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An atomistic model for the Navier slip condition

N.G. Hadjiconstantinou†

Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA

(Received 30 June 2020; revised 14 October 2020; accepted 2 December 2020)

The behaviour of a fluid at the interface with a solid boundary is affected, to a large extent,
by the potential landscape imposed on the fluid by the solid. Fluid slip at the interface
with a solid boundary is modelled here as forced Brownian motion in a periodic potential
landscape. The resulting model goes beyond simple transition-state-theory approaches and
uses well-defined atomistic parameters to capture the salient features of the slip process in
both the linear and nonlinear forcing regimes, yielding excellent agreement with molecular
dynamics simulation results, as well as previous modelling results. An explicit expression
for the Navier slip coefficient in terms of molecular-level system parameters is derived.
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1. Introduction

Accurate boundary conditions describing fluid behaviour at solid boundaries are essential
to our ability to solve the Navier–Stokes equations or other models of hydrodynamic
behaviour. The most prevalent such boundary conditions include the no-slip and slip
conditions. In dilute gases, slip can be shown to arise due to the inhomogeneity introduced
by the presence of the boundary (Hadjiconstantinou 2006; Sone 2007). Asymptotic
analysis of the Boltzmann equation shows that, to first order in the inhomogeneity, as
quantified by the ratio of the mean free path to the system characteristic length scale
(Hadjiconstantinou 2006; Sone 2007), the slip velocity, us is described by the relation

us = β
∂u
∂η

, (1.1)

where u denotes the flow velocity in the direction parallel to the boundary, η denotes the
boundary normal pointing into the fluid and β denotes the slip length.

Relation (1.1) has also been empirically determined to describe slip in dense fluids and
is known as the Navier slip condition (Navier 1823). Although it can be derived from
non-equilibrium thermodynamics considerations (Bedeaux, Albano & Mazur 1976), this
approach does not lead to a closed description in which the slip length can be predicted
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from knowledge of the system parameters. Progress towards the latter was made recently,
when it was shown (Wang & Hadjiconstantinou 2019) that (1.1) can be obtained as the
low-shear-rate limit of the nonlinear relation between the slip velocity and the shear
rate (driving force), resulting from simple transition-state-theory arguments applied to
the motion of fluid particles at the fluid–solid interface under the action of shear within
the fluid and the potential imposed by the solid. Before this recent development, studies
on the fundamentals of (1.1) mostly focused on determining the behaviour of the slip
length, lumping any nonlinear relation between the slip velocity and the shear rate into
that parameter. The most prevalent model of this type (Thompson & Troian 1997) assumes
that the slip length is governed by some form of critical dynamics leading to a dependence
on the shear rate, γ̇ , of the form

β = β0(1 − γ̇ /γ̇c)
−1/2, (1.2)

where γ̇c is a critical shear rate and β0 the low-shear-rate slip length. The nature of the
dynamics leading to this behaviour has yet to be identified. Taking a different approach,
Lichter and collaborators (Lichter, Roxin & Mandre 2004; Martini et al. 2008) used
molecular dynamics simulations to show that, for small to moderate driving forces, slip
is a thermally activated process. As noted above, this observation was used by Wang &
Hadjiconstantinou (2019) to show that simple transition-state theory, of the type pioneered
by Blake & Haynes (1969) to model the motion of contact lines, can be used to capture
many of the features of slip of a simple fluid at a solid boundary.

The most important drawback associated with simple transition-state theory is its use of
‘lumped parameters’, such as the jump-attempt frequency, which are difficult to calculate
from first principles and rarely known a priori. In this paper, we formulate slip as forced
Brownian motion in a periodic potential landscape and construct a detailed atomistic
model that is amenable to accurate numerical solutions and allows analytical results in
certain limits, thus providing a direct link between the microscopic physical picture and
the observed macroscopic behaviour. Here, we note the approach by Barrat & Bocquet
(1999), who used Green–Kubo theory to relate the slip velocity to the dynamics of
atoms subject to the corrugations of the potential landscape at the fluid–solid interface.
Although at the same level of description, the Green–Kubo approach requires a number
of approximations and is considerably less direct than the model proposed here. Despite
these drawbacks, studies based on the Green–Kubo approach have led to a number of
results (Barrat & Bocquet 1999; Priezjev & Troian 2006; Priezjev 2007a,b) that describe
molecular simulation data well and are in qualitative agreement with our own results, as
originally discussed by Wang & Hadjiconstantinou (2019).

