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Starting from the recently proposed energy-based deviational formulation for solving the

Boltzmann equation [J.-P. P�eraud and N. G. Hadjiconstantinou, Phys. Rev. B 84, 205331 (2011)],

which provides significant computational speedup compared to standard Monte Carlo methods for

small deviations from equilibrium, we show that additional computational benefits are possible in

the limit that the governing equation can be linearized. The proposed method exploits the

observation that under linearized conditions (small temperature differences) the trajectories of

individual deviational particles can be decoupled and thus simulated independently; this leads to a

particularly simple and efficient algorithm for simulating steady and transient problems in arbitrary

three-dimensional geometries, without introducing any additional approximation. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4757607]

In a previous paper,1 we presented a low variance Monte

Carlo method for solving the Boltzmann transport equation

(BTE) for phonons in the relaxation-time approximation

whereby computational particles simulate only the deviation

from an equilibrium distribution. The benefits of such

control-variate formulations,2 which we will refer to as

deviational, are twofold: first, in the limit of small tempera-

ture differences, deviational methods exhibit substantial

computational speedup compared to traditional Monte Carlo

methods;1 this speedup increases quadratically as the charac-

teristic temperature difference goes to zero. Second, by sim-

ulating only the deviation from equilibrium, deviational

methods seamlessly and automatically focus the computa-

tional effort on regions where it is needed and can thus be

used for solving otherwise intractable multiscale problems.

In the present article, we show that for problems exhibiting

sufficiently small temperature differences such that the BTE

can be linearized, deviational computational particles may

be treated independently, thus lending themselves to a simu-

lation algorithm that is simpler, does not use any approxima-

tion in space or time, and, depending on the application of

interest, can be several orders of magnitude faster than the

one presented in Ref. 1.

The deviational approach can be introduced by writing

the governing equation (with no approximation) in the form

@ed

@t
þ Vg � red ¼

ðeloc � eeq
Teq
Þ � ed

s
; (1)

where ed ¼ e� eeq
Teq
¼ �hxðf � f eq

Teq
Þ; s ¼ sðx; p; TÞ is the

relaxation time (x, p, and T, respectively, referring to the

angular frequency, the polarization, and the temperature),

f ¼ f ðx;x; p; h;/Þ is the occupation number of phonon

states, Vg is the phonon-bundle group velocity, and

f eq
Teq
¼ ½expð�hx=kbTeqÞ � 1��1

is a Bose-Einstein distribution

at the “control” temperature Teq (kb denotes Boltzmann’s

constant). In Ref. 1 we showed that variance reduction

is achieved by simulating only the distribution

Ded (D ¼ Dðx; pÞ is the density of states) using deviational

particles and adding the result due to Deeq
Teq

analytically.

According to Eq. (1), the scattering process is implemented

by removing deviational particles from the distribution Ded

(i.e., the current deviational population) at a rate sðx; p; TÞ�1

and replacing them with particles drawn from the distribu-

tion Dðeloc � eeq
Teq
Þ=sðx; p; TÞ.

For small temperature differences, the collision operator

in Eq. (1) can be linearized by writing eloc � eeq
Teq

� ðTloc � TeqÞdeeq
Teq
=dT, where Tloc denotes the local pseudo-

temperature.1,3 Therefore, scattered particles can be drawn1

from the distribution

ðTloc � TeqÞ
Dðx; pÞ

sðx; p; TeqÞ
deeq

Teq

dT
: (2)

Since this distribution does not depend on ðTloc � TeqÞ once
normalized, a particle undergoing a scattering event can be

drawn from (the normalized form of) Eq. (2) without knowl-

edge of Tloc; energy conservation is simply ensured by con-

serving the particle. Although this formulation was

originally introduced1 as a means of truncating the discreti-

zation of a semi-infinite simulation domain (by limiting the

region where computational cells were used), here, we show

that this formulation can be used throughout the computa-

tional domain with considerable computational benefits. By

removing the need for sampling Tloc before processing pho-

non scattering, the integration timestep and computational

cells found in standard Monte Carlo approaches4 are, in fact,

unnecessary. Instead, the algorithm proceeds by simulating

each particle independently and is therefore significantly

simpler, requires no discretization in space and time, thereby

avoiding the associated numerical error, requires signifi-

cantly less storage, and, depending on the problem of

interest, can be several orders of magnitude more computa-

tionally efficient.

The proposed algorithm for simulating a particle trajec-

tory between t¼ 0 and t ¼ tf inal is as follows:

0003-6951/2012/101(15)/153114/4/$30.00 VC 2012 American Institute of Physics101, 153114-1
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(1) Draw the initial properties (sign s, position x0, fre-

quency x0, polarization p0, direction X0, and the

resulting group velocity vector Vg;0) of the particle.

