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We review Monte Carlo methods for solving the Boltzmann equation for applications to
small-scale transport processes, with particular emphasis on nanoscale heat transport as
mediated by phonons. Our discussion reviews the numerical foundations of Monte Carlo
algorithms, basic simulation methodology, as well as recent developments in the field.
Examples of the latter include formulations for calculating the effective thermal conductivity
of periodically nanostructured materials and variance-reduction methodologies for reducing
the computational cost associated with statistical sampling of field properties of interest,
such as the temperature and heat flux. Recent developments are presented in the context of
applications of current practical interest, including multiscale problems that have motivated
some of the most recent developments.
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1. INTRODUCTION

1.1 Monte Carlo Methods

The term Monte Carlo (MC) is broadly used to refer to a wide class of computational
methods that utilizes random sampling for obtaining numerical solutions. MC methods
are ubiquitous in science and engineering; they are preferred due to their simplicity, but
also because in many cases they lend themselves naturally to solution by simulation (as
opposed to numerical discretization) thus tending to preserve an intuitive connection to
the problem physics. Although MC methods are traditionally associated with and usually
presented in the context of integration,1 they find applications in a wide range of fields,
such as atomistic modeling, solution of partial differential equations, optimization, and fi-
nance. They are particularly popular in statistical physics where high dimensionality makes
approaches based on discretization inefficient and in many cases intractable; an example
is the Metropolis algorithm2 and its variants3 used for simulating the various statistical
mechanical ensembles.

In this review, we limit our discussion to stochastic particle methods for solving the
Boltzmann transport equation. These methods are quite distinct from the Metropolis-type
algorithms, which sample equilibrium distributions. Instead, the methods described here
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NOMENCLATURE

A macroscopic quantity of interest
Ag(t) macroscopic quantity of interest

corresponding to microscopic
quantityg, at timet

Ā, Āg(t) estimate of macroscopic quantity
from a sample of particles

Āg(ss) steady-state estimate ofAg

A area
C specific heat per unit volume
Cω,p specific heat per unit volume

per unit frequency (ω) as a
function ofω and polarizationp

CA computational particle population
variance for calculating quantity
A

d degree of specularity of a rough
interface

D(ω, p) density of states
δ(x−xi),
δp,pi

dirac delta and Kronecker delta

e energy distribution function
e = ~ωf

e∗ solution of the adjoint Boltzmann
equation

ed distribution of energy deviations
from a reference equilibrium

ein
1 , eout

1 ,
ein
2 , eout

2

energy distribution entering or
exiting a periodic cell through
surfaces atx1 or x2

ed,in
1 , ed,out

1 ,
ed,in
2 , ed,out

2

deviational energy distribution
entering or exiting a periodic cell
through surfaces atx1 or x2

eloc local equilibrium energy
distribution

Etot, Ėtot total deviational energy and its
rate of change

E[X] expectation value of random
variableX

Ed
eff effective deviational energy (the

amount of energy each
deviational particle represents)

Ėd
eff effective deviational energy rate

(the energy rate each deviational
particle represents in a
steady-state problem)

f single particle probability
distribution function

fd distribution of deviations from a
reference equilibrium

feq(ω, T )
feq

T

Bose-Einstein distribution at
temperatureT

f i initial distribution
f loc local equilibrium distribution
fMB Maxwell-Boltzmann distribution
F body force per unit mass
Fi cumulant distribution function in

ith bin
G reciprocal lattice vector
Γ general coordinate in phase space,

(x, y, z, ω,θ, φ, p, t)
~ reduced Planck’s constant

(= h/2π)
k phonon wave vector
kB Boltzmann’s constant
Kn Knudsen number
κ thermal conductivity
κeff effective thermal conductivity
L characteristic length scale
L linearized collision operator
Λ mean free path
m atomic mass
n number density
n̂ inward unit normal vector of the

boundary of a surface or direction
of a temperature gradient

ns number of separate source terms
N , Ṅ ′′ number of phonons and number

flux of phonons
N+, N− number of positive and negative

particles
Neff computational particle weight

(the effective number of each
particle)

Npart number of computational particles
Ns number of scattering events before

termination of a particle in periodic
and linearized problems

Nsource number of deviational particles
emitted by a source term in
a time step∆t
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NOMENCLATURE (Continued)

ω, ωi phonon frequency and frequency
of ith particle

ω0,i central frequency of theith
spectral bin

ω vector of normω and direction
(θ, φ)

Ω solid angle
p phonon polarization index
P (ω, p, T ) probability of scattering event

occurring
P1(θ),
P2(φ)

probability density functions for
polar and azimuthal angles

ψj local density of energy absorption
q′′, q′′x heat flux, andx component of the

heat flux
Qb, Qs, Qi boundary, volumetric, and initial

source terms in linearized
formulation

si sign of theith particle
σ differential collision cross

section
σĀ statistical uncertainty in the

estimate of quantity A
t time variable
t̃1, ..., t̃n measurement times in a transient

linearized problem

tend
i exit or termination time of particlei

tstart
i emission time of particlei

tss approximate time after which a
system is considered at steady
state

T temperature variable
T̃ pseudo-temperature
T12,R12 transmission and reflection

coefficient between materials
1 and 2

T time-averaging period
τ relaxation time
θ, φ polar and azimuthal angles
ΘD,
kD, vD

Debye temperature, wave vector,
and velocity

u mean flow velocity
U energy density
Ud

cell deviational energy density in a
cell

v molecular velocity
V volume
Vg group velocity
x, xi spatial position vector and

location ofith particle
Y random variable representing the

number of particles in a cell

generate stochastic realizations of a system evolving under the nonequilibrium, transient
Boltzmann dynamics.

The intimate connection between MC methods and simulation may create the miscon-
ception that MC methods are modeling techniques. To the contrary, “proper” MC methods
are rigorous numerical methods that can be shown to provide accurate solutions of the gov-
erning equation to which they are applied, provided appropriate choices are made for all
numerical parameters (e.g., sufficiently small time step, sufficiently large number of parti-
cles), and the solution is correctly interpreted. Rigorous proofs that the methods discussed
here reproduce the correct dynamics (under reasonable conditions) have been developed4,5

in the case of the Boltzmann equation for gases, for which such methods have been known
for a longer time.6

MC solutions are stochastic and need to be appropriately interpreted. This is usually
achieved by sampling the solution field to obtain statistical estimates of its moments, which
usually correspond to the macroscopic observables of interest (e.g., temperature). Although
the associated statistical uncertainty can be reduced by increasing the number of samples,
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this typically requires a proportional increase in the simulation time, while the magnitude
of the uncertainty decreases with the square root of the number of independent samples.1,7

This unfavorable scaling (for anM -fold reduction in statistical uncertainty, the simulation
cost needs to increase byM2) is, perhaps, the most important limitation associated with
Monte Carlo methods; this limitation is a general feature of simulation methods which rely
on statistical sampling for generating estimates of macroscopic observables.7

Overall, and for the reasons discussed later on in this chapter, when compared to deter-
ministic methods for solving the Boltzmann transport equation (BTE), Monte Carlo meth-
ods are typically the method of choice, provided small-to-moderate statistical uncertainty
(e.g., on the order of 0.1% or larger) is acceptable; ifsignificantlysmaller uncertainty is
required (e.g.,<0.01%), and depending on the problem, deterministic solution techniques
may be preferable (provided a solution is at all possible).