Following the discussion of some background material in § 2, the proposed model and
its numerical solution is presented in § 3. Numerical solutions of the model are compared
to molecular dynamics (MD) simulation results, both in house and from the study by
Thompson & Troian (1997), in § 4. The implications of the model for the slip length, as
well as some analytical results, are discussed in § 5. We conclude with a discussion of our
findings and possible future directions for research in § 6.

2. Background

We consider a dense fluid of viscosity μ in contact with a stationary atomic wall. The
fluid is subject to a uniform shear rate γ̇ . The equation describing motion parallel to the
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boundary for an atom in the first fluid layer can be written in the form

mẍ = −ηFSẋ + μγ̇A + FW + FF, (2.1)

where x denotes the atom location and overdots denote differentiation with respect to time,
m denotes the mass of the atom, ηFS is the fluid–solid friction coefficient (Martini et al.
2008), A is the area per atom at the fluid–solid interface, FW denotes the force resulting
from the periodic energetic barrier associated with the layered solid (period λ) and FF
denotes the force exerted by all other fluid atoms on the atom of interest (beyond the
shear force μγ̇A). Following common practice (Steele 1973; Barrat & Bocquet 1999;
Lichter et al. 2004; Martini et al. 2008), we take FW = −F0 sin(2πx/λ), representing the
largest term in a Fourier decomposition of the actual fluid–solid interaction potential; this
is further discussed in § 6.

Lichter and collaborators (Lichter et al. 2004; Martini et al. 2008) argued about the
need to include an atomistic-level description for FF, which, in its most typical form,
namely, FF = k̂�x, where � denotes the discrete Laplacian operator, transforms (2.1) into
a Frenkel–Kontorova (FK) equation (Braun & Kivshar 1998). They also recommended
that the motion of fluid atoms normal to the boundary (in and out of the first fluid
layer) be considered, making the governing equation a variable-density FK equation
(vdFK), which could only be solved by simulation. Although some qualitative agreement
between numerical solutions with in-house MD data was shown by Lichter et al. (2004),
a convincing rationale for the need for a model of this complexity was not established. In
fact, our previous work (Wang & Hadjiconstantinou 2019), showed that the salient features
of slip can be captured using a much simpler model based on simple transition-state theory
of the type used to model the dynamics of contact lines with remarkable success (see, for
example Blake et al. 1997; de Ruijter, Blake & De Coninck 1999; De Coninck & Blake
2008; Wang et al. 2019).

In this work we show that a model at the Langevin level of description can achieve a
good balance between detailed modelling of the slip process at the atomistic scale and
quantitative agreement with MD simulations. This level of description allows accurate
solutions for the distribution function characterizing particle behaviour, thus avoiding all
simplifications and assumptions associated with simple transition-state theory. Langevin
equations of the type formulated and solved below have been studied in the past under the
general topic of Brownian motion in periodic potentials, with applications to Josephson
junctions and superionic conduction, among others (Risken 1989).