For time-dependent calculations, also set up the initial

time t0 of the particle (see below).

(2) Calculate the traveling time until the first scattering

(relaxation) event: uniformly draw a random number

R 2�0; 1½ and calculate Dt ¼ �sðx0; p0; TeqÞlnðRÞ.
(3) Calculate ~xnew ¼ x0 þ Vg;0Dt. Search for collisions

with system boundaries in the time interval Dt.
(4a) If a collision with a system boundary occurs, say at

xb, set xnew¼xb and update the internal time tnew¼ t0þ
jjðxb�x0Þjj=jjVg;0jj. Depending on the nature of the

reflection (specular or diffuse), set the new traveling

direction appropriately (as explained for example in

Ref. 4).

(4b) If no collision with system boundaries occurs, the par-

ticle undergoes scattering at position xnew ¼ ~xnew. The

internal time is updated to tnew ¼ t0 þ Dt. New fre-

quency xnew and polarization pnew are then drawn

from Eq. (2). A new traveling direction is also chosen:

in this work, we consider isotropic scattering, but this

can easily be generalized to non-isotropic scattering.

From these parameters, a new velocity vector Vg;new

can be defined. The particle sign remains unchanged

by scattering.

(5) Sample the contribution of segment [x0,xnew] to mac-

roscopic properties (see below).

(6) If tnew > tf inal, proceed to step (1) to begin simulation

of the next particle; otherwise, set f:g0 ¼ f:gnew,

where “.” denotes the set of all properties of the parti-

cle, and return to step (2).

The total number of particles processed, N, is deter-

mined by the total amount of deviational energy involved in

the phenomenon of interest divided by the effective energy

carried by each computational particle, Eef f . The latter is

chosen such that the resulting number of computational par-

ticles balances computational cost with the need for low sta-

tistical uncertainty. The contribution of initial and boundary

conditions to the deviational population can be treated by

specialized source terms. Denoting the sum of all source

terms (including boundary and initial conditions) by

Qðx;x;X; p; tÞ, each particle’s initial time t0 is randomly

drawn by inverting the generalized cumulative distributionÐ t
t0¼0

P
p

Ð Ð Ð
QdxdxdXdt0. For example, in a finite 1D sys-

tem parametrized by the space coordinate x, the contribution

of the initial condition (say initial temperature TiðxÞ at t¼ 0)

to Q is ð4pÞ�1Djed
i jdðtÞ ¼ Cx;pjTiðxÞ � TeqjdðtÞ, where Cx;p

¼ ð4pÞ�1Ddeeq
Teq
=dT; the contribution of an isothermal

boundary at x¼ 0 and at temperature TbðtÞ to the half space

x>0 is ð4pÞ�1Djed
bjVg � êxdðxÞH½Vg � êx�¼VgcosðhÞCx;pjTbðtÞ

�TeqjdðxÞH½cosðhÞ�, where h is the angle with respect to the

x>0 direction, and H the Heaviside step function.

We now discuss the sampling process in more detail.

Let Igðt0Þ ¼
P

p

Ð Ð Ð
ð4pÞ�1Dgedðt0ÞdxdxdX be the macro-

scopic property of interest (at time t0) in terms of a general

microscopic property g ¼ gðx;x; p;XÞ. Recalling that the

deviational simulation approximates the distribution ed in

phase space using deviational (computational) particles,1 the

estimate of Igðt0Þ is given by

~Igðt0Þ ¼ Eef f

X
i

sig½xiðt0Þ;xiðt0Þ; piðt0Þ;Xiðt0Þ�; (3)

where symbols have their usual meanings and si is the sign of

deviational particle i. For example, if the quantity of interest

is the z-component of the heat flux vector in some region of

space R with volume lðRÞ and defined by the characteristic

function vR, then g ¼ Vg � êzvR=lðRÞ and thus particle i only

contributes to ~Igðt0Þ if xiðt0Þ [its position at t0—calculated by

linear interpolation between (x0; t0) and (xnew; tnew)] is in R.

As in standard Monte Carlo methods, steady problems

can be sampled by replacing ensemble-averaging with

time-averaging �IgðssÞ ¼ ð1=T Þ
Ð tssþT

t0¼tss

~Igðt0Þdt0 ¼ ðEef f =T Þ
P

iÐ tssþT
t0¼tss

sigdt0 over a time period T , provided sufficient time tss

has passed for steady conditions to prevail. Computational

benefits can be realized by noting that for steady conditions

to be possible, the system must be under the influence of

only steady particle sources (Q 6¼ QðtÞ). By taking the limit

T ! þ1, the influence of initial conditions vanishes,

allowing the simulation to directly solve for—and thus focus

all computational effort on—the steady state. Particles are

sampled over their complete trajectories, from emission (by

the steady sources) to termination (which happens for exam-

ple through absorption by a boundary), using

~Ig ¼ _E ef f

X
i

si

ð
g½xiðtÞ;xiðtÞ; piðtÞ;XiðtÞ�dt (4)

because in this limit the effective deviational power from the

steady sources _E ef f � Eef f=ðtss þ T Þ reduces to Eef f=T .

