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ABSTRACT: Molecular diffusion under nanoconfinement
can differ significantly from diffusion in bulk fluids. Using
molecular dynamics simulations and molecular mechanics
arguments, we elucidate the effect of layering at the confining
boundaries on the self-diffusion of a simple, single-phase,
confined fluid. In particular, we show that anomalous diffusion
due to layering is controlled by the degree of layering as
quantified by the recently proposed Wall number (Wa), which
compares the strength of the wall−fluid interaction to the
thermal energy. For low Wall numbers, layering is not
sufficiently pronounced so as to have a significant effect,
whereas forWa ≳ 1, layering is sufficiently important to have a
significant effect on diffusion dynamics. In the latter regime, we
find that fluid in the fluid−solid interfacial region tends to exhibit restricted dynamics and may only leave this region via a
thermally activated hopping process. We also identify conditions under which diffusivity under confinement can be estimated, to
a good approximation level, as a weighted average of the bulk and first-layer region diffusivities, leading to direct expressions
quantifying the deviation from bulk behavior in terms of the confinement length scale.

■ INTRODUCTION
Fluids can exhibit a wide range of anomalous properties when
placed under nanoscale confinement.1−5 These anomalies
typically result from the increasing importance of surface
effects relative to bulk effects as the confinement becomes more
pronounced. One especially notable phenomenon is that of
anomalous diffusion, namely, the observation that the diffusive
behavior of fluids under nanoconfinement may differ
significantly from their bulk counterparts. This phenomenon
has been observed in a wide range of fluid simulations,
including simulations of hard-disk/sphere fluids,6−9 Lennard-
Jones (LJ) fluids,6,10−13 water,14−16 oxygen,17 and a wide
variety of alkanes,18 as well as many experimental measure-
ments.19−21

Anomalous diffusive behavior is of great engineering interest
in applications involving nanoscale fluid transport, such as
nanoscale desalination membranes,22 nanoscale drug delivery,23

or chemical transport through zeolites.24 In general, diffusion
plays a dominant role in mass transfer for systems with small
pore radii where it may be challenging to impose pressure
gradients that are sufficiently large to drive convection.
Studying equilibrium diffusion in nanoscale systems also
sheds light on transport within these systems, by way of the
fluctuation-dissipation relations that connect equilibrium and
transport quantities. This approach has been fruitfully pursued
in the literature, as reviewed in ref 25.
In this work, we establish quantitative connections between

anomalous diffusion and the layered structure of fluid near a
confining boundary as quantified by the Wall number, first
introduced in ref 26, which serves as a measure of the relative

importance of fluid−wall interaction and thermal effects. Here,
we note that although the spatial dependence of diffusivity has
been studied before from a thermodynamic point of view,8,9,27

the present work provides a different perspective by (a)
focusing on a model that provides measures of the diffusion
coefficient (as a function of nanoconfinement) that are directly
relatable to the mean-squared displacement and (b) taking into
account, for the first time, the degree of layering at the fluid−
solid interface.

■ BACKGROUND AND OBJECTIVES
We begin by considering the structure of a simple fluid of
average density ρave* and temperature T* confined within a rigid
graphene nanoslit of width L*. For our purposes, interatomic
interactions are governed by the Lennard-Jones (LJ) potential28
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where parameters ε* and σ* denote the interactions between a
fluid particle and a wall atom. Each fluid molecule has mass m*.
Throughout this work, asterisks indicate dimensional quantities.
Nondimensional quantities, which do not carry asterisks, are
scaled by the length scale σ*, energy scale ε*, time scale

σ ε* * *m /2 , temperature scale ε*/kB, and diffusivity scale

ε σ* * *m/2 , where kB is Boltzmann’s constant. Our molecular-
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dynamics (MD) simulation methodology is described in detail
in the Appendix.
In previous work,26 the authors have shown that the presence