3. Model formulation and solution

Within the Langevin formalism, as applied to the problem of interest here, the term FF is
modelled as a Wiener process with a variance related to the system temperature (Risken
1989). With this assumption, after non-dimensionalization denoted by the subscript n, (2.1)
can be written in the form

ẍn + ζnẋn + dn sin xn = Fn + Γn(t), (3.1)

with
〈Γn(tn)Γn(t′n)〉 = 2ζnΘn�(tn − t′n), (3.2)

where �(t) denotes the Dirac delta function, xn = 2πx/λ, tn = 2πt/τ , Θn = τ 2kBT/mλ2,
ζn = τηFS/2πm, Fn = τ 2μγ̇A/2πmλ and dn = τ 2F0/2πmλ. In the above, kB denotes
Boltzmann’s constant, while τ is a characteristic time scale of molecular magnitude
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that will be defined more precisely later. In the interest of simplicity, in what follows,
the subscript n will be omitted from non-dimensional quantities; instead, dimensional
quantities will be denoted by a star.

Starting from (3.1) and using standard methods (Risken 1989) one can arrive at the
following Fokker–Planck equation

∂Φ

∂t
= − ∂

∂x
(vΦ) + ∂

∂v

(
ζv + d sin x − F + ζΘ

∂

∂v

)
Φ (3.3)

governing the single-particle distribution function Φ = Φ(x, v, t), where v = ẋ. This
equation describes a wide range of physical behaviour as the (effective) damping
coefficient ζ varies. Although in the general case it needs to be solved numerically,
analytical solutions are possible in the high-damping and the low-damping limit where
simplifying assumptions can be made. It is thus important to establish the parameter
regime in which Navier slip operates. As shown in the appendix, a first estimate based
on typical magnitudes of physical quantities suggests that ζ � δα/2π with δ, α ∼ O(1),
which does not clearly fall under any of the two extreme limits of damping. As a
result, we have proceeded to obtain solutions of (3.3) using the most general solution
method (Risken 1989) that is applicable to all values of ζ . This procedure is described
below.

3.1. Numerical solution of the Fokker–Planck equation
We are interested in steady (time-independent) solutions of (3.3) which are periodic in
the interval 0 � x � 2π (Φ(x + 2π) = Φ(x)). Solution of this equation will allow the
calculation of the drift velocity

〈v〉 =
∫ ∞

v=−∞

∫ 2π

x=0
vΦ(x, v) dx dv (3.4)

which corresponds to the macroscopic slip velocity (flow velocity of the layer of
fluid atoms adjacent to the solid). The above assumes the normalization condition∫∞
v=−∞

∫ 2π

x=0 Φ(x, v) dx dv = 1, which is automatically incorporated in the solution
procedure outlined below.

The solution proceeds (Risken 1989; Zheng & Hu 1995) using the expansion

Φ(x, v) = Ψ0(v)

∞∑
j=0

Cj(x)Ψj(v), (3.5)

where

Ψj(v) = Hj(v/
√

2Θ) exp(−v2/4Θ)√
2 jj!

√
2πΘ

(3.6)

and Hj(v) denotes the Hermite polynomial of order j (Risken 1989). Substituting the above
expansion into (3.3) leads to the following infinite tridiagonal system of coupled ordinary
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differential equations for the coefficients Cj(x)
√

1
√

ΘC′
1 = 0

√
1
√

ΘC′
0 + 1ζC1 +

√
2
√

Θ[C′
2 + C2(d sin x − F)/Θ] = 0

· · · = 0√
j
√

ΘC′
j−1 + nζCj +

√
j + 1

√
Θ[C′

j+1 + Cj+1(d sin x − F)/Θ] = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.7)

where prime denotes differentiation with respect to x (C′
j = dCj/dx). The slip velocity can

be shown to be given by

us = 〈v〉 = 2πC1
√

Θ, (3.8)

where, according to the above hierarchy, C1 is a constant (C1 /= C1(x)) which depends
only on the combinations ζΘ = ζ/