1.2 Small-Scale Transport

Transport of mass, momentum, and energy can be modeled using conservation laws subject
to “closures,” which relate the microscopic fluxes of these quantities to the same. At the
macroscopic scale, carrier motion is collision dominated and diffusive, leading to fluxes
that are proportional to the gradients of the conserved quantities. This approach has been
one of the bedrocks of engineering analysis at the macroscopic scale, because the resulting
closed set of conservation laws, known as the Navier-Stokes-Fourier (NSF) set of equa-
tions, are robust, predictive, and not overly complex. As expected, this set of equations is
valid as long as transport is diffusive, that is, as long as the characteristic length scale as-
sociated with transport is much larger than the carrier mean free path, the average distance
traveled between scattering events with other carriers.

Deviation from diffusive transport is quantified by the Knudsen number

Kn =
Λ
L

whereΛ denotes the mean free path andL the characteristic transport length scale. As
expected, diffusive transport is valid for Kn¿ 1; this regime is typically referred to as the
continuum regime, although this terminology can be misleading:8 in general, the range of
validity of the diffusive transport approximation does not coincide with the range of va-
lidity of the continuum hypothesis because continuum conservation laws (with or without
closures) can be written for regimes extending beyond Kn¿ 1 (e.g., Kn> 0.1).9

When the mean free path is much larger than the system length scale (KnÀ 1), carrier-
carrier collisions are negligible and transport is ballistic. When the mean free path is on
the same order as the system length scale (0.1 . Kn . 10), transport exhibits a mixture of
diffusive and ballistic behavior and is referred to as transitional.

Ballistic transport can be treated by neglecting carrier-carrier interactions, making it
mathematically (analytically and numerically) significantly more tractable. Transitional
transport is significantly more challenging to treat and typically requires modeling at the
kinetic (or equivalent description) level; the governing equation for such kinetic descrip-
tions, namely the Boltzmann equation, is discussed in Section 2.1.
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Transitional transport has been extensively studied in gases,10,11which at standard tem-
perature and pressure (STP) are sufficiently dilute to be modeled using kinetic theory. The
molecular mean free path of air molecules at STP is∼65 nm. Therefore, at macroscopic
scales, transitional transport is important at low pressures, such as chemical vapor deposi-
tion processes,12 in vacuum applications,13 or in connection to the aerodynamics of space
vehicles in the upper atmosphere,10 from which the field of rarefied gas dynamics takes
its name. More recent applications have concentrated on small-scale processes or phenom-
ena. A notable example is the read-write head of a disk drive, which is suspended above the
rotating disk at a distance that is comparable to the molecular mean free path of air. Cor-
rect description and design of the aerodynamics of this system requires modeling beyond
the NSF equations.14 Applications in the microelectromechanical domain include squeeze
films,15 Knudsen compressors,16 and small-scale convective heat transfer.17,18

Another class of transport problems that has received considerable attention is heat
transport in semiconductors. In these materials, heat is carried by lattice vibrations whose
quantized unit is the phonon. With typical semiconductor feature sizes in the range of
tens of nanometers to almost millimeters,19 phonon transport can typically be treated semi-
classically, using a Boltzmann equation. This approach is currently being used to calculate
the thermal conductivity of bulk and nanostructured semiconductors,20–29to predict thermal
transport behavior in small-scale and low-dimensional structures that are difficult to probe
experimentally, such as graphene,30–32 as well as to solve coupled electron-phonon trans-
port problems.33–38New measurement techniques for probing the frequency-dependent re-
sponse of phonon systems have also been aided by solution of the Boltzmann equation.39–41

After a brief introduction to kinetic theory and the Boltzmann equation, we will focus
on Monte Carlo methods for obtaining solutions of the latter describing phonon transport.
The chapter will focus on reviewing the basics of Monte Carlo simulation but also present-
ing exciting new developments that enable the treatment of problems of current practical
interest.

2. BACKGROUND

2.1 Boltzmann Equation

The Boltzmann equation was introduced by Ludwig Boltzmann in 1872, as means of de-
scribing dilute gases at the kinetic level, but has found applications in a number of fields
involving dilute carrier mediated transport.27 It follows by considering conservation of par-
ticles in the phase space of molecular positions and velocities(x,v) and serves as an evo-
lution equation for the single particle probability distribution functionf(t,x,v), defined
as the expected number of particles in a differential phase space element located at(x,v)
at timet. It is usually expressed in the general form

∂f

∂t
+ v · ∇xf + F · ∇vf =

[
∂f

∂t

]

coll

(1)

which serves to highlight its physical interpretation as a balance between collisionless ad-
vection [left-hand side (lhs)] and the effect of the collisions [right-hand side (rhs)]; the
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latter is captured by the collision operator[∂f/∂t]coll. Here,F represents the force per unit
mass acting on the gas molecules.

For a gas of hard spheres, the collision operator takes the form11

[
∂f

∂t

]

coll

=
∫ ∫

[f ′1f
′ − f1 f ] ||v − v1||σ d2Ω d3v1 (2)

whereσ = d̂2/4 is the differential collision cross-section for hard spheres,d̂ is the gas
molecule effective diameter, andf ′ = f(t,x,v′), f1 = f(t,x,v1), f ′1 = f(t,x,v′1); here,
{v1,v} are the pre collision velocities and{v′1,v′} are the post collision velocities, related
to the pre collision velocities through the scattering angleΩ. Integration in velocity space
extends over all possible velocities, and the solid angle is integrated over the surface of the
unit sphere.

The equilibrium solution of this equation is the Maxwell-Boltzmann distribution

fMB(v; nMB ,uMB , TMB) =
nMB

π3/2v3
MB

exp
(
−||v − uMB ||2

v2
MB

)
(3)

parameterized by the number densitynMB , flow velocityuMB and temperatureTMB , reflect-
ing the existence of three collisional invariants (mass, momentum, and energy). In Eq. (3),
vMB =

√
2kBTMB/m is the most probable molecular speed,kB is Boltzmann’s constant,

andm the molecular mass.
Physical quantities of interest can be recovered as moments of the distribution func-

tion. Specifically, the number density is given by

n(t,x) =
∫

f(t,x,v)d3v (4)

the gas flow velocity is given by

u(t,x) =
1
n

∫
vf(t,x,v)d3v (5)

and the temperature is given by

T (t,x) =
m

3nkB

∫
||v − uMB ||2 f d3v (6)

2.2 Boltzmann Equation for Phonon Transport

As introduced above, the principal carriers of thermal energy in insulating solids are lattice
vibrations, whose quantized representation is the phonon. This quantum mechanical de-
scription incorporates both particle- and wavelike phenomena, while the Boltzmann equa-
tion is applicable only to distributions of classical particles. Fortunately, for silicon devices
(taken here as typical) with length scales above 10–30 nm, coherence effects can be ne-
glected and phonon distributions can be treated as a system of dilute classical particles or a
“phonon gas.”27,42–44The corresponding evolution equation is a Boltzmann-type transport
equation of the form
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∂f

∂t
+∇kω(k, p) · ∇xf =

[
∂f

∂t

]

coll

(7)

written in the phase space of phonon positions and wave vectors(x,k) and neglecting the
body force term, which is of limited interest in the present context. The wavelike nature of
the phonons must still be considered in order to relate phonon momentum~k and energy
~ω, where phonon frequencyω is a function of the wave vector,k, through the disper-
sion relationω(k, p); here,p denotes the polarization. Our discussion will proceed in the
context of three-dimensional materials; applications to two-dimensional materials, such
as graphene,45 directly follow as extensions. Discussion on applications of Monte Carlo
methods to transport in graphene can be found in Refs. 46–48.

