) is a numerical constant evaluated by fitting the data.
The similar functional dependence of R̅0 for static coiling in

eq 5 and the empirical relation proposed for A̅ (or λ)̅ in
serpentines reaffirm the connection of CNT self-assembly with
the analogous macroscopic systems of elastic32 and fluid-
mechanical35 sewing machines. The main commonality across
all three systems (the two macroscopic cases and the CNT
deployment problem) is the prominence of an intrinsic length
scale set by the physical ingredients.34,50 Specifically, in the
elastic sewing machine this length scale arises from a
combination of the elastic moduli and gravity, and in the
fluid-mechanical sewing machine it relates to a balance between
viscosity and gravity. As the elastic rod or viscous thread
buckles due to contact with the substrate, this length scale is
excited, thereby setting the shape of the patterns. Similarly, in
the present study, the CNT patterns are set primarily by the
vdW-bending length, Lvb.
In Figure 5b, we plot the amplitude and wavelength versus

dimensionless inertia, I,̅ at H̅ = 155 (the other two

dimensionless parameters, v ̅ and κc̅, were fixed at their baseline
values). To vary I,̅ we varied the mass per length, ρ, while fixing
the other parameters. The change in the size of the serpentines
is relatively small (the amplitude remains in the range 26 < A̅ <
33 and 6.3 < λ ̅ < 8.3 for the wavelength) even though I ̅ is varied
over 2 orders of magnitude.
Finally, motivated by recent experimental observations,12 we

probe the effect of the direction of the freestream flow velocity,
with respect to the steps on the substrate, on serpentine
formation (Figure 6a1,a2). Up to this point, the flow velocity

was imposed perpendicularly to the steps on the substrate, such
that the angle between v and ex̂ was ϕ = 0. Now, we fix the
norm of the velocity at v ̅ = 0.037 (and the dimensionless groups
at their baseline values), and vary its orientation, ϕ, relative to
the x-axis. Figure 6a1,a2 presents examples of patterns at two
different orientations: ϕ = {0.0, 0.87} rad, respectively. When
the orientation angle is zero (e.g., Figure 6a1), regular
serpentines form along the x-axis. At higher values of ϕ (e.g.,
Figure 6a2), skewed serpentines form along the direction of v.
Both of these findings are well-aligned with the recent
experiments described by Geblinger et al.12 At sufficiently
high values of ϕ, close to π/2 rad, the misalignment between
the x-axis and the imposed flow velocity inhibits formation of
periodic serpentines. In order to quantify the effect of ϕ, in
Figure 6b, we plot the amplitude and wavelength as functions
of ϕ. Both amplitude and wavelength vary nonlinearly as
functions of ϕ. As ϕ increases from 0 to π/2, the amplitude
increases from A̅ = 32 to A̅ = 90 while the wavelength decreases
from λ ̅ = 6.0 to λ ̅ = 3.9. This indicates the potential of using the
flow orientation as a means to tune the serpentine morphology.

Discussion and Conclusions. We have introduced a
physically based continuum simulation of CNT self-assembly

Figure 5. (a) Normalized amplitude, A̅, and wavelength, λ,̅ as a
function of normalized height, H̅, while keeping all other
dimensionless groups fixed at their baseline values. The solid lines
show the fit to A̅ ∼ H̅ζ (ζ = 0.72 ± 0.06) and λ ̅ ∼ H̅η (η = 0.67 ± 0.16)
for H̅ > 200. (b) A̅ and λ ̅ vs the dimensionless inertia, I.̅ All the
parameters except the mass per length, ρ, remained at the baseline case
value.

Figure 6. (a) Trace of the patterns on x−z plane [normalized by Lvb]
at (a1) ϕ = 0 rad, (a2) ϕ = 0.87 rad. (b) Normalized amplitude, A̅, and
wavelength, λ,̅ vs the orientation of the freestream velocity, ϕ. The
norm of the velocity was v ̅ = 0.037, and all the physical parameters
were held fixed at the baseline case.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.7b04676
Nano Lett. 2018, 18, 1660−1667

1665

http://dx.doi.org/10.1021/acs.nanolett.7b04676


under combined surface- and flow-directed growth. Our results
provide a succinct description of the radius of the coils and the
wavelength and amplitude of the serpentines, across a wide
range of parameter space of engineering relevance to
experiments. The prediction of pattern morphology from our
simulations can potentially be used to target and design
patterns with a desired geometry.
The relatively small computational cost of our numerical

framework may be leveraged to run our simulation in
conjunction with an optimization scheme tfor laying down
CNTs along a circuit diagram. Given that the electrical
properties (e.g., conductance) vary with the bending radius in
serpentines,51 our framework can be used to tune such
properties. We hope that our results will inspire further
experimental work to characterize the physical parameters of
the system, e.g., elastic stiffness, probability of diffuse reflection,
and substrate topography.
More broadly, our analysis extends a remarkable con-

nection12,19 between microscopic CNT self-assembly and the
elastic sewing machine, as well as several other macroscopic
systems where a filamentary structure is deployed onto a
moving substrate. In the current case of pattern formation in
CNTs, an intrinsic length arises from the balance between
bending and vdW forces. Ultimately, this characteristic length
sets the size of all the patterns quantified by the radius of a
circular coil, as well as the wavelength or amplitude of
serpentines. Depending on the physical ingredients and the
constitutive description of the filament, this intrinsic length
varies but the underlying geometric description is common
across all of these systems, ranging from macroscopic viscous
thread on a moving belt to the microscopic patterns in
CNTs.34,52 We expect that the knowledge gained from these
relatively well-studied macroscopic systems of a falling viscous
thread or elastic rod on a moving belt can further advance our
understanding of the coiling patterns in CNTs.
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