of layering at a fluid−solid interface in a simple fluid is
controlled by the Wall number, Wa ≡ n/T, where n is the areal
density of solid atoms in the wall and T is the temperature (we
emphasize here that these are both dimensionless quantities).
The Wall number,compares the relative importance of the
energy scale of fluid−solid interaction (which is proportional to
the wall density) and the thermal energy scale, provided that
the system has a finite energy scale for fluid−solid interactions.
In particular, when Wa ≪ 1, the “randomness” associated with
high thermal background means that the fluid density near the
wall will not exhibit strong inhomogeneities; otherwise, if Wa is
not much less than 1 (i.e., Wa ≳ 1) we expect distinct fluid
layering to form. In general, whether or not pronounced
layering exists, the minimum separation between the wall and
the fluid has been calculated as zmin = (2/5)1/6 for both the
planar wall geometry as well as the cylindrical nanopore
geometry.5,26 This quantity is illustrated on a representative
spatial density profile for layered fluid in Figure 1, obtained

from MD simulation. The figure also highlights hFL, the width
of the fluid layer closest to the fluid−wall interface, which we
will refer to as the “first fluid layer”. For a LJ fluid in the range 2
≤ T ≤ 20 and 0.4 ≤ ρave ≤ 1.2, hFL has been shown26 to be
predominantly a function of density and well approximated by

ρ= −h 0.80 0.30FL ave (2)

In the present work, we show how the above characterization
can be used to provide new insights into the connection
between wall−fluid interaction and diffusion under nano-
confinement. To begin, we expect that when layering is not
very significant, i.e., when Wa ≪ 1, the diffusion coefficient will
be, to a good approximation level, unaffected by fluid layering.
This is in agreement with previous work by Mittal et al.11 in
which the diffusion of a LJ fluid under confinement was found
to obey, to a good approximation level, the same excess-entropy

relation as the bulk (unconfined) fluid. These results can be
understood by noting that in ref 11 the LJ fluid was confined by
a 9−3 LJ wall potential of the form

= −− −V z z z( )
2

15
9 3

(3)

which has an effective number density n = 3/(2π) (compare to
eq (5.9.2) in ref 29), leading to an effective Wall number range
of 3/(20π)−3/(2π) (the authors in ref 11 considered
temperatures in the range 1 ≤ T ≤ 10).
On the other hand, for Wa ≳ 1, we expect the particle

dynamics within the layered structure shown in Figure 1 to be
different than that in the bulk (both due to the different fluid
density and due to dimensional restriction), resulting in an
overall diffusion coefficient that is different from the bulk
(when the system size is not much larger than the characteristic
layering length scale). Given that the effect of the first fluid
layer is the most pronounced, to make our discussion as
quantitative as possible, we will focus on systems that feature at
most one well-defined fluid layer. A single-layer-forming system
exhibits strong fluid layering due to the (highly ordered) solid
surface but weak subsequent fluid layering due to this (only
somewhat ordered) fluid layer. This notion can be made
rigorous by defining a secondary Wall number, WaFL ≡ ∑FL/T,
where ∑FL is the areal density of molecules within the first fluid
layer. This secondary Wall number quantifies the degree to
which the first layer induces a second fluid layer. Thus, the
single-layer-forming regime is defined by the simultaneous
conditionsWa ≳ 1 and WaFL ≪ 1. We note that in general∑FL
= ∑FL(ρave, T); earlier work in ref 26 suggests that single-layer-
forming systems are common at typical temperatures and
densities of engineering interest.

■ RESULTS AND DISCUSSION
Preliminary Observations. In this section, we discuss a

number of observations and simulation results that are
important for subsequent results in this work.

Particle Residence Time within the First Layer. As would be
expected, in single-layer-forming systems at equilibrium, the
average mass of fluid within the first layer is statistically
constant. However, the particles within that layer are in
constant exchange with particles from the bulk, an observation
first reported in ref 30. This motivates the definition of a
jumping time scale τjump, which characterizes the time for
turnover of the fluid content in the first layer. In particular, we
define τjump to be the average time it takes a fraction e−1 of the
first-layer fluid molecules to exchange with the bulk. We
propose that hopping between the first-layer region and the
bulk is a Kramers-type thermally activated process, which
implies31

τ ∼
Δ *

*

⎛
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and since Ubarrier* ∼ n*σ*2ε*, we deduce that

τ σ ε∼ * * *
*
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Waexp exp( )jump

2
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where the last proportionality follows from the definition of the
Wall number. We note that here we neglect the possible ρ-, n-
and T-dependence of prefactors in this proportionality.