√
Θ , FΘ = F/Θ and dΘ = d/Θ . This implies that the

non-dimensional slip length β = 〈v〉/F can be written in the form

β = 1
ζ

2πC1ζΘ

FΘ

= 1
ζ

Ω(ζΘ, FΘ, dΘ), (3.9)

where Ω is a function of ζΘ , FΘ and dΘ .
This infinite system of equations is solved by utilizing the periodicity of the solution,

namely by expanding the coefficients Cj(x) into a truncated Fourier series

Cj(x) = 1√
2π

Q∑
k=−Q

(cj)k eikx (3.10)

which, coupled to the continued fraction method (Risken 1989), leads to a linear system of
equations for determining the value of C1. The approximation in this numerical solution
enters from the truncation of the infinite system of ordinary differential equations to a finite
number (J) and the truncated Fourier series (3.10) utilizing 2Q + 1 terms. It can be shown
(Risken 1989) that truncation to J = 1 corresponds to the limit ζ → ∞ (Smoluchowski
equation); in other words, accurate solutions for the low-damping limit require a large J.
Risken & Vollmer (1979) empirically found that J = 20/ζΘ and Q = 12 provides accurate
solutions to at least 3 significant digits for dΘ � 4. In this work we used Q = 25 and
J = 4000, which can be verified to be consistent with or exceed (in terms of fidelity) the
recommendations of Risken and Vollmer.

Figure 1 shows the behaviour of the slip length (times the friction coefficient) as a
function of the driving force FΘ for dΘ = 2 and four values of ζΘ , namely 0.1, 0.5, 2
and 10. For a fixed ζ , the observed behaviour is qualitatively similar to that observed by
Lichter et al. (2004) in their MD simulations and numerical solutions of the vdFK model:
at small driving force, the existence of a region of linear response, which corresponds to
a constant slip length, is evident. Analytical expressions for the slip length in the limit of
small friction coefficient, as well as further discussion, can be found in § 5. Beyond the
linear regime, the slip length increases rapidly, especially for small values of ζΘ . Finally,
at sufficiently high forcing, the response saturates to a constant slip length equal to 1/ζ .
This result is in quantitative agreement with the observation of Lichter et al. (2004), who
first reported the saturation in the slip length for large forcing. It can be derived by noting
that in the limit F → ∞, provided a stationary state is reached (ẍ = 0), averaging equation
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1.0
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0.6
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0.2

0.1

0

10–1 100 101

βζ

FΘ

Figure 1. Slip length times the friction coefficient, βζ , as a function of FΘ for dΘ = 2 and ζΘ = 0.1 (blue),
0.5 (red) and 2 (yellow) 10 (purple). The linear response (constant slip length) is evident for small forcing. At
high forcing the response saturates to the prediction of (3.11).

(3.1) leads to

lim
F→∞

〈v〉
F

= 1
ζ

. (3.11)

Based on the non-dimensionalization of § 2, the dimensional value of the slip length is
given by β∗ = βμ∗τ ∗A∗/2πm∗, which in the present case translates to lim

γ̇ ∗→∞ β∗ =
μ∗A∗/η∗

FS. Here, we note that our present discussion assumes that μ∗ remains constant at
these very high shear rates, which is not always the case (Heyes 1985). If high shear rates
are of interest, this phenomenon can be taken into account by using μ∗ = μ∗(γ̇ ∗) in (2.1).

4. Comparison with molecular dynamics simulations

In this section we compare solutions of the model proposed here with MD simulation
results available in the literature. The data used here involve simple Lennard–Jones (LJ)
fluids and are in the form of the (non-dimensional) slip velocity us = u∗

s τ
∗
LJ/σ

∗ as a
function of the (non-dimensional) shear rate γ̇ = γ̇ ∗τ ∗

LJ , where τ ∗
LJ =

√
m∗σ ∗2/ε∗ denotes

the LJ characteristic time, σ ∗ the associated LJ potential characteristic distance and ε∗ the
LJ potential well depth; all of the above parameters refer to the fluid–fluid LJ interaction.