A principal difference between a molecular and a phonon gas is the nature of scatter-
ing events. In the case of phonons, phonon number and momentum need not be conserved
during interactions. A “two-phonon” scattering process occurs when a single phonon is
scattered into a new state by an impurity; this results in a change in the phonon momentum
(k 6= k′), but conserves energy (~ω = ~ω′). Three-phonon scattering occurs when two
phonons combine to create a third phonon (type I processes) or a single phonon decays into
two phonons (type II processes). The conservation requirements for three-phonon scatter-
ing can be expressed as

k± k′ = k′′ + H (type I/II processes), (8)

and

ω±ω′ = ω′′ (type I/II processes), (9)

In the above, for umklapp processesH = G, whereG is the reciprocal lattice vector, while
for normal processesH = 0. Umklapp scattering does not conserve momentum (G 6= 0)
and hence is the primary contributor to the thermal resistivity of a pure semiconductor.
Four-phonon and higher order processes are typically negligible.49

Considering only two- and three-phonon scattering events and scattering into as well
as out of a state, the scattering operator can be written as follows:50,51

[
∂f

∂t

]

coll

=
∑

k′,p′

{
fk′p′(fkp + 1)− fkp(fk′p′ + 1)

}Qk′p′

kp (10)

+
∑

k′p′,k′′p′′

{
(fkp + 1)(fk′p′ + 1)fk′′p′′ − fkpfk′p′(fk′′p′′ + 1)

}Qk′′p′′

kp,k′p′

+
1
2

∑

k′p′,k′′p′′

{
(fkp + 1)fk′p′fk′′p′′ − fkp(fk′p′ + 1)(fk′′p′′ + 1)

}Qk′p′,k′′p′′

kp

whereQ is the transition probability matrix as dictated by the Hamiltonian of interaction
and the appropriate conservation laws.51

Physical observables can be calculated by summing the contributions of all phonons
in the region of interest over reciprocal space. For isotropic systems with closely spaced
energy levels (i.e., of relatively large size), the summation may be converted to an integra-
tion over frequency using the density of states, which for three-dimensional materials has
the form
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D(ω, p) =
k(ω, p)2

2π2Vg(ω, p)
(11)

whereVg(ω, p) ≡ ‖∇kω(k, p)‖ is the group velocity. Using this approach, the number of
phonons per unit volume is given by

n(t,x) =
∑

p

∫ ∫ ∫
f(t,x, ω, θ, φ, p)

D(ω, p)
4π

sin(θ)dωdθdφ (12)

whereθ andφ respectively refer to the polar and azimuthal angle in a system of spherical
coordinates. To simplify the notation, we use(ω) to denote the vector whose norm isω

and whose direction is given byθ andφ, and represent the integration over these three
components with a simple integral sign. The differentialsin(θ)dωdθdφ is then denoted
by d3ω. Using this notation, the energy per unit volume is given by

U(t,x) =
∑

p

∫
~ωf(t,x, ω, p)

D(ω, p)
4π

d3ω (13)

and the heat flux is given by

q′′(t,x) =
∑

p

∫
~ωVgf(t,x, ω, p)

D(ω, p)
4π

d3ω (14)

The equilibrium distribution is given by the Bose-Einstein expression

feq(ω, Teq) =
1

exp (~ω/kBTeq)− 1
(15)

which is parameterized only by the temperature, reflecting the presence of only one “colli-
sional invariant,” namely, the energy. In systems out of equilibrium, the local temperature
can be defined in terms of an equilibrium distribution with the same energy density, by
solving

∑
p

∫
~ωf(t,x, ω, p)

D(ω, p)
4π

d3ω =
∑

p

∫
~ωfeq(ω, T )D(ω, p)dω (16)

for T = T (t,x).
Comprehensive reviews of phonon physics and the phonon BTE can be found in nu-

merous sources (e.g., Refs. 27, 50, and 52–54). The readers are referred to these sources
for more information.

2.3 Relaxation-Time Approximation

The complexity associated with the Boltzmann equation is due, in large part, to the struc-
ture of the collision operator. For example, in the hard-sphere case, the collision operator
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makes the Boltzmann equation nonlinear and integrodifferential. This complexity can be
mitigated by replacing the collision operator with a model that is significantly simpler.

Perhaps the most popular approach amounts to assuming that the role of carrier-carrier
interactions is to drive the system toward the local equilibrium, characterized byf loc, an
equilibrium distribution corresponding to the system local properties (forτ = const). The
resulting model, [

∂f

∂t

]

coll

= −f − f loc

τ
(17)

is known in general as the relaxation time-approximation.11,52

In the rarefied gas dynamics literature, this model is known as the Bhatnagar-Gross-
Krook model55. Although the relaxation-time formulation is approximate∗ and neglects
the details of the relaxation pathways, it has been very successful due to its simplicity,
but also because, by construction, it satisfies a minimal set of fundamental requirements,
such as preserving the correct equilibrium distribution and conservation laws, as well as
satisfying the H-theorem (see Ref. 56 for the dilute-gas case).

The relaxation time model has also found widespread use in the electron, phonon, and
neutron literature. In the case of the phonon Boltzmann equation,57,58 in order to capture
some of the complexity of phonon-phonon interactions, the relaxation time is usually taken
to depend on the carrier state [e.g.,τ = τ(ω, p, T )]. In this case, the parameters off loc do
not take their local values.11,28 This is further discussed in Section 3.3.

The limitations of the relaxation-time approximation for phonon transport will be briefly
discussed in Section 3.8 in the context of phonon Monte Carlo simulations.

2.4 Validity of Fourier’s Law

One of the greatest successes of kinetic theory is the celebrated Chapman-Enskog (CE)
solution of the Boltzmann equation,11,59which shows how the NSF set of equations arises
asymptotically from the Boltzmann equation in the limit Kn¿ 1. Although this procedure
was originally performed for the hard-sphere operator (for an outline see Ref. 9, while more
details can be found in Ref. 59) and subsequently for a variety of collision operators, it can
be most easily demonstrated using the simple relaxation-time model discussed above.