Figure 1. Fluid density (relative to the channel-averaged density, ρave =
1.0) as a function of distance from the wall. This representative profile
shows key features of fluid layering near the fluid−solid interface at
high Wall number (Wa = 1.2). The minimum separation zmin is
marked in orange, the first-layer width hFL is marked in green, and the
first-layer wavelength λFL is marked in purple.
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We verify this prediction by extracting the jumping time scale
from MD simulations. Values of τjump for a variety of Wall
numbers and average fluid densities are shown in Figure 2.

Here, we note that the different values of the Wall number were
generated by varying the temperature for a fixed wall structure
(n). We find that there is an exponential relation between the
jumping time scale and the Wall number, which supports the
proposed mechanism.
Spatially Resolved Diffusivity. We compute the three-

dimensional (3D) diffusivity within some spatial region R using
the relation

∑=
Δ
Δ=

D
N t

r1 ( )
6i

N
i

R
R 1

2R

(6)

where Δri is the three-dimensional displacement of the i-th
particle and Δt = tf − t0. Here, tf is the time at which the final
sample is recorded and t0 denotes the sampling start time
(when all NR particles over which the averaging is performed
were located in region R). This expression will be used to
calculate the diffusion coefficient in the first layer (denoted by
the subscript “FL”), the bulk (denoted by the subscript “bulk”),
and the entire system (denoted by the subscript “all”).
Characteristic Time Scales. It is well known32 that

confinement can have a large effect on the diffusion coefficient.
Specifically, given a uniformly distributed set of particles
confined in a slab of characteristic size L, the mean-squared
displacement in the direction normal to the boundaries (z)
averaged over all initial particle positions is given by10

∑
π

π

⟨Δ ⟩ = − −

− −
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4

2 2 2
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From this expression, we can see that the traditional result,
⟨Δz2⟩ = 2Dt, is valid for times that are very short compared to
the diffusion time based on the system length scale (t ≪ τL =
L2/(π2D)). For times on the order of or longer than τL, ⟨Δz2⟩

→ L2/6. In other words, for a fluid confined in a nanoslit of gap
height L, limt≳τL⟨(Δr)

2⟩ → 4Dt + L2/6.
Because of the quadratic dependence of τL on L, accessing

times much longer than τL using molecular simulation is
computationally expensive unless the system is small. As a
result, studies of anomalous diffusion have typically investigated
times that are not large compared to τL and are thus reporting
diffusion coefficients that do not reflect the dimensional
confinement, namely ⟨(Δr)2⟩ = 6Dt. This, however, is not to
be confused with bulk diffusion since, due to fluid layering, the
coefficient of diffusion is spatially variable within the fluid
domain, i.e., D ≠ Dbulk. To be more specific, fluid in the first
fluid layer can be at a different density than the bulk;26

additionally, because the first layer thickness is less than σ, fluid
in the first layer is for all practical purposes dimensionally
restricted for all times.
In the interest of consistency with previous work, the

diffusion coefficient reported and modeled here corresponds to
time scales t ≪ τL for which the bulk of the system is not
dimensionally restricted. This approach is sufficiently general
because in addition to providing a model for the coefficient of
diffusion for these time scales, it includes all of the ingredients
needed for obtaining the diffusion coefficient for all times via 7.
We will quantify the effect of the first fluid layer by

measuring the diffusion coefficient using the definition in 6, for
an observation period that is sufficiently short (Δt = 0.5 τjump)
such that the number of particles that leave the layer is small.
By restricting the averaging process to this time window and to
particles within the first layer at the initial time t0, we effectively
restrict the averaging process to particles that reside within the
first layer during the averaging process; this ensures that this
measurement captures the dynamics specific to the first-layer
region and can thus be used to represent the first-layer
contribution over time intervals of arbitrary duration (in
equilibrium, particles leaving the first layer are replaced by
others traveling in the opposite direction, resulting in a
statistically steady first-layer population). Although τjump is a
molecular time scale, for layer-forming systems (Wa ≳ 1), it is
sufficiently longer than the time over which the first fluid layer
is dimensionally restricted (τFL), which is of order less than
unity; to see that τFL < 1, we note that characteristic diffusivities
are −(10 )1 , while characteristic layer widths are smaller than
unity (see 2). In other words, sufficient time scale separation
exists for Δt to satisfy both Δt ≫ τFL and Δt < τjump when
measuring diffusion in the first layer. Because of the former
condition, our data analysis neglects the small effect of τFL; in
other words, sampling starts at t0 instead of t0 + τFL. We also
note, in the same vein, that we have verified that the very short
time τb over which motion is ballistic33 can also be safely
neglected (τb ≪ Δt).
These considerations are highlighted in Figure 3, which