To facilitate comparison in these units, we take λ∗ = δσ ∗ and τ ∗ = δτ ∗
LJ with δ denoting

a constant of order one; this leads to ζ = δτ ∗
LJη

∗
FS/2πm∗, d = F∗

0λ
∗/ε∗, which represents

the barrier height normalized by ε∗, such that dΘ represents the barrier height normalized
by (kBT)∗ and F = f · (γ̇ ∗τ ∗

LJ), where f = (δα/2π) · (A∗/σ ∗2); the latter is obtained by
noting that for a LJ fluid μ∗ = αε∗τ ∗

LJσ
∗−3, where α ∼ O(1) (for example, α = 2 for the

data in Thompson & Troian 1997).
Given that the temperature of the simulations is known in each case, our comparison

uses a nonlinear fit to determine the values for the parameters ζ , d and the prefactor f .
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0.30

0.25

0.20

0.15

0.10

0.05

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.30

0.35

0.25

0.20

0.15

0.10

0.05

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

〈v〉

〈v〉

(a)

(b)(b)

γ̇

Figure 2. Comparison between MD simulation data from Thompson & Troian (1997) and the proposed model,
for two fluid–solid interaction parameter values εFS = 0.6, 0.1 (a,b), at fixed solid density ρS = 1, fluid–solid
length scale parameter σFS = 1, fluid density ρ = 0.81 and temperature Θ = 1.1. Best fit parameters: ζ =
0.088, d = 2.07, f = 0.6 (a); ζ = 0.056, d = 1.51, f = 0.6 (b).

To reduce computational cost and assist with convergence, all parameters were constrained
to be positive; moreover, f was constrained to be in the range 0.2 � f � 4. The latter
follows from our estimate that f is expected to be of order unity detailed above.

Figures 2 and 3 show a comparison with MD data from Thompson & Troian (1997),
performed at Θ = 1.1 and fluid density ρ = 0.81 (in LJ units). The figures show the slip
velocity as a function of the shear rate for different values of the fluid–solid interaction
parameter εFS for two different cases of fluid–solid interactions and wall structures.
The agreement between MD simulation and theory is generally very good. Particularly
gratifying is the consistency and rational trends in the model parameters returned by the
fitting routine, including their agreement with our preliminary estimates. For example,
for each wall structure, a monotonically increasing value of εFS (at fixed ε∗) leads to a
monotonically increasing value of the barrier height d. We also observe that the value of
the barrier height has a strong effect on the resulting slip. This is as expected in thermally
activated motion; it will be further discussed in the next section where some analytical
results are presented.

Figure 4 shows a comparison with two sets of data from Wang & Hadjiconstantinou
(2019) with Θ = 5 and corresponding to two sets of fluid densities, namely ρ = 0.6
and ρ = 1.0. The agreement between the MD data and the model is excellent and leads
to physically reasonable parameter values that are consistent in overall magnitude with
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Figure 3. Comparison between MD simulation data from Thompson & Troian (1997) (circles) and the
proposed model (solid lines), for three fluid–solid interaction parameter values εFS = 0.6, 0.4, 0.2 (a–c),
at fixed solid density ρS = 4, fluid–solid characteristic distance σFS = 0.75, fluid density ρ = 0.81 and
temperature Θ = 1.1. Best fit parameters: ζ = 0.02, d = 1.18, f = 0.47 (a); ζ = 0.02, d = 1.11, f = 0.72 (b);
ζ = 0.02, d = 0.74, f = 1.02 (c).

those found to fit the MD results of Thompson and Troian in figures 2 and 3. The
non-dimensional friction coefficient is much smaller than unity, in agreement with our
findings so far. Given that the only difference between the two cases shown in this figure is
the fluid density, we would expect the barrier height to be approximately the same, while
f (proportional to the area per particle) to be higher in the lower-density case (Wang &
Hadjiconstantinou 2017 have shown that the density of the fluid at the fluid–solid layer
is proportional to the bulk fluid density). These expectations are reflected in the actual
parameter values with remarkable accuracy.

