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We present a formulation and numerical solution procedure for heterogeneous atomistic-
continuum representations of fluid flows. The ingredients from atomistic and continuum
perspectives are non-equilibrium molecular dynamics and spectral element, respectively;
the matching is provided by a classical procedure, the Schwarz alternating method with
overlapping subdomains. The technique is applied to microscale flow of a dense fluid
(supercritical argon) in a complex two-dimensional channel.
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1. Introduction

Many important problems in materials processing involve a range of scales from
the atomistic to the continuum. Purely atomistic representations are clearly com-
putationally intractable because of the number of particles required to represent
macroscale phenomena’; conversely, purely continuum approaches often neglect
certain critical microscale phenomena that do not now, and many never, admit
adequate macroscale constitutive characterization. New integrative frameworks are
therefore required, not only of the well-established atomistic-then-continuum vari-
ety, but also of the atomistic-with-continuum variety. Our interest is in the latter,
in particular, in gas-liguid-solid systems subject to the full range of mechanical,
thermal, and, ultimately, chemical interactions.

Heterogeneous atomistic-continuum representations have been successfully
developed for problems in both solid mechanics and fluid mechanics. In fluid me-
chanics, several domain decomposition approaches have been proposed and
implemented.? Most methods developed to date are, however, restricted to gas
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flows, in that both the particle treatment (e.g., Direct Simulation Monte Carlo
techniques, discretizations of the Boltzmann equation) and the interface treatment
(e.g., variations of the Marshak condition) are directly applicable only to dilute
systems.®> 5 Although these concepts can perhaps be extended to dense fluids, we
have chosen a slightly different strategy that does not require explicit calculation of
fluxes. Our approach is, in fact, more closely related to heterogeneous representa-
tions of solid mechanics problems,®” such as the study by Kohlhoff et al.,® and to
a recently published fluid mechanical study by O’Connell and Thompson.?

In the formulation proposed by Kohlhoff et al., the physical domain is decom-
posed into two overlapping regions, or equivalently, three regions: an atomistic do-
main treated by molecular dynamics (MD), a continuum domain treated by finite
elements, and an atomistic-continuum overlap region. Displacement boundary con-
ditions in the overlap region provide globally consistent stress fields — presuming
that the atomistic description is consistent with the continuum constitutive model
of the finite element analysis. For this effectively zero-temperature structural prob-
lem, in which the atoms are bound to lattice sites, displacements can be matched
on an individual atom-to-finite element node basis; in contrast, for fluid systems,
or fluid-solid systems, thermal considerations and material motion preclude such a
Lagrangian identification, and an appropriate Eulerian generalization is required.

The recent work of O’Connell and Thompson® addresses the problem of material
motion by introducing an “Eulerian” overlap region. An important conclusion of
Ref. 8 is that stress continuity can be achieved without explicitly matching (or
imposing) fluxes. Our method also exploits this result, and also employs an overlap
region. However there are several important differences between the two approaches.
First, O’Connell and Thompson invoke constrained Lagrangian dynamics in the
overlap region; we find that a simpler “Maxwell Demon” leads to slightly better
results. Second, the technique of O’Connell and Thompson, as demonstrated in
Ref. 8, is one-dimensional. Many new issues arise in higher space dimensions, in
particular when there is mean (continuum) flow across the atomistic-continuum
boundary; we treat these issues by the introduction of a particle reservoir.

Third, and most importantly, as reported in Ref. 8, the algorithm of O’Connell
and Thompson matches the atomistic and continuum representations on a time
step-by-time step basis, with the time step imposed by the molecular dynamics rep-
resentation. This necessitates many continuum evaluations that, in higher dimen-
sions, and in particular for flows that evolve over continuum timescales, will result
in prohibitive computational costs. In some sense, the O’Connell and Thompson
technique decouples lengthscales, but not timescales; our approach does decouple
timescales, requiring only O(1) (in practice, O(10)) continuum solutions in order to
achieve a steady state. At present our technique is only appropriate for steady prob-
lems, although we believe unsteady problems evolving over continuum timescales
can also be treated.