compares the various time scales that are important in this
problem.

Layering and Anomalous Diffusivity. We turn our
attention now to the role of layering in anomalous diffusivity.
As explained in the previous section, we expect the effect of
layering to be small for Wa ≪ 1 and thus we focus on the
regime Wa ≳ 1. The basic idea behind the analysis that follows
is that, for practical purposes, the diffusion coefficient of the
confined fluid is the aggregate of two main contributions: the
fluid within the two first layers (one layer at each confining
boundary) and the fluid in the remainder of the system (which

Figure 2. Characteristic time τjump taken by fluid molecules to leave the
first layer is shown as a function of the Wall number (simulations
performed by varying T at fixed n). The blue color (Wa ≥ 1) indicates
the region over which the exponential fit is based. For all densities,
τjump is increasing in Wa; in particular, the exponential fit for layer-
forming systems indicates that particle escape from a well-formed fluid
layer is consistent with a thermally activated hopping mechanism.
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we will refer to as the bulk region). Assuming that the diffusion
coefficient of the fluid in the bulk region is equal to the
unconfined fluid value (at the same thermodynamic con-
ditions), the challenge lies in describing the diffusion coefficient
of particles in the first layer.
First Layer as a “Dimensionally Restricted” Fluid. We begin

by considering semi-infinite systems. In our simulations, we
have taken L = 30, which in practice is sufficiently large. Given
the activated nature of their escape, we consider first-layer
molecules to comprise a dimensionally restricted fluid (while
residing in the first layer) exhibiting standard Fickian diffusion
in two dimensions (as opposed to three dimensions in the
bulk); this restriction in dimension is expected to reduce the
diffusivity by a factor of a third. We further note that this layer
is of considerably higher density than the bulk26 and that it is
well known for diffusivity to decrease with increasing fluid
density.34 As a consequence, we expect the following estimate

≤D D
2
3FL bulk (8)

to serve as a reliable approximate upper bound to the diffusivity
of first-layer molecules.
This bound is illustrated in Figure 4, which shows the mean-

squared displacement for various groups of molecules as a
function of time. Here, we emphasize again that although our
interest lies in characterizing the fluid in an Eulerian fashion,
that is, characterizing the first fluid layer and bulk regions
separately, it is sometimes more convenient to achieve this
characterization by studying the Lagrangian dynamics of
molecules in the Δt ≪ τjump and Δt ≫ τjump limits, respectively.
The figure shows that the diffusivity in the first-layer region is

considerably smaller than in the bulk for times Δt ≪ τjump
(insufficient time for molecules to escape to the bulk).
However, as Δt increases beyond τjump (i.e., there has been
significant turnover between the first-layer region and the bulk
region), we observe that the diffusive behavior of the group of
molecules that began in the first-layer region begins to
approach the bulk behavior. In particular, we find that the
contribution of the wall-normal component for this group of
molecules is much closer to a third of the fluid’s bulk diffusivity
as compared to the early time regime. This demonstrates the
lifting of the dimensional restriction once sufficient time has
passed for first-layer molecules to move into the bulk region.
We emphasize that this pronounced difference between the
first-layer region and the bulk region will only occur provided
that Wa is not much less than 1.

Anomalous Diffusivity Magnitude. To quantify the degree
to which layering induces anomalous diffusive effects, we
introduce the diffusivity ratio Q, defined as the ratio of the
overall diffusivity to the diffusivity of fluid molecules within the
bulk region

=Q
D

D
all

bulk (9)

By construction, Q approaches unity in the limit that all fluid
molecules in the system exhibit bulk behavior. We therefore
expect that in a system with no layering there should be no
appreciable deviations of Q from unity. On the other hand, in a
single-layer-forming system, we expect Q < 1, since the first
layer experiences significant dimensional restriction. In Figure
5, we demonstrate that these regimes can clearly be observed
within MD simulations.