In what follows, we will outline the CE solution procedure for the simple case of a
steady, one-dimensional phonon-transport problem in the relaxation-time approximation.
For simplicity, here we consider the Debye model coupled with the gray medium approxi-
mation, which leads to the following definition Kn= Vgτ/L for the Knudsen number. Our
objective here is to highlight a common misconception on the validity of Fourier’s law

q′′ = −κ∇xT (18)

and the associated kinetic-theory expression forκ.
For the system considered here, the Boltzmann equation reduces to

∗In the dilute gas case, it is well known11 that it leads to the wrong Prandtl number, namely 1,
instead of2/3.
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Vg cos(θ)
∂f

∂x
=

f loc − f

τ
(19)

where, without loss of generality, we have assumed variations to take place in thex di-
rection andθ is the polar angle with respect to this direction. The CE solution procedure
amounts to postulating a series solution of the form

f = f loc + Kn h1 + Kn2h2 + O(Kn3) (20)

in whichh1 andh2 correspond to higher order corrections from the local equilibrium. The
form of this expansion is motivated by the physical observation thatf → f loc as Kn→ 0,
which mathematically can be seen by rewriting (19) as follows:

cos(θ)
∂f

∂x∗
=

f loc − f

Kn
(21)

wherex∗ = x/L. Substituting (20) intoboth sides of(21) and equating equal powers of
Kn allows one to easily solve forh1, yielding the following well-known expression for the
distribution function:

f = f loc − Vgτ cos(θ)
df loc

dx
+O(Kn2) (22)

Inserting (22) into Eq. (14), we arrive at the following relation for thex component of the
heat flux:

q′′x = −
[

1
2

∑
p

∫ ∫
τV 2

g Cω,pdω cos2(θ) sin(θ)dθ

]
dT

dx

+ Kn2
∑

p

∫ ∫
~ωVgh2

D(ω, p)
2

dω cos(θ) sin(θ)dθ +O(Kn3) (23)

whereCω,p refers to the specific heat per frequency per unit volume~ωD(ω, p)df loc/dT
with

df loc

dT
=

~ω
kBT 2

loc

1
4 sinh2 (~ω/2kBTloc)

(24)

In Eq. (23), the term involvingh2 is explicitly retained to highlight the fact that the familiar
Fourier law (18) and the associated expression for the thermal conductivity

κ = − q′′x
dT/dx

=
1
3

∑
p

∫
τV 2

g Cω,pdω (25)

follow from the above only if Kn¿ 1, whereby terms of order Kn2 and higher are negli-
gible.

In other words, use of Eqs. (18) and (25) for Kn& 0.1 is not justified; as shown by
(23), if Kn is no longer small, with the exception of a small number of special cases (e.g.,
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the thin-film problem60,61) the heat flux is not necessarily proportional to the tempera-
ture gradient and thus the concept of thermal conductivity [as defined by (25)] no longer
holds.

This can be further illustrated using the following example: consider the heat transfer
in the material just studied, in the case that is enclosed between two boundaries that are
sufficiently close that KnÀ 1, and held at temperaturesT0 ±∆T/2, with ∆T ¿ T0. In
this ballistic limit, the heat flux across this slab of material can be readily shown62 to equal

q′′x = −kB

∑
p

∫ [
~ω

2kBT0 sinh (~ω/2kBT0)

]2
VgD

4
dω∆T

= −
∑

p

∫
Cω,pVg

4
dω∆T (26)

From this expression, it is clear that forKn À 1, q′′x 6= −κ(dT/dx); in fact,q′′x is propor-
tional to the temperature difference between the two boundaries but not the temperature
gradient. Insisting on the definitionκ = −q′′x/(dT/dx) or evenκ = −q′′xL/∆T leads to
a contradiction because it results in a material property that is geometry dependent. This
should come as no surprise because, as argued above, no theoretical basis exists for using
Fourier’s law to calculate thermal conductivities in the transition and ballistic regimes.

Despite the above evidence to the contrary, the misconception that the thermal con-
ductivity for Kn & 0.1 can be calculated using Fourier’s law withτ interpreted as the
average time between scattering events including the effect of boundaries is still popular.
To disprove this, consider the following:

• From the development of Eqs. (19)–(25), it follows thatτ in (25) is the material
intrinsic scattering rate with no consideration to boundaries.

• Substitution ofτ = L/Vg in (25) yields62

q′′x = −
∑

p

∫
Cω,pVg

3
dω∆T, (27)

while substituting the “more correct”τ = L/Vg| cos(θ)| in the first term of (23) and
then performing theθ-integration yields

q′′x = −
∑

p

∫
Cω,pVg

2
dω∆T (28)

Neither of these expressions matches the ballistic value (26).

Another example where using Fourier’s law for Kn> 0.1 yields incorrect results is
given in Section 6.6.1. This is again because, other than dimensional arguments, no theo-
retical basis for using Fourier’s law for Kn> 0.1 exists.

The inability of the thermal conductivity to describe material behavior in the presence
of ballistic effects is a manifestation of the fact that the diffusive and ballistic transport
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modes are fundamentally different. On the other hand, the desire for a unified measure
of material performance that is valid for all Kn has led to the use of the concept of the
“effectivethermal conductivity”

κeff =
−q′′xL

∆T
(29)

Clearly, this quantity has the units of thermal conductivity and reduces to the latter in the
limit Kn → 0, whereas for Kn> 0 it serves as a convenient way of comparing the thermal
conductance of different systems (in convenient and familiar units).

However, it should also be clear that this property does not extend Fourier’s law to the
Kn > 0.1 regime. This can be easily verified by considering the ballistic (and linearized)
problem discussed above. Using Eqs. (26), (25), and (29), we conclude that for Kn→∞,
κeff = 3κ/4. Using this value in Fourier’s law leads to the prediction that the temperature
profile for Kn → ∞ will be linear between the two boundary valuesT0 + ∆T/2 and
T0 −∆T/2, which is incorrect: the temperature profile for Kn→∞, is in fact constant at
T0 (let t →∞ in Eq. (B5) in Ref. 61; the profile for Kn= 10, also suitable for illustrating
this, can be found in Fig. 1).

In other words, althoughκeff can be useful, as is used in this chapter, for comparing
the relative performance of various systems by comparing their relative overall thermal
conductance, it is not a material property; it depends on the system material, as well as
length scale and geometry, and cannot be used in Fourier’s law to solve for the temperature
field. In fact, because it is geometry dependent, it cannot even be used to calculate the heat
flux (on which it was “trained”) for the same material in a different geometry.
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FIG. 1: Steady state temperature profile in a one-dimensional silicon system with bound-
aries at temperaturesTl = 330 K and Tr = 270 K at different Knudsen numbers. More
details can be found in Section 4.3.
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2.5 Distinction between Local and Global Equilibrium

In contrast to the aerodynamics of atmospheric reentry vehicles extensively studied in the
rarefied gas dynamics literature,10 nanoscale applications are typically characterized by
low-speed flows and small temperature differences,8,63 which in the context of MC simu-
lation correspond to low signals. In rarefied gas dynamics, the difference between low- and
high-signal phenomena can be quantified by the Mach number or the ratio∆T/T0, where
∆T is the characteristic temperature change in the domain andT0 a reference tempera-
ture. In high-signal problems(Ma, ∆T/T0) & 1, while in nanoscale phenomena, typically
(Ma, ∆T/T0) ¿ 1. The latter (∆T/T0 ¿ 1) is also typically valid for nanoscale phonon
transport,61,64 and implies65 that the deviation from the reference equilibrium distribution
feq(ω, T0) is small. When this condition is satisfied, the BTE may be linearized, resulting
in a description which is valid for small∆T/T0, but all Kn.

The objective of this section is to emphasize the latter point, namely, that a small de-
viation from a reference equilibrium (∆T/T0 ¿ 1) is not equivalent to and does not
imply diffusive transport (Fourier behavior, Kn¿ 1). This can be seen from the fact that
∆T/T0 ¿ 1 constrains the energy density associated with the distribution function (to be
close to that of an equilibrium distribution atT0) but does not require collisions to be dom-
inant over advection. This is also evident from the fact that the requirement∆T/T0 ¿ 1
does not involve a length scale restriction and can thus be satisfied for arbitrary length
scales (Kn).