Mathematical proofs of this statement can be found in

the linear transport theory literature (see for example Ref. 5).

In the case of the heat flux in the z-direction (g ¼ VzvR=
lðRÞ) averaged over the domain R discussed above, Eq. (4)

reduces to _E ef f

P
i siLi=lðRÞ, where Li is the total algebraic

length traveled in the z-direction by particle i while in R (can

be negative if traveling in negative direction).

The proposed algorithm has been extensively validated

using a number of test problems6 including the thin film

problem described in Ref. 1 for which an analytical solution

exists. Here, we present simulation results from two prob-

lems of practical interest (we use the same materials and

phonon properties as in Refs. 1 and 6). First, we consider the

transient thermo-reflectance (TTR) experiment presented in

Ref. 7 and used in Ref. 8 as a thermal conductivity spectros-

copy technique. Using the algorithm described above, we

simulate the thermal response of a thin film of aluminum on

a substrate of silicon after a laser pulse irradiates the surface

and provides localized heating at t¼ 0. More details on the

problem formulation can be found in Ref. 1, where it is also

shown that the deviational formulation enabled the simula-

tion of the temperature field in this three-dimensional prob-

lem for several nanoseconds (due to the small temperature

differences involved, simulation using standard Monte Carlo

methods is too expensive). The additional speedup due to

the present algorithm allows us to calculate the response to a

single pulse up to 10 ls (Fig. 1). Ultimately, we expect this

improvement to be invaluable towards the computational

description of the phonon spectroscopy experiment discussed

in Refs. 8 and 9.

153114-2 J.-P. M. P�eraud and N. G. Hadjiconstantinou Appl. Phys. Lett. 101, 153114 (2012)
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As a second application, we consider the determination

of the thermal conductivity of complex periodic nanostruc-

tures, which has recently received a lot of attention in the lit-

erature.3,10,11 Here we consider a periodic nanostructure with

a unit cell as shown in Fig. 2 in the presence of a temperature

gradient in the z-direction. By calculating the heat flux in the

direction of the gradient, we can determine the “effective”

thermal conductivity of the nanostructure. Instead of consid-

ering an equilibrium Teq that is spatially constant, we allow

the latter to vary in space. This approach has been shown to

improve variance reduction12 because it allows the control

temperature to follow the physical temperature more closely;

it is particularly convenient for imposing external fields such

the one considered here, in which TeqðxÞ varies linearly from

T1 to T2 > T1. With this choice of Teq, the BTE becomes

@ed

@t
þ Vg � red ¼

ðeloc � eeq
TeqðxÞÞ � ed

s
� Vg � reeq

TeqðxÞ; (5)

where the last term on the right hand side can be interpreted

as a volumetric source of deviational particles due to the

imposed temperature gradient. When simulating Eq. (5), the

periodic nature of the calculation is straightforwardly imple-

mented by requiring that positive and negative (deviational)

particles individually obey periodic boundary conditions.

Note that since the BTE is not linearized in Eq. (5), the

source term formulation is valid for all deviational methods

(e.g., Ref. 1).

In order to avoid non-linearities in the response and

because our simulation method does not require large

temperature differences for accuracy, we will assume small

temperature differences ðT2 � T1Þ=T0 � 1, with T0 ¼ ðT1

þ T2Þ=2; material properties such as sðx; p; TÞ, as well as

deeq
Teq
=dT, will be evaluated at T0. In other words, in the

linear regime, the source term in Eq. (5) is uniform in

space.

The simulation proceeds as outlined above (steady state

sampling), with a few additional features due to the periodic-

ity of the problem. Particles are drawn from

�Dðx; pÞ
4p

Vgðx; pÞcosðhÞ
deeq

T0

dT

dT

dz
; (6)

where h is the polar angle (measured with respect to the z axis)

of the particle traveling direction. Due to symmetry, the same

number of negative and positive particles should be emitted.

Particles exiting the domain are periodically reinserted.

The absence of absorbing boundaries coupled to energy

(particle) conservation results in infinitely long particle tra-

jectories which are impossible to track numerically. To

FIG. 1. Surface temperature (calculated as the spatial average in a cylinder

of radius 10 lm and depth 5 nm) in the TTR experiment as a function of

time, calculated with the variance-reduced Monte Carlo method using time

steps (see Ref. 1), and with the proposed method. The latter reaches signifi-

cantly longer times.