Confinement-Induced Anomalous Diffusivity. On the basis
of our previously stated assumption that all fluid particles
outside the first-layer region exhibit the bulk diffusivity, whereas
the diffusivity within the first layer is assumed constant at the
value DFL, the overall diffusion coefficient can be written10 as

Figure 3. Mean-squared displacement vs time for particles in the bulk
region (L = 15) obtained from MD simulation. For Δt ≳ τL = 0.1L2/
(π2Dbulk), the bulk fluid enters the “two-dimensional regime” as it
begins to exhibit confinement effects associated with the finite-sized
channel. Note that the transition regime associated with τFL (shown in
purple) is significantly shorter than that associated with τjump (shown
in yellow), which is in turn much smaller than the “3D regime”
(shown in green). As a guide to the eye and to emphasize that the MD
result deviates from the bulk 3D behavior, the bulk 3D line is extended
beyond the 3D regime by the green dotted line.

Figure 4. Mean-squared displacement as a function of time for
particles within the bulk (dark green line), for particles within the first
layer (orange line), and for the z-component of particles in the first
layer (blue line). Note the difference in slopes between Δt ≲ τjump (the
dimensionally restricted and transition regimes, shaded in red and
yellow, respectively) and Δt ≫ τjump (the “dimensionally unrestricted”
regime, shaded in green).
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the weighted average of bulk particles contributing Dbulk and
first-layer particles contributing DFL, leading to

ρ ρ
= − −

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟D D

T h

L
D

D
1 2

( , ) ( )
1all bulk

ave FL ave FL

bulk (10)

where ρ ρ ρ≡T( , ) /ave FL bulk reflects the enhanced fluid
density within the first layer and the factor of 2 comes from
the presence of a first layer at each of the two confining walls.
Here, ρFL refers to the density of fluid within the first layer;
specifically, it is defined as ρFL ≡ NFL/(AhFL) where NFL is the
number of fluid molecules in the first layer and A is the fluid−
solid interfacial contact area. Alternatively, ρFL may be written
as ∑FL/hFL, where ∑FL is the areal density of fluid within the
first layer. A detailed treatment of these length and density
scales is presented in ref 26.
Based on the observation that diffusion within the first-layer

region is much slower than in the bulk region, we can neglect
the contributions of the first-layer region to obtain a simple
lower bound on the diffusivity ratio as

ρ ρ
= −Q

T h

L
1 2

( , ) ( )
min

ave FL ave
(11)

Similarly, given the upper bound in 8 for diffusivity within the
first layer, we can approximately bound the diffusivity ratio
from above by

ρ ρ
= −Q

T h

L
1

2
3

( , ) ( )
max

ave FL ave

(12)

The lower bound 11 is theoretically valid for all Wall numbers,
since DFL ≥ 0 is always true. On the other hand, the upper
bound is limited to Wa ≳ 1; even then it is only approximately

valid since DFL can exceed D2
3 bulk due to the small but nonzero

contribution to the diffusivity from motion in the wall-normal
direction (see Figure 4).
These predictions are validated in Figure 6. In particular,

regardless of Wall number, all systems exhibit diffusivity ratios
that are bounded below by Qmin. For Wa ≥ 1, there is a strictly

increasing relationship between the diffusivity ratio and the
confinement length scale. This is because a greater proportion
of fluid is contained within the first-layer region as the channel
width decreases. In all of these systems, the diffusivity anomaly
is found to be bounded from above by Qmax. In contra-
distinction, for Wa < 1, the diffusivity anomaly is close to unity
(within 12% for all simulated cases) regardless of the channel
width. As expected, when Wa < 1, Q can exceed Qmax, which
serves as an upper bound on Q only for Wa ≳ 1. This indicates
that the presence of the confining boundary is negligible, which
is expected since there is little layer formation in the low-Wa
regime. As such, we emphasize that 12 is not a strict upper
bound, and it may be violated in systems where a sufficiently
pronounced first layer does not form.