2.6 Direct Simulation Monte Carlo

The methods on which this chapter focuses originate from Bird’s direct simulation Monte
Carlo (DSMC) method, introduced in his seminal 1963 paper.6 DSMC is now the method
of choice for solving the Boltzmann equation in the field of rarefied gas dynamics due to a
number of factors: first, the high dimensionality associated withf(t,x,v) makes numeri-
cal methods based on discretization computationally expensive, both in terms of CPU time
and storage; second, the particle formulation employed by DSMC is ideal for accurately
andstablycapturing the propagation of traveling discontinuities in the distribution func-
tion66 resulting from the advection operator in the Boltzmann equation [lhs in Eq. (1)];
finally, the DSMC algorithm combines simplicity with an intuitive formulation that natu-
rally employs importance sampling for improved computational efficiency.67

DSMC solves4 the Boltzmann equation using discretization in time; each time step of
length∆t is split into a collisionless advection and a collision substep.10 Numerically, this
corresponds to a splitting scheme68 in which the collisionless advection substep integrates

∂f

∂t
+ v · ∇xf + F · ∇vf = 0 (30)

while the collision substep integrates

∂f

∂t
=

[
∂f

∂t

]

coll

(31)
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During the advection substep, particles move ballistically (according to their velocities
and accelerations). During the collision substep, the distribution function is updated by
processing binary collisions between collision pairs chosen from within the same compu-
tational cell of linear size∆x, using an acceptance-rejection procedure.69 This introduces
the second important mode of discretization in this algorithm, as it corresponds to treating
the distribution function as spatially homogeneous within each cell. Detailed descriptions
of the DSMC algorithm can be found in Refs. 69 and 70.

This algorithm has been shown4 to converge to solutions of the Boltzmann equation,
provided that a sufficiently large number of particles is used and the integration time step
and cell size are appropriately small (∆t ¿ Λ/

√
2kBT0/m and∆x ¿ Λ with T0 an ap-

propriate reference temperature). By analyzing the time-splitting procedure using Green-
Kubo theory, it has been shown thattransport coefficientsare predicted correctly to second
order in the time step, provided the splitting is appropriately symmetrized.71 It has also
been shown that transport coefficients are predicted correctly to second-order accuracy in
the cell size.70 Perhaps surprisingly, the above results70,71 provide not only the conver-
gence rate, but also the proportionality constant; they predict errors on the order of 5–10%
for cell sizes on the order of one mean free path and time steps on the order of one mean free
time (Λ/

√
2kBT0/m). These theoretical predictions have been extensively validated.70–74

Rader et al.74 have also empirically shown that the error in the transport coefficients due
to a finite number of particles is proportional to1/Npart, thus validating conventional wis-
dom that reasonably accurate computations could be achieved with as little as 20 particles
per cell, but also that for highly accurate simulations more than 100 particles per cell are
required.75

Hydrodynamic properties calculated by DSMC also suffer from statistical uncertainty
due to finite sampling; according to the central limit theorem, the uncertainty is inversely
proportional to the square root of the number ofindependentsamples. Hadjiconstantinou
et al.7 showed that explicit expressions for the statistical uncertainty can be developed for
all physical properties of interest using statistical mechanics to calculate the population
variance associated with each property. The use of equilibrium statistical mechanics is jus-
tified when characteristic temperature changes are small (e.g., compared to the absolute
reference temperature) as is typical in microscale applications.8 These results were vali-
dated by DSMC and molecular dynamics simulations in Ref. 7. A theoretical description
for fluctuations for phonon MC simulations is presented in Section 3.5. MC methods for
solving the BTE for phonon transport are discussed in Section 3.

3. MONTE CARLO SOLUTION OF THE PHONON BTE

In 1988, in order to interpret interesting results from thermal conductance experiments at
low temperature, Klitsner et al. developed the first phonon Monte Carlo, albeit without
considering internal scattering mechanisms that were irrelevant due to the long phonon
mean free path at low temperature.20 In 1994, Peterson76 developed a Monte Carlo sim-
ulation that included phonon-phonon scattering using the relaxation-time approximation.
Since that time, a number of important advancements have been introduced, including
dispersion relation improvements,77,78 frequency-dependent relaxation times,77 scattering
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substep energy conservation,79 periodic boundary conditions,24,28 and variance-reduced
formulations.61,64 Section 3.1 describes the state of the art for the traditional formulation
of phonon Monte Carlo, which is a direct extension of the DSMC method discussed in
Section 2.6.

The principal aim of the phonon Monte Carlo method is to generate samples of the
distribution function, typically to be used for evaluating Eqs. (13) and (14). This is achieved
by approximating the distribution function usingNpart computational particles

f(t,x, ω, p)
D(ω, p)

4π
≈ Neff

Npart∑

i=1

δ3(x− xi(t))δ3(ω−ωi(t))δp,pi(t) (32)

whereNeff is the effective number of phonons characterized by the (same) properties
[xi(t), ωi(t), pi(t)] represented by the computational particlei.35,77 The concept of the
effective number is used because, typically, the number of real phonons per unit volume is
too large to directly simulate. Using the Debye model as an example, the number density of
phonons in silicon (Debye temperature of 645 K, coordination number of 8 and a lattice pa-
rameter of 5.4307̊A) at 300 K is5×1028 phonons per cubic meter. In other words, a cubic
cell with side 10 nm contains∼5× 104 phonons. Although in some cases it may be pos-
sible to simulate this number of particles in each computational cell, in general, a smaller
number is sufficient both for a reasonable signal-to-noise ratio and discretization error. The
effective number allows the number of computational particles to be chosen such that the
competing requirements of low computational cost and low statistical uncertainty are bal-
anced. This weight usually remains constant throughout the simulation. Here we note that
more sophisticated schemes involving variable weights have been developed for DSMC
simulations for cases where the number of particles varies significantly across the simula-
tion domain (e.g., in cylindrical domains10). Although partially successful, these methods
have not been widely adopted because they exhibit a number of numerical artifacts.80

The simulation dynamics are governed by the Boltzmann equation from which stochas-
tic evolution rules for the simulation particles must be derived. These rules follow the basic
idea described in Section 2.6, namely that time-integration is split into a collisionless ad-
vection substep and a scattering substep.

These substeps are discussed in more detail below after a discussion of the initialization
process. Discussion of the scattering substep will be limited to the relaxation-time model
on which the vast majority of applications have focused.

3.1 Initialization

Initialization requires the generation of a set of computational particles,Npart, that sample
the initial condition, namelyf(t = 0,x, ω, p)[D(ω, p)/4π]. We note here that in many
cases the problem of interest is steady in time and therefore may not even involve an initial
condition as part of its specification. However, as is typical of stochastic particle methods,
the method described here is explicit in time and proceeds to integrate forward from an
initial condition. In steady problems, the initial condition is typically taken to be some
reasonable equilibrium state. We also note that an exception to transient formulations is
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the method discussed in Section 6, which provides solutions to steady problems without
integrating them explicitly to steady state.

As an example, we consider the casef(t = 0) = feq(ω, T0); then,

Neff =
N

Npart
=

V

Npart

∑
p

∫
feq(ω, T0)D(ω, p)dω (33)

whereNpart is the desired number of computational particles in volumeV andN is the
actual equilibrium number of phonons in that volume.

Samples from a distribution can be generated by calculating and subsequently invert-
ing the cumulative distribution function.81 In general, this is not possible analytically and
is thus typically performed numerically as shown below. We also note that, alternatively,
samples from a distribution can be generated using acceptance-rejection. This approach is
usually less efficient (due to the rejection step), but more convenient in high dimensions,
where numerical integration is cumbersome. An example of acceptance-rejection can be
found in Section 4.2. We also note that the ratio-of-uniforms method recently adapted to
particle methods for simulating the Boltzmann equation82 provides improved computa-
tional efficiency.