Finally, we remark that, although the O’Connell and Thompson technique per-
mits analysis of detailed atomistic-scale temporal evolution, adequate statistics
require averages over sufficiently long timescales, and thus accuracy and
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resolution are coupled. Specifically, the results of Ref. 8 suggest that only timescales
which correspond to quasi-static evolution on the atomistic scale can be accurately
resolved. This is consistent with linear response theory,? according to which a
system “makes use” of fluctuations about a quasi-equilibrium state to alter this
state in response to a forcing input.

In Sec. 2 we present the heterogeneous algorithm, and describe the matching
method and the imposition of MD boundary conditions; in Sec. 3, we present an
illustrative application.

2. Heterogeneous Algorithm

We describe an example of the formulation and numerical solution of a hetero-
geneous atomistic-continuum representation of a dense fluid system: flow in an
“obstructed” channel. It should be clear from the presentation, however, that
the approach is quite general. The ingredients are, from the atomistic side, non-
equilibrium molecular dynamics,!® and from the continuum side, spectral element
solution!?; the matching is provided by a classical procedure — recently resurrected
in the domain decomposition framework'? — the Schwarz alternating method with
overlapping subdomains (Sec. 2.1). A critical prerequisite is the ability to impose
arbitrary boundary conditions on a molecular dynamics domain (Sec. 2.2).

Unless otherwise stated, all quantities will be expressed in reduced units using
o = 04 = 34 A for length, ma, = 40 amu for mass, €4,/ky = 119.8 K for
temperature, and 7 = (ma,0%,/48¢4,) /2 = 3.112e(—13)s for time. Here o4, and
€4 are the parameters of the Lennard-Jones (LJ) potential for argon,*® m4, is the
mass of the argon atom, and 7 is the characteristic time for argon.

2.1. Schwarz coupling approach

The matching method is described here for the case of a one-dimensional problem;
extension to higher dimensions directly follows. Given a problem to be solved by
continuum techniques for 0 < z < b and molecular techniques for b < z < L, we
define the continuum subdomain as 0 < z < b and the molecular subdomain as
a < x < L, where a < b; a < z < b is the overlap region where both models
are presumed valid. Given boundary conditions at x = 0 and =z = L, a solution
is first assumed in one of the subdomains, say, the molecular. This solution at
z = b (€ [a, L]) serves as a boundary condition on the continuum subdomain,
permitting calculation of the “first continuum iterate.” This first continuum iterate,
in turn, provides a boundary condition at z = a for the molecular dynamics (MD)
simulation. Finally, the resulting “first MD iterate” yields a new boundary condition
at £ = b for the continuum subdomain. This alternating procedure is then repeated
until convergence.

Convergence can be proven for a large class of problems when both subdomains
are treated by continuum methods.? Convergence should, thus, also be obtained for
a heterogeneous description if the continuum and molecular models are equivalent
in the overlap region. However, additional “steady-state” errors will arise in the
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heterogeneous case due to, firstly, discrepancies in the transport coeflicients in the
two subdomains, secondly, noise introduced by MD statistical fluctuations, and
thirdly, smoothing of the MD data prior to imposition of the boundary conditions
on the continuum iterate. The convergence rate may also be affected by these new
sources of error.

This overlapping Schwarz method is chosen because it avoids the use, and hence
imposition, of fluxes in the matching of solutions on different subdomains. Assuming
that the transport coefficients are correctly matched, flux (e.g., stress) continuity
is automatically ensured by the agreement in the overlap region of the converged
continuum and atomistic representations. The method is also advantageous because
it is “implicit,” and thus decouples not only lengthscales, but also timescales: only
steady-state MD simulations are required. Extension of the method to treat time-
varying problems on the continuum timescale is thus possible, in which at each time
t" the (say, implicitly) integrated continuum iterate is matched to the previous MD
iterate at t™; given the macroscale timesteps and nanoscale MD domain, the MD
calculations may be treated as quasi-static, thus avoiding expensive coupled time
integration at the molecular timescales.