5. Slip length

Having established that Navier slip operates in the low-ζ regime, we revisit the governing
equation (3.3) in this limit for which Risken and Vollmer have developed an asymptotic
solution (Risken 1989). Up to and including terms of order

√
ζΘ , the slip velocity can be
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Figure 4. Comparison between MD simulation data from Wang & Hadjiconstantinou (2019) (circles) and the
proposed model (solid lines), at temperature Θ = 5 and two fluid densities: ρ = 0.6 (a) and ρ = 1.0 (b). Best
fit parameters: ζ = 0.016, d = 9.7, f = 2.3 (a), and ζ = 0.013, d = 9.7, f = 1.7 (b).

written in the form

〈v〉 = Z3

Z0 + Z1
+
√

ζΘ

√
2χ√

s(d)
√

Θ

(
Z4

Z0 + Z1
− Z2Z3

(Z0 + Z1)2

)
F̂ (5.1)

where F̂ = F/ζ , χ = 0.855 and

Z0 =
√

πΘ

2
I0 (dΘ) , Z1 =

∫ ∞

d
s′(E) exp

(
− E

Θ

)[
cosh

(
F̂g(E)

Θ

)
− 1

]
dE

Z2 =
∫ ∞

d
s′(E) exp

(
− E

Θ

)
sinh

(
F̂g(E)

Θ

)
dE,

Z3 =
∫ ∞

d
exp

(
− E

Θ

)
sinh

(
F̂g(E)

Θ

)
dE

Z4 =
∫ ∞

d
exp

(
− E

Θ

)
cosh

(
F̂g(E)

Θ

)
dE.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.2)
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In the above, I0(x) is the modified Bessel function of order zero and

g(E) =
∫ ∞

d

dE
s(E)

,

s(E) = 2
√

2
π

√
E + d E

(
2d

d + E

)
,

s′(E) = ds
dE

=
√

2
π

√
E + d

K
(

2d
d + E

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.3)

where K(x) and E(x) denote the complete elliptic integrals of the first and second kind,
respectively (Risken 1989).

This solution is useful as a closed form alternative to the numerical solutions of § 3.1. As
figure 5 shows, at the values of ζ found to describe the MD data, it captures the reference
numerical solution very well. One area where the analytical solution is particularly useful
is the linear regime (F̂ 
 1) in which it can be used to provide the following explicit result
for the slip length

β = 〈v〉
F

= 1
ζ I0(dΘ)

(√
2

πΘ

∫ ∞

d

exp (−E/Θ)

s(E)
dE + χ

√
ζΘ exp (−dΘ)

4
√

dΘ

)

= 1
ζ I0(dΘ)

(√
2
π

∫ ∞

dΘ

exp (−�)

w(�)
d� + χ

√
ζΘ exp (−dΘ)

4
√

dΘ

)
, for F̂ 
 1, ζΘ 
 1,

(5.4)

where w(�) = 2
√

2
√

� + dΘ E[2dΘ/(dΘ + �)]/π. Unfortunately, the presence of the
elliptic integral in the definition of w(�) prevents a full analytic result, except in the limit
dΘ → ∞ where I0(dΘ) ≈ exp(dΘ)/

√
2πdΘ ,

∫∞
dΘ

exp(−�)/w(�) d� ≈ exp(−dΘ)/w(dΘ),
thereby simplifying (5.4) further to

β =
(

π

2
+ χ

√
2πζΘ

√
dΘ

)
ζ−1 exp (−2dΘ) , for F̂ 
 1, ζΘ 
 1, dΘ → ∞. (5.5)

This result, although strictly asymptotic, displays more clearly the (decaying) exponential
dependence of slip on the normalized barrier height (dΘ ) that was also prominent in the
simpler transition-state-theory-based model of Wang & Hadjiconstantinou (2019).

6. Discussion

We have developed and validated an atomistic model of the Navier slip condition. Our
validation was focused on molecular simulations, for which atomistic-level details and
associated parameter values are available. We hope to extend this work to more complex
fluids, for which experimental data are more readily available, soon. The agreement found
with a variety of MD simulation results using reasonable and consistent values of the
model parameters, as well as the model’s ability to capture the salient features of the slip
phenomenon is very encouraging and suggests that fluid slip can be accurately described
by a detailed molecular model of moderate complexity.