For the example considered here,f(t = 0) = feq(ω, T0) is not easily invertible; thus,
the spectral (ω) domain is discretized into bins of width∆ω with central frequenciesω0,i.
The number of phonons in each spectral bin is given by

N(ω0,i)
V

=
∑

p

feq(ω0,i, T0)D(ω0,i, p)∆ω (34)

To choose the bin to which each particle is assigned, a uniformly distributed random num-
berR1 ∈ [0, 1) is drawn and compared to the cumulant distribution function76,77

Fi =
i∑

j=1

N(ω0,j)
N

(35)

The particle is assigned to binj, such thatFj−1 ≤ R1 < Fj , and the frequency is dis-
tributed randomly in that bin:ω = ω0,j +(2R2−1)∆ω/2, whereR2 ∈ [0, 1) is a second
uniformly distributed random number. For dispersion relations with multiple branches, the
polarization is selected proportional to the number density of phonons from each branch at
the chosen frequency (or in the chosen spectral bin). Finally, the phonon traveling direc-
tion is sampled; for example, the isotropicity of the equilibrium distribution discussed here
results in the following probability functions for the angle distributions:

P1(θ) =
sinθ

2
θ ∈ [0, π) and P2(φ) =

1
2π

φ ∈ [0, 2π) (36)

which can be generated from

θ = cos−1(1− 2R3) and φ = 2πR4 (37)
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whereR3 andR4 are also uniformly distributed random numbers in[0, 1). The sampling
step is repeated until the appropriate number of samples has been created (i.e.,Npart).

3.2 Advection and Boundary Conditions

In the absence of external forces, integration of the advection substep in time amounts to
updating the position of each particle usingxi(t + ∆t) = xi(t) + Vg,i∆t. Particle ad-
vection may lead to interaction with a domain boundary. As a result, boundary condition
implementation is also a part of the advection substep. Typical boundary conditions in-
clude interactions with physical boundaries (e.g. the interface between two materials) or
computational boundaries (e.g., periodic). Some of the most common boundary conditions
and their implementations are discussed next.

3.2.1 Isothermal Boundaries

Boundaries at a fixed (known) temperatureTb are treated by assuming that phonons leaving
the boundary come from the equilibrium distributionfb = feq(ω, Tb). The number flux
into the domain is then

Ṅ ′′ =
∑

p

∫
Vg(ω, p) cos(θ)feq(ω, Tb)

D(ω, p)
4π

d3ω (38)

=
1
4

∑
p

∫
Vg(ω, p)feq(ω, Tb)D(ω, p)dω (39)

whereVg = ||Vg|| is the magnitude of the phonon velocity and0 ≤ θ ≤ π/2 is mea-
sured from the boundary normal. WitḣN ′′A∆t/Neff prescribing the number of particles
that need to be generated at a boundary of areaA every time step, the procedure from
Section 3.1 for drawing the frequencies is repeated except thatfeq(ω, T0) is replaced with
Vg(ω, p)feq(ω, Tb). Additionally, the probability density functions for the angular distri-
bution of the particle wave vectors can be deduced from the integrand in Eq. (38) as

P1(θ) = 2 cosθ sinθ θ ∈ [0,π/2) and P2(φ) = 1/(2π) φ ∈ [0, 2π). (40)

Alternatively, an isothermal boundary can be simulated by augmenting the system with a
sufficiently large boundary cell in which all particles are reinitialized at the beginning of
every timestep.76 This approach increases the number of particles in the simulation without
providing any advantage over the method described above.

3.2.2 Specular and Diffuse Reflections

In specular reflection, a phonon collides with a wall and its postcollision or outgoing wave
vectork′ is related to its incoming wave vectork by

k′ = k− 2 (k · n̂) n̂ (41)
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where n̂ is the surface unit normal vector pointing into the material. All other phonon
bundle properties are preserved.

A diffuse reflection also conserves phonon energy but randomizes the phonon wave
vector isotropically on the unit sphere. This is achieved by drawing the anglesθ andφ

from the angular distributions given in Eq. (40).
The degree of specularity (fraction of specular reflections),d, as a function of the wave

vector may be calculated using23,26,52,83,84

d(k) = exp
(−4k2∆2 cosθb

)
(42)

where∆ is the root mean square height of the surface roughness andθb is the angle be-
tween the wave vector and the normal to the boundary. In practice, the specularity may also
be (and often is) chosen to match experimental data. For example Volz and Chen found the
specular fraction of 0.45 provided good agreement between BTE and molecular dynam-
ics simulations,85 Mazumder and Majumdar chose a value of 0.6 to match experiments,77

and Mital and Mazumder proposed 0.885 for 2D thin-film simulations and 0.965 for the
3D thin-film simulations.86 However, these values of the specularity parameter that provide
agreement with externally determined thermal conductivities are also dependent on the dis-
persion relation and relaxation times.87 In practice, it is simpler to assume all reflections
are isotropically diffuse and recognize that this leads to a lower bound on thermal conduc-
tivity. Here we also note that by judicious manipulation of surface characteristics to create
backscatter in a preferred direction, MC simulations have shown that the thermal conduc-
tivity could be reduced below the limit of completely isotropic diffuse scattering.22,23 We
are not aware of any experimental verification.

3.2.3 Transmission

At the interface between two materials, a phonon may be reflected (as discussed in Sec-
tion 3.2.2) or transmitted; the transmission can be diffuse or specular, elastic or inelastic.
The details of phonon behavior at the interface are not well understood and are still, cur-
rently, the object of important research efforts.88–90Such interfaces can be modeled using
a transmission coefficient,T12, which in a simulation can be interpreted as the probabil-
ity that a phonon will be transmitted across the interface. If not transmitted, the phonon
is reflected (probabilityR12 = 1 − T12). The probabilities of transmission and reflection
can be obtained from physical models, such as the diffuse mismatch model (DMM),24,25,29

which may be formulated to agree with experimental measurements of thermal boundary
conductance.39,91–93Because of the clear probabilistic interpretation ofT12 andR12, such
models are typically readily implemented in MC simulations.

3.3 Scattering

The relaxation-time approximation relies on a model for the scattering rate as a function
of frequency, temperature, and polarization. Because of its simple analytic form, Holland’s
196358 model continues to be popular, and includes isotope scattering
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τisotope(ω)−1 = Aisotopeω
4 (43)

and normal and umklapp scattering for longitudinal and transverse branches

τLN(ω, T )−1 = BLNω2T 3 (44)

τTN(ω, T )−1 = BTNωT 4 (45)

τTU(ω, T )−1 =





BTUω

sinh(~ω/kBT )
ω1 < ω < ω2

0 ω < ω1

(46)

The above functional forms are motivated from limiting behaviors,ω1 andω2 are param-
eters in Holland’s58 simplified dispersion relation, and the coefficients are optimized to
reproduce the bulk temperature–dependent thermal conductivity.

Various scattering models are used in MC schemes ranging from some that completely
neglect bulk collisions (τ−1 = 0) to study boundaries and low temperatures,20,22 to those
that assume a constant mean free path [τ = (const.)] (the so-called gray model).24,25,76

Others more faithfully reproduce Holland’s model,35,77,79,94,95while some reoptimize the
coefficients and exponents.28,87,96Frequency-dependent simulations in this chapter will be
based on the latter with parameters from Ref. 97.