2.2. Imposition of MD boundary conditions

A prerequisite for our approach is a method for imposing general velocity and
temperature boundary conditions on an MD simulation in a general geometry D
with associated boundary 8D, as shown in Fig. 1. Note that for the purposes of this
paper we shall consider MD regions in the interior of the flow, and thus all boundary
conditions on the MD domain are of the artificial variety, that is, required solely
for purposes of heterogeneous representation. We thus avoid the issue of molecular
walls! which, although important, is a purely atomistic issue, and thus separate
from the primary “matching” concerns of the current paper. We assume that the

Molecular Solution oD
Required ©

Fig. 1. Velocity and temperature boundary condition imposition.
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velocity and temperature, as well as the gradient of the velocity and temperature,
are known on 9D, and that we desire the steady-state MD solution everywhere
inside D.

The boundary conditions are imposed through the artifice of “reservoirs” of
fluid that encompass the domain D. In particular, we first introduce a region, or
sheath, B, of small but finite thickness §, that surrounds 0D. While in residence
in B, particles are given, at each time step, a velocity drawn from a Maxwellian
distribution with mean and variance consistent with the desired velocity and tem-
perature of the fluid; the latter are constructed from a first order Taylor series
expansion based on the known values of the velocity, temperature and velocity and
temperature (normal) gradients on dD. (We prefer the Taylor series approach over
pointwise matching everywhere in B because the former is much less cumbersome
and storage-intensive. For our Taylor series approach to be valid, § must be small
compared to the lengthscale over which the continuum solution varies appreciably.)
Finally, we provide a continuous supply of molecules to and from D by enclosing
D U B in a larger, periodic domain C; C\ (D U B) acts as particle reservoir that,
for incompressible problems, ensures that there is no net mass flow into D. (Note
C\(DUB) refers to C with DUB removed.) Extension to substantially compressible
systems has not yet been considered.

The errors introduced by this method of imposing boundary conditions origi-
nate in the not strictly correct dynamical state of the particles in C\D, in particular
C\ (D U B), with which particles in D interact. The incorporation of information
about the gradient of the required boundary conditions in B — not just the function
values, as one might anticipate from the continuum case — addresses, and largely
alleviates, this problem. If necessary, the width of B, d, can be chosen such that
§ > ., thus at least shielding particles in D from the reservoir C\(BUD); here, £, is
the Lennard-Jones interaction-potential cut-off. The Maxwellian equilibrium dis-
tributions assumed in B constitute another source of error; this error will be small
if the timescale, or equivalently lengthscale, over which the particle distribution
functions relax to the correct non-equilibrium forms is small compared to the size
of D. Non-equilibrium simulations performed by the authors have confirmed earlier
findings®® that bulk equilibrium and non-equilibrium properties are, indeed, unaf-
fected by Maxwellian distribution-based boundary conditions, the effects of which
remain localized near the simulation boundary. Although distribution functions for
dense fluids in non-equilibrium flows could be used,'* the latter are not too well
characterized, and thus empirical constructions would be required.

Several alternatives to the above “Maxwell Demon” (in fact a “two-sided” fair
demon) method are possible. For example, we have also considered a method by
which B is subdivided into smaller regions along D in which the particles are
continuously “rescaled” to the desired local mean velocity and temperature. In the
latter rescaling process, all particles receive a velocity increment such that their
mean velocity matches the desired value, and all velocity fluctuations about this
mean are scaled such that the temperature of the subregion matches the requisite
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boundary condition. This strategy is very similar to the constrained Langrangian
dynamics technique of Ref. 8. We find that the “Maxwell Demon” approach, though
less sophisticated, typically performs better than these more subtle constraints on
particle motion. To our knowledge, neither method is proven to reproduce the
correct physical dynamics,'® and hence both will no doubt introduce local errors in
the non-equilibrium distribution functions.