FIG. 2. (a) Local temperature field

(T � T0) expressed in Kelvin in a peri-

odic nanostructure subject to a tempera-

ture gradient of �106 Km�1êz. (b) Local

heat flux (Wm�2) in the z-direction. (c)

Average particle contribution to the heat

flux as a function of the particle’s scat-

tering event number. On average, contri-

butions after the first scattering event

amount to approximately 20% of the

total heat flux. (d) Comparison between

the absolute value in the heat flux contri-

butions and their associated statistical

uncertainty r=
ffiffiffiffi
N
p

(dashed line); r is the

standard deviation in the heat flux as

measured from simulation data.

153114-3 J.-P. M. P�eraud and N. G. Hadjiconstantinou Appl. Phys. Lett. 101, 153114 (2012)
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overcome this, we use the observation that after several scat-

tering events, particle properties are almost completely

randomized (i.e., independent from the initial state at emis-

sion) and thus can be terminated with only a small effect on

the simulation accuracy. Fig. 2 illustrates this for the case of

the 2D nanostructure presented in the same figure: the mean

heat flux contribution (averaged over many different particle

trajectories) between relaxation scattering event j and jþ 1,

denoted by hHji, decreases rapidly as j increases. Fig. 2(d)

shows that after approximately 40 relaxation scattering

events the statistical uncertainty in hHji (calculated in the

present case using N ¼ 8 � 106 particles) becomes on the

order of hHji, suggesting that the benefit from collecting

further samples is minimal and terminating the particle is

justified. Furthermore, the error in the estimate of the heat

flux can be controlled thanks to the exponential decay we

observe in hHji after a few scattering events. Development

of a theoretical prediction for the number of scattering events

a particle must undergo before it can be discarded and its de-

pendence on the problem characteristics is the subject of

ongoing research work. For the moment, this criterion can be

determined empirically as shown here. Figures 2(a) and 2(b)

show the result obtained using this approach. The calculated

thermal conductivities (9:8 Wm�1K�1 in the configuration of

Fig. 2) are in agreement with previous results,1 while the

computational time was reduced by approximately 2 orders

of magnitude.

An interesting special case of the above problem is the

calculation of thermal conductivities of thin films with dif-

fuse boundaries (parallel to the z-direction). In this case,

using Eqs. (5) and (6) to describe the imposed temperature

gradient reduces the problem dimensionality to one, namely,

the direction normal to the diffuse boundaries. The resulting

problem is sufficiently simple (it admits an analytical solu-

tion) and in the case of isotropic scattering and diffuse walls

is of sufficiently high symmetry that the contribution to the

heat flux after the first wall collision or the first scattering

event vanishes, because the expected value of ½Vg� � êz is

zero. This observation can be used to put in context the

results presented in Ref. 13 where the thermal conductivity

of nanostructures was approximately calculated using a

Monte Carlo approach which follows “test” phonon paths to

their first free path termination (due to either a boundary or

relaxation). This treatment yields the correct result for a thin

film due to the simplicity and symmetric nature of this prob-

lem; under more general conditions, terminating particle tra-

jectories after the first collision event and assuming Fourier’s

law to be valid as assumed in Ref. 13 leads to an inaccurate

answer (in the case of the problem shown in Fig. 2, it leads

to a value for the average heat flux/thermal conductivity that

is approximately 250% larger).

Our theoretical formulation above also provides justifi-

cation for two of the assumptions used in Ref. 13, namely,

that the free paths follow a Poisson distribution (see Eq. (1))

and that “test” particles are emitted from any point of the

nanostructure with equal probability. The latter is only true

because, as explained above, under linearized conditions, the

source term given by Eq. (6) is constant (and particles can be

terminated after their first scattering event in the thin-film

problem). However, as stated above, for calculating the ther-

mal conductivity of nanostructures, unless symmetry allows,

deviational particles need to be tracked well beyond their

first free-path termination. This is also true for solving the

Boltzmann equation under general conditions, since only

then the correct non-equilibrium distribution of deviational

carriers is obtained.2,12,14,15

We conclude by emphasizing that the only approximation

introduced in this work comes from the assumption that the

governing BTE can be linearized. As shown above, this is rea-

sonable for a number of applications of interest. Under this

condition, the proposed algorithm is in fact “more accurate”

than alternative algorithms since it involves no timestep or

spatial discretization. We also note that under this formulation

deviational particles share similarities with neutrons which

also do not interact. Given the substantial literature on neutron

transport simulation,5 the room for improvement and gain in

efficiency in the proposed formulation is considerable.
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