Putting aside for a moment the fact that the relaxation time is an approximation, com-
parison to experiments and ab initio simulations as a means of determining relaxation
times shows that the latter are strongly frequency-dependent. This casts serious doubt on
the value of the gray model in particular, which by assuming a frequency-independent re-
laxation time, significantly underestimates the strength of ballistic effects. For example,
in silicon, the productVg(ωp)τ(ωp) spans length scales from nanometers to tens of mi-
crons.28 More generally, a Knudsen number based on the mean free path will obscure
the fact that individual phonon modes may travel significantly longer thanL Kn without
interactions (ballistically).

Optical phonons, which are notably absent from Holland’s model, tend to have a small
group velocity and correspondingly small contribution to thermal conductivity. Neverthe-
less, these phonons can have a significant capacitive effect in transient problems.39 A
scheme that includes the contribution of optical phonons and more details about allowed
branch conversions was also developed78 and used in the MC context.86 For details on
the latter, the reader is referred to these references. Another simpler scheme for including
optical branches is given in Refs. 39 and 97.

The probability of a particle undergoing a scattering event during the time step∆t is
calculated from

P (ω, p, T ) = 1− exp
[ −∆t

τtotal(ω, p, T )

]
(47)

whereτ−1
total =

∑
i τ−1

i , with the sum running over all scattering modes described by
Eqs. (43)–(46) or the selected model. When a particle is selected for collision, a uniformly
distributed random numberR is drawn in[0, 1) and the specific collision typej is chosen
such that

∑j−1
i=1 τ−1

i τtotal ≤ R <
∑j

i=1 τ−1
i τtotal. If a two-phonon processes (e.g., impurity
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scattering) is selected, the traveling direction of a phonon is randomized, but its frequency
and wave vector magnitude are unchanged.

Three phonon scattering is more complex. Particles are deleted based on their relax-
ation time and new particles are drawn from the appropriate local equilibrium distribution
f loc = feq(ω, T̃ ), which to conserve energy must satisfy79

∑
p

∫
~ωf(t,x, ω, p)

τ(ω, p, T )
D(ω, p)

4π
d3ω =

∑
p

∫
~ωfeq(ω, T̃ )
τ(ω, p, T )

D(ω, p)dω (48)

Equation (48) defines the scattering pseudo-temperatureT̃ (t,x), while T (t,x) is deter-
mined from (16). When the relaxation time is not a function of frequency and polarization,
the pseudo-temperature is equal to the local temperatureT̃ = T , and phonons can be drawn
from the local equilibrium distribution as in the initialization procedure of Section 3.1. Oth-
erwise, particles must be drawn from

feq(ω, T̃ )
τ(ω, p, T )

D(ω, p) (49)

Note that, as discussed in Section 3.4, in MC simulations the values ofT andT̃ are typ-
ically recovered by averaging particle contributions over finite regions of space (cells).
Therefore, in practice, Eqs. (16) and (48) are imposed in a cell-average sense.

The traveling direction of a scattered particle is randomized, which “approximates”
the overall lack of momentum conservation in three phonon processes. Attempts have
been made to preserve the momentum-conserving nature of the normal processes, (e.g.,
Ref. 79), but because the underlying scattering times were developed in a scheme that can-
not properly distinguish between the normal and umklapp processes,58 correctly treating
the momentum conservation of normal processes in MC could actually drive the solution
for thermal conductivity away from the accepted values.28

Ultimately, the basic scattering algorithm described above does not strictly conserve
energy. Even though scattered phonon frequencies are drawn from Eq. (49), which has
the correct expectation value of temperature (energy), the energy of the (small number)
of scattered phonons within each cell is just a sample of this distribution with an energy
that fluctuates about the expectation. This means that the energy of the simulation is not a
constant of the motion, but rather it fluctuates about the expected value. These fluctuations,
believed to be random walks, are undesirable because they increase statistical uncertainty,
but also because they have the potential to (non linearly) interact with other fluctuating
processes in the simulation, resulting in bias.

Random walks are inherently a finite sampling effect, and their magnitude can be de-
creased by increasing the number of computational particles (minimizing the stochastic
noise). However, because the latter increases computational cost (and storage), various al-
gorithms have been proposed for keeping random walks under control using alternative
means. One example includes the creation of additional particles or the deletion of already
created particles until the postscattering energy is within an acceptable tolerance of the
prescattering energy.42,77 This approach reduces the magnitude of the random walks, but
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it does not eliminate them. Moreover, it biases the distribution of phonons in ways that
have yet to be analyzed. Another approach amounts to tracking the deficit in the energy af-
ter each scattering event and carrying the deficit forward to subsequent time steps.82 This
approach has also been used in connection to the generation of phonons at a material in-
terface.24 The latter approach reduces random walks considerably but is still far from ideal
because its effect on the simulation accuracy is not known.

3.4 Energy-Based Formulations

It was recently shown61 that exact energy conservation can be achieved by simulating the
energy-based Boltzmann equation

∂e

∂t
+ Vg · ∇xe =

eloc − e

τ(ω, p, T )
(50)

obtained by multiplying the BTE by~ω and defininge = ~ωf andeloc = ~ωf loc. The
basic idea behind this formulation is that each computational particle “carries” a fixed
amount of energy,Eeff, rather than an effective number of phonons. In other words, these
computational particles can no longer be thought of as phonon bundles. As a result of this
formulation, energy conservation becomes equivalent with particle conservation, which
can be enforced exactly, ensuring no truncation or other forms of discretization error in
this regard.

The procedures for simulating this equation follow directly by modifying the discus-
sion of this chapter to particles representing the quantitye = ~ωf instead off . More
details can be found in Section 4.2 where the energy-based formulation is combined with
a control-variate variance-reduction formulation as originally proposed in Ref. 61.

3.5 Statistical Sampling

To capture the spatial dependence of the solution field, the simulation domain is typically
discretized into cells (ideally, many in each dimension) and local properties are calculated
as cell-based averages. For example, the cell-based average of propertyA is defined as
Acell = (1/V )

∫
x∈V

Ad3x, whereV denotes the volume of the cell. Substituting the parti-
cle representation of the distribution function and performing the volume integration, leads
to the estimatorĀ = (Neff/V )

∑
i Ai, whereAi denotes the contribution of particlei to

the quantityA; in the interest of simplicity, here and in what follows, the subscript “cell”
will be omitted from the estimator symbol.

Following this procedure for the number density, energy density, and heat flux—nam-
ely, substituting the particle representation (32) in (12)–(14) and performing the volume
average—we obtain

n̄ =
Neff

V

∑

i

1, Ū =
Neff

V

∑

i

~ωi, q̄′′ =
Neff

V

∑

i

~ωiVg,i (51)
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Knowledge of the statistical uncertainty as a function of the number of simulation par-
ticles is very useful for providing confidence intervals for simulation results, but also for a
priori estimating the computational resources required for a simulation and appropriately
choosingNeff. Although estimates of the statistical uncertainty of typical moments of inter-
est have been provided for the case of DSMC,7 the unique features of phonon simulations
(wave vector, frequency, density of states) make these more difficult to obtain analytically.
Here we calculate the statistical uncertainty for the gray Debye model for which semian-
alytical results are possible. As we show in Section 4.3, the estimates provided here are
sufficiently accurate to serve as reasonable guidelines for more complex material mod-
els.