3. Validation
3.1. Model problem statement

In this section we describe the model problem with which we validate our techniques
for imposing MD boundary conditions and for matching heterogeneous representa-
tions. The problem is flow in the “obstructed” channel domain 2, a sketch of which
is shown in Fig. 2, with parabolic inflow velocity profile, no stress ( “outflow”) bound-
ary conditions downstream, and no-slip velocity conditions at all solid walls. The
channel length has L = 300 A and height H = 150 A. The flow is “obstructed” by
a square block with side I, = 30 A residing in the middle of the channel.

oD

3/}A r/

Fig. 2. Heterogeneous calculation domain decomposition (not to scale). The actual ratio of the
volume of D to the volume of the entire domain Q is 1/20, and in practice could be much smaller.

A fully continuum spectral element discretization of the incompressible Navier—
Stokes equations serves as the reference exact solution. The Reynolds number
R = pUH/p is 3.7 based on the channel height and imposed mean flow velocity
U = 52.1 m/s. The viscosity y = 3e — 4 Kg/ms of argon at the specified tem-
perature T' = 110 K and density p = 1420 Kg/m? is known experimentally,’® and
independently confirmed by the non-equilibrium MD simulations of the authors
and others.!® We assume on the continuum side that the flow is incompressible,
isothermal, and has constant-property; we can make no such “assumptions” on the
molecular side, as described below.
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The region of the flow is represented by the MD calculation where D is the wake
region behind the square block in the middle of the channel, as shown in Fig. 2; D
measures ({p X p x 8.820) with ¢p = 8.820 = 30 A. This MD domain is chosen
because the “wake” region behind the block is strongly nonparallel, and thus serves
as a good test for the method, yet is far enough from all walls that continuum
behavior should obtain. The latter, of course, does not make for an interesting
“real” application, but does allow for a controlled study of the approach. In a real
application, the MD simulation would be applied in a region D in the interior of
which the continuum description is presumably not adequate.

The actual MD calculation is performed on a box D', dynamically similar to
D, which measures £, x £, x 8.82, with #,, = 11.47c = 39 A. Denoting the
(say maximum streamwise) velocity on D dictated by the continuum as up, we
impose on 9D’ the scaled velocity up, = (¢p/lp )up. Since we specify the same
material (¢4, 04r) and thermodynamic state (I” = T, p’ = p) in both D and 7',
u = p, and it then follows that, in the incompressible limit, the flows in D and D’
are dynamically similar. Note we choose £, > {p and hence uf,, < up to reduce
compressibility and temperature variation due to viscous heating, as both these
effects are absent in our continuum model. However, we cannot choose £, to be too
large or u},, too small as the number of molecules will increase prohibitively, and
the signal-to-noise ratio will degrade, respectively. To complete the specification
of the MD problem, we choose §' = 0.88¢ for the thickness of B’, and a box of
extent (20.3¢ x 20.30 x 8.82¢) for C'. The interaction potential cutoff is set to the
conservative value £, = 30. Note that we shall present quantities in “original” units,
that is, we rescale all MD results obtained on D’ back to D prior to presentation.

Figure 2 shows the domain of the continuum part of the calculation, @ = Q\M,
which is everything outside the “MD-only” hatched region M; the MD region of
the calculation, D, and associated reservoirs B and C; and the overlap region, @ND.
Recall that we piece together the solution as continuum in 2\ D, molecular in M,
and continuum or molecular in @ND. The boundary conditions on the continuum
spectral element incompressible Navier—Stokes calculation are known on all portions
of 0Q save I' = 8 M, where the conditions are provided by the MD calculation as
part of the Schwarz procedure. Reciprocally, the MD domain obtains boundary
conditions for 8D from the continuum solution on B C Q.