Model for the Anomalous Diffusivity in the First Layer.
The above results have validated that a system’s overall
diffusivity can be expressed as a linear combination of bulk and
layer contributions, namely, as described by 10, and that reliable
bounds for the overall diffusivity of the confined fluid can be
derived on the basis of physical arguments. Unfortunately, DFL
is not known in general and so far we have relied on bounds for
this quantity, which constrain the diffusivity anomaly over a
wide range of simulation length scales. Developing a model for
DFL would allow precise, predictive calculation of Dall = Dall(L).
In this section, we propose an approximation that allows

calculation of DFL to a reasonable accuracy level using already
known information. This approach, motivated by the findings
of Mittal et al.,11 makes the assumption that, other than the
dimensional restriction, the diffusivity of the fluid in the first
layer is related to its density in the same fashion as the bulk
fluid. In other words, we take

ρ= ̃D D T
2
3

( , )FL bulk FL (13)

where Dbulk(ρ, T) is the diffusion coefficient of the bulk LJ fluid
as a function of density and temperature. Here, ρ̃FL is defined as
NFL/λFL, where λFL is a length scale empirically determined to
provide reasonable results. In particular, λFL is defined as the

Figure 5. Diffusivity ratio Q as a function of the Wall number for a
variety of densities and channel widths. Note that in the low-Wa
regime, Q ≈ 1 for all densities and channel widths; in the high-Wa
regime, Q can be considerably less than unity.

Figure 6. Diffusivity ratio Q as a function of confinement length scale
L for systems in the layering regime, Wa ≥ 1 (ρave = 0.8). The colors
run from white (Wa = 1.0) to blue (Wa = 3.0). The inset shows the
diffusivity anomaly for several systems in the low-Wa regime (0.2 ≤
Wa < 1.0).
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distance between zmin and the point at which the fluid density
profile attains a value halfway between its second trough and
peak, as shown in Figure 1.
For the systems of interest here (L ≳ 5), 10 does not require

DFL to be determined to great accuracy because the
contribution of the bulk region is typically comparable to or
larger than that of the first fluid layer. In other words, even an
estimate for DFL leads to a reasonably accurate prediction for
Dall. Therefore, in the interest of simplicity, we approximate
Dbulk(ρ, T) by the diffusivity of a bulk hard-sphere gas (see ref
11 for a discussion of how the Lennard-Jones diffusivity
approaches the hard-sphere result in the limit of high
temperature). In particular, we use the simple relationship
due to Heyes35

ρ ρ= − +− −D T 0.212 0.260 0.080bulk
1/2

bulk
1

bulk (14)

This result immediately leads to the following expression for
calculating the ratio DFL/Dbulk needed in 10

ρ ρ
ρ ρ

=
̃ − + ̃

− +

−

−
D

D
2
3

0.212 0.260 0.080

0.212 0.260 0.080
FL

bulk

FL
1

FL

bulk
1

bulk (15)

This expression is in reasonable agreement (less than 20%
error, for most simulated temperatures) with the values of DFL/
Dbulk measured using 6, as shown in Figure 7.
Figure 7 also shows that we can use 15 to fill in the

previously unknown term in 10, thereby obtaining reasonably
accurate predictions for the diffusivity anomaly as a function of
the confinement length scale.

■ CONCLUSIONS
Simple fluids under nanoconfinement can exhibit a range of
highly modified diffusive behaviors. Through a combination of
molecular-mechanics arguments and MD simulations, we have
shown how the complex dependence of diffusivity on the
nondimensional temperature, density, as well as confinement
length scale, can be explained using recent developments in the
understanding of layering at the fluid−wall interface. In
particular, we have shown that for sufficiently weak layering,
as characterized by the Wall number, the diffusion coefficient is