As in our previous work (Wang & Hadjiconstantinou 2019), we have focused on
the low-forcing regime (low shear rates) which corresponds to typical shear rates of
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Figure 5. Comparison between numerical solution (red) and analytical solution (5.1) (blue) for ζ = 0.02, d =
1.18 and f = 0.47. The MD data from Thompson & Troian (1997), for which these parameters were determined
to provide the best fit (figure 3a), are also shown.

practical interest. Although high shear response may be a useful test for a proposed theory
(e.g. whether it predicts the slip length plateau observed by Lichter et al. 2004), the
high-shear-rate regime (F̂ � 1) corresponds to physical shear rates that exceed 108 s−1

which are for all practical purposes only of academic interest.
It is notable that the MD results used here, modelling typical interfaces between a simple

mildly hydrophilic fluid and a molecular solid, are best described by very low values of the
(non-dimensional) friction coefficient ζ . From a qualitative point of view, the low values
of ζ found to fit the MD data reflect the steep rise in slip exhibited by the data past the
linear response region that cannot be captured by solutions with high ζ (see figure 1 for a
comparison). Although within the bounds imposed by physical arguments and magnitudes
of known physical quantities, the low values of ζ found here are in contrast to typical
assumptions made in the literature in the course of modelling thermally activated atomic
motion at the fluid–solid interface, such as the use of theoretical tools which assume
overdamped physics. A more thorough investigation of this aspect should be undertaken
in the future.

The present model can be improved in a number of ways, starting, perhaps, from a
more accurate representation of the fluid–solid interaction potential. Assuming a simple
sinusoidal form is very common in the literature and justified as the leading term in a
Fourier expansion of the true (periodic) potential (Barrat & Bocquet 1999; Martini et al.
2008), even though this is not always a good representation of the actual potential field
experienced by the fluid atoms at the fluid–solid interface. The methodology presented
here is in no way limited to this potential form and can be easily extended to other periodic
potentials, including the actual fluid–solid interaction potential, especially if numerical
solutions are sufficient. We believe that a higher fidelity representation of this potential
field, and a model for predicting the friction coefficient from knowledge of the fluid–wall
interaction as well as fluid and wall properties, are the two final ingredients needed for
predicting slip from first principles (atomistic-level description) using this approach.

912 A26-11

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

IT
 L

ib
ra

ri
es

, o
n 

12
 F

eb
 2

02
1 

at
 1

8:
51

:0
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
11

03

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.1103


N.G. Hadjiconstantinou

Adding explicit interactions between fluid particles (e.g. in the spirit of the FK model
discussed briefly in § 2) is possible within the Langevin formalism at the cost of increased
dimensionality of the distribution function and the governing Fokker–Planck equation,
which resides in the phase space of the positions and velocities of all particles involved.
Although problems involving two interacting particles have been treated in the literature
(Risken 1989), it is clear that a formulation including more than one particle, so that
particle interactions can be taken into account, will be significantly harder to treat in
general and may only be amenable to numerical solutions.
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Appendix

To estimate the magnitude of ζ = δτ ∗
LJη

∗
FS/2πm∗ we start with the observation by Martini

et al. (2008) that η∗
FS � η∗

LL and usually η∗
FS 
 η∗

LL, where η∗
LL = μ∗A∗/a∗, and a∗ is

the fluid–fluid atomic spacing normal to the fluid–solid interface. Using η∗
FS ≈ η∗

LL as
an upper bound and the observation that the viscosity of a simple LJ fluid is given
by μ∗ = αε∗τ ∗

LJσ
∗−3 with α ∼ O(1) and assuming A∗ ∼ σ ∗2 and a∗ ∼ σ ∗ (Wang &

Hadjiconstantinou 2015, 2017), we obtain ζ ≈ δα/2π. We thus expect ζ � δα/2π.
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