The width of the overlap region Q N D in these calculations is 2.94¢. The
thickness of the overlap region significantly affects the convergence rate, and must
be some nonnegligible fraction of the extent of D to ensure rapid convergence. In
practice, the overlap region should not be taken as too large, since the number of
molecules increases rapidly; for the domain chosen here, there are 245 molecules in
M, 980 molecules in all of D, and 3060 molecules in all of C. In real applications,
the MD-only region M will be selected first, with D (and hence the overlap region),
B, and C then determined by numerical considerations.

Although the continuum calculation is two-dimensional, the MD simulation is
three-dimensional. However we consider I' to be effectively defined in the (z, y)
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plane, since only z-averaged information passes between the two representations.
Note that the MD-derived field variables on I' are smoothed — fitted by a low
order (here third order) polynomial — prior to imposition on the subsequent con-
tinuum iterate. To ensure that the continuum boundary data satisfies zero-mass-flux
through T, the MD smoothed data on I' is further projected onto a zero mass flux
field by subtracting ¢.u - fdl/§. dl from the normal velocity on T, where u and 7
are the velocity and outward normal on I', and dl is a differential line element.

3.2. Results
3.2.1. Boundary condition imposition

To validate the method of imposing boundary conditions described in Sec. 2.2,
the exact (spectral element) solution for our model problem is used on 9D as the
boundary condition for an MD simulation, and the resulting MD predictions in the
interior of D are then compared to the reference fully continuum solution.

Figure 3 shows good agreement between the reference solution and the MD
results, even well away from the region B in which the MD simulation receives
boundary data. The MD simulations are integrated to a statistical accuracy of
approximately +3 m/s; averaging here, and in the Schwarz iteration of the next
section, is performed over (1.150 X 1.150 X 8.82¢) pencils in space, and 48007
intervals in time, after reaching a stationary state in approximately 10007.
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Fig. 3. Comparison between fully continuum (solid) and MD (dashed) solutions in the interior of
D. The velocities are in m/s and the lengths z, y in A. The graphs correspond to the constant-y
(1) and constant-z (2) slices indicated above.
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Fig. 4. Comparison between fully continuum (solid) and heterogeneous (dashed) Schwarz solutions
in the interior of D. The velocities are in m/s and the lengths z, zy in A. The graphs correspond
to the constant-y (1) and constant-z (2) slices indicated above.

3.2.2. Heterogeneous calculation

The Schwarz iteration is initiated by assuming a zero (mean velocity) solution in
D, and hence zero velocity boundary conditions on I'. Each full iteration requires,
on an HP 735 workstation, 5 minutes for the 3500 degree-of-freedom steady spec-
tral element solution and 18 hours for the 3060-atom MD simulation. (For this
“experimental study,” we choose the interaction potential cut-off, overlap region,
particle reservoir C, and number of time steps very conservatively; more practi-
cal choices for these parameters would reduce the MD simulation time to roughly
10 hours/iteration.) Note, however, that one time step of the 180000-time step
MD simulation requires only 0.5 seconds, and thus a technique that demanded
continuum evaluation on the MD-timescale would be enormously expensive — a
10-year computation. (For such a small imposed time step, we could consider a less
expensive fully explicit compressible continuum simulation, however the computa-
tional cost would still be formidable.) Needless to say, even our approach is not yet
particularly efficient given the intrinsic profligacy of the MD computations.
Iterative convergence is obtained in approximately 20 iterations. The accuracy
achieved, although acceptable, is reduced with respect to that obtained in Sec. 3.2.1
(see Fig. 4); we attribute this degradation to the response (amplification in this case)
of the Schwarz method to the MD statistical fluctuations, the difference in trans-
port coefficients in the two models, and the error introduced by the MD bound-
ary condition imposition. We do not yet have a complete understanding of this
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amplification, nor proposals to improve accuracy. Nevertheless, the results indicate
that our approach to heterogeneous representations can, indeed, capture the dy-
namics of “complex” multidimensional flows, and at a cost which scales as the cost
(or O(10) the cost) of the constituent MD computation.
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