not significantly perturbed from its bulk value, as seen in a
number of previous studies. On the other hand, the layered
fluid structure that forms in systems at high Wall number
exhibits diffusive behavior that can be considerably slower than
diffusion far away from the interface. In highly confined
systems, where the fraction of fluid contained within the layered
regions is appreciable, the suppressed diffusion within the first
layer leads to an anomalously low overall diffusion coefficient.
We have provided bounds that can be computed accurately and
rapidly, without the use of MD simulation, to estimate the
magnitude of the diffusion anomaly in our model system. We
have also shown that the overall diffusivity anomaly as a
function of the confinement length scale can be approximately
calculated in closed form by approximating the first-layer
diffusivity as the bulk diffusivity at the first-layer density. The
length scale (layer width) used to define this density has been
empirically determined.
As stated in the discussion of characteristic time scales, the

overall diffusion coefficients given here are applicable to times
given by t ≪ τL, i.e., sufficiently short, that the bulk fluid is not
dimensionally restricted. If the overall diffusion coefficient for t
≳ τL is needed, then Dbulk needs to be replaced by 2Dbulk/3 in
10. We also note that the overall diffusion coefficient provided
here averages over the spatial and directional distribution of
diffusion rates exhibited in this problem. In cases where the
diffusion rates in specific directions are of interest, they can be
directly obtained for t ≪ τL as Dbulk/3 for each dimension in
the bulk and DFL/2 in each of the in-plane directions within the
first layer. For t ≳ τL, the bulk diffusion is reduced to Dbulk/3 for
each of the slit in-plane directions and zero in the slit transverse
direction.
It is worth noting that these results, obtained for a simple

fluid, are also expected to apply to more-complex fluids, such as
water. For example, it has been shown that the diffusive
behavior of water confined within a carbon nanotube exhibits a
dependence on the confinement length scale.36 By establishing
the relationship between confined fluid structure and
anomalous diffusivity, this study lays the groundwork for one
potential mechanism to tune nanofluidic mass transport by
engineering the fluid−solid interface.

Figure 7. On the left, the ratio of first-layer diffusivity to bulk diffusivity as a function of temperature (ρave = 0.8). The dots indicate measurements
directly from MD simulation via measurements of mean-squared displacement, as given in 6; the solid line shows 15. On the right, the diffusivity
anomaly as a function of the confinement length scale using the values of DFL/Dbulk calculated via 10 and 14; these predicted values are in good
agreement with the MD results shown in Figure 6 for a variety of Wa ≥ 1.
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■ APPENDIX: MOLECULAR-DYNAMICS
SIMULATIONS

In this work, graphene was modeled as a sheet of carbon atoms
packed in a hexagonal lattice with side length of 1.421 Å. To
minimize edge effects, each graphene sheet measured at least 31
by 31 in the in-plane directions. For semi-infinite systems, the
channel width was L = 30.
Interactions between carbon and fluid were modeled using

σ* = 3.15 Å and ε* = 0.15 kcal mol−1, whereas fluid−fluid
interactions were modeled using σf* = 3.15 Å and εf* = 0.15 kcal
mol−1. A cut-off distance of 4σ* was used throughout.
Simulations were conducted in LAMMPS37 in the NVT

ensemble using a Nose−́Hoover thermostat38,39 within the
range of densities 0.4 ≤ ρave ≤ 1.0. The majority of simulations
were conducted within 2 ≤ T ≤ 18. The simulation time step
was 6.25 × 10−4. Each system was allowed to equilibrate for a
time of 4, after which samples were recorded every 1.25 × 10−2.
For simulations at Wa > 1, the total simulation time was 60,
which was sufficient to resolve the difference between near-wall
diffusivity and bulk diffusivity. For simulations at Wa ≤ 1,
simulations were carried out for longer (total time of 2160) so
as to reduce the variance in the near-wall diffusivity and bulk
diffusivity when comparing the two quantities to each other
(these two quantities should not differ appreciably in the low-
Wa limit).

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: ngh@mit.edu.

ORCID
Nicolas G. Hadjiconstantinou: 0000-0002-1670-2264
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the DOE CSGF under Contract
No. DE-FG02-97ER25308. Computing resources were pro-
vided by the Center for Nanoscale Materials, a U.S.
Department of Energy, Office of Science, Office of Basic
Energy Sciences User Facility, under Contract No. DE-AC02-
06CH11357.

■ REFERENCES
(1) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414,
188−190.
(2) Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B. J. Nature
2005, 438, No. 44.
(3) Holt, J. K.; Park, H. G.; Wang, Y.; Stadermann, M.; Artyukhin, A.
B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Science 2006, 312,
1034−1037.
(4) Whitby, M.; Quirke, N. Nat. Nanotechnol. 2007, 2, 87−94.
(5) Wang, G. J.; Hadjiconstantinou, N. G. Phys. Fluids 2015, 27,
No. 052006.
(6) Hahn, K.; Karger, J. J. Phys. Chem. B 1998, 102, 5766−5771.
(7) Ball, C. D.; MacWilliam, N. D.; Percus, J. K.; Bowles, R. K. J.
Chem. Phys. 2009, 130, No. 054504.
(8) Mittal, J.; Truskett, T. M.; Errington, J. R.; Hummer, G. Phys. Rev.
Lett. 2008, 100, No. 145901.
(9) Mittal, J.; Errington, J. R.; Truskett, T. M. Phys. Rev. Lett. 2006,
96, No. 177804.
(10) Schoen, M.; Cushman, J. H.; Diestler, D. J.; Rhykerd, C. L., Jr. J.
Chem. Phys. 1988, 88, 1394−1406.

(11) Mittal, J.; Errington, J. R.; Truskett, T. M. J. Phys. Chem. B 2007,
111, 10054−10063.
(12) Mehdipour, N.; Mousavian, N.; Eslami, H. J. Iran. Chem. Soc.
2014, 11, 47−52.
(13) Chen, Q.; Moore, J. D.; Liu, Y.-C.; Roussel, T. J.; Wang, Q.; Wu,
T.; Gubbins, K. E. J. Chem. Phys. 2010, 133, No. 094501.
(14) Mashl, R. J.; Joseph, S.; Aluru, N. R.; Jakobsson, E. Nano Lett.
2003, 3, 589−592.
(15) Striolo, A. Nano Lett. 2006, 6, 633−639.
(16) Mukherjee, B.; Maiti, P. K.; Dasgupta, C.; Sood, A. K. ACS Nano
2010, 4, 985−991.
(17) Lee, K.-H.; Sinnott, S. B. Nano Lett. 2005, 5, 793−798.
(18) Mao, Z.; Sinnott, S. B. J. Phys. Chem. B 2000, 104, 4618−4624.
(19) Wei, Q.; Bechinger, C.; Leiderer, P. Science 2000, 287, 625−627.
(20) Golestanian, R. Phys. Rev. Lett. 2009, 102, No. 188305.
(21) Shukla, A.; Fuchs, R.; Rehage, H. Langmuir 2006, 22, 3000−
3006.
(22) Hinds, B. J.; Chopra, N.; Rantell, T.; Andrews, R.; Gavalas, V.;
Bachas, L. G. Science 2004, 303, 62−65.
(23) Park, S.; Kim, Y.-S.; Kim, W. B.; Jon, S. Nano Lett. 2009, 9,
1325−1329.
(24) Demontis, P.; Stara, G.; Suffritti, G. Microporous Mesoporous
Mater. 2005, 86, 166−175.
(25) Bocquet, L.; Barrat, J.-L. Soft Matter 2007, 3, 685−693.
(26) Wang, G. J.; Hadjiconstantinou, N. G. Phys. Rev. Fluids 2017, 2,
No. 094201.
(27) Liu, P.; Harder, E.; Berne, B. J. J. Phys. Chem. B 2004, 108,
6595−6602.
(28) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;
Oxford University Press, 1989.
(29) Hansen, J.-P.; McDonald, I. R. Theory of Simple Liquids; Elsevier,
2006.
(30) Bocquet, L.; Barrat, J.-L. Phys. Rev. E 1994, 49, 3079−3092.
(31) Han̈ggi, P.; Talkner, P.; Borkovec, M. Rev. Mod. Phys. 1990, 62,
251−341.
(32) Gelb, L. D.; Gubbins, K. E.; Radhakrishnan, R.; Sliwinska-
Bartkowiak, M. Rep. Prog. Phys. 1999, 62, 1573−1659.
(33) Metzler, R.; Jeon, J.-H.; Cherstvy, A. G.; Barkai, E. Phys. Chem.
Chem. Phys. 2014, 16, 24128−24164.
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