Let us consider a Debye material withNatomsatoms per volumeV , in whichω = vDk,
~vDkD = kBΘD, kD = (6π2Natoms/V )(1/3), andτ = (const.).

Following previous work,7 we will calculate the variance of estimators using equi-
librium distributions. The latter approximation is necessary because the nonequilibrium
distribution is not known, but also justified since for the application of interest here the
contribution of the deviation from equilibrium to fluctuations is small. The rationale for
this is further discussed in Section 2.5.

At equilibrium and according to the Debye model, the number density of phonons is
given by

n0 =
3

2π2

(
kBT

~vD

)3

I2

(
ΘD

T

)
(52)

whereIn(xmax) =
∫ xmax

0
[xn/(ex − 1)]dx, while the energy density is given by

U0 =
3

2π2

(kBT )4

(~vD)3
I3

(
ΘD

T

)
(53)

There are at least two approaches for calculating the statistical uncertainty associated
with estimators such as the ones in Eq. (51): the first is to calculate the equilibrium fluc-
tuations of the properties of interest [e.g., Eqs. (52) and (53)] and then to use the central
limit theorem to calculate the uncertainty of the estimator based on the number of sam-
ples.7 The second, which is the one taken here, is to directly calculate the variance of the
estimator.

LetY be a random variable that represents the number of computational particles in the
volumeV . Because of the phonon gas assumption,Y is Poisson distributed,7 and recalling
thatNpart = n0V/Neff, the expected value and variance ofY are equal to

E[Y ] = var(Y ) = Npart (54)

Implementation of boundary conditions may affect the underlying distribution of particles;
thus, we note that the following is only strictly true sufficiently far away from the bound-
aries.

The frequency of a phonon can also be modeled by a random variable, hence the to-
tal energy is the sum of a random number of random variables, and its variance can be
calculated by
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var(Ū) = var

(
Neff

V

Y∑

i=1

~ωi

)
=

N2
eff

V 2

[
E[Y ]var(~ω) + E[~ω]2var(Y )

]
(55)

=
N2

eff

V 2
NpartE[(~ω)2] (56)

The expected value in this expression is given in the equilibrium approximation by

E[(~ω)2] =
1
n0

∑
p

∫
(~ω)2feq(ω, T )D(ω, p)dω

= (kBT )2
I4 (ΘD/T )
I2 (ΘD/T )

(57)

The statistical uncertainty associated with the measurement of the energy in a cell of
volumeV that contains on averageNpart particles is thus given by

σŪ =
n0kBT√

Npart

√
I4 (ΘD/T )
I2 (ΘD/T )

(58)

These results allow us to estimate the uncertainty in temperature measurementsT̄ using
σT̄ ≈ [1/C(T )σŪ ], where

C(T ) =
∂U

∂T
=

3kB

2π2

(
kBT

~vD

)3 ∫ ΘD/T

0

x4ex

(ex − 1)2
dx (59)

If we defineJ4(xmax) =
∫ xmax

0
[x4ex/(ex − 1)2]dx, then

σT̄ =
T√
Npart

√
I4 (ΘD/T ) I2 (ΘD/T )

J4 (ΘD/T )
(60)

Finally, the variance in the equilibrium heat flux in a single direction is given by

var

[
Neff

V

Y∑

i=1

~ωivD cos(θi)

]
=

N2
effNpart

V 2
E[(~ωvD cos θ)2] (61)

with

E[(~ωvD cosθ)2] =
1
n0

∑
p

∫ ∫ ∫
(~ωvD cos(θ))2feq(ω, T )

D(ω, p)
4π

sin θdωdθdφ

=
v2

D

3
(kBT )2

I4 (ΘD/T )
I2 (ΘD/T )

(62)
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This yields the following expression for the statistical uncertainty in the heat flux estimator:

σq̄x
′′ =

n0vDkBT√
Npart

√
I4 (ΘD/T )
3I2 (ΘD/T )

(63)

These uncertainties all have in common the1/
√

Npart dependence—the characteristic
signature of statistical sampling. This dependence makes it particularly challenging to re-
solve low signal problems such as those typically found in micro- and nanoscale devices.
This is further discussed in Section 4.

We also note here that the energy-based formulation of Section 3.4 leads to simpler
estimates for and slightly smaller values of fluctuations in energy and heat flux. In this
case, the local properties are measured by

Ū =
Eeff

V

∑

i

1 and q̄′′ =
Eeff

V

∑

i

Vg,i (64)

Under the assumptions of the preceding analysis (Debye, gray) the variance of these quan-
tities is then given by

var(Ū) = var

(
Eeff

V

Y∑

i=1

1

)
=
E2

eff

V 2
Npart (65)

and by

var(q̄x
′′) = var

(
Eeff

V

Y∑

i=1

vD cos(θi)

)
=
E2

effv
2
DNpart

V 2
E[cos2 θ] =

E2
effv

2
DNpart

3V 2
(66)

Accordingly, the uncertainty in the heat flux for the energy-based formulation can be cal-
culated as follows:

σq̄x
′′ =

U0vD√
3Npart

(67)

This quantity varies between 83% and 95% of Eq. (63) (as a function of temperature),
because in the energy-based formulation, there is no fluctuation in the amount of energy a
particle carries.

The results derived above are in very good agreement with MC simulations (not shown
here) of the same model (Debye, gray). Figure 2 shows a comparison to simulations of the
more realistic material model used in Ref. 61. The figure compares the theoretical results
for the relative statistical uncertainty in the heat flux to those obtained from simulating
heat transfer between two plates at different temperatures as a function of the temperature
difference between the two plates. In this figure, the statistical uncertainty of each material
model is normalized by the heat flux predicted by the model; more details on the simula-
tions can be found in Section 4.3. The figure shows that, provided the statistical uncertainty
is normalized by the heat flux predicted by the model in question, the agreement between
the fluctuation results derived above and simulations is very satisfactory. This suggests that
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FIG. 2: Ratioσq̄′′x /q′′x as a function of∆T/T0.

the theoretical results developed here provide reasonable guidelines for general material
models (provided deviations from equilibrium are small).

3.6 Deterministic Numerical Error

In addition to statistical uncertainty, MC methods of the type discussed here are expected
to suffer from discretization error due to discretization in the time, space, and frequency
[e.g., see Eq. (34)] domains.

In the time-split algorithms discussed here, second-order accuracy in time is only ob-
tained if the splitting is symmetric in time.68,71,74This requires that the sampling process
be inserted in the middle of a scattering or an advection event.82 In DSMC algorithms, it
has been shown that it is also possible to achieve second-order behavior by sampling twice
during a time step (before and after scattering or advection).74 Finally, we note that here
we are referring to the error due to splitting the integration into a scattering and an advec-
tion event. Additional error will be incurred by the integration of Eq. (31) within each cell,
unless an algorithm with no error is used.64,98

The error due to finite cell size has not been analyzed for phonon Monte Carlo methods,
although this may be expected to be qualitatively similar to the error in DSMC algorithms
discussed in Section 2.6. The error due to a finite number of particles has also not been
characterized; it is currently not clear whether this error is qualitatively similar to that
in DSMC because the number of particles in the standard phonon MC method described
here is not conserved. The error due to spectral discretization has been shown to converge
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to acceptable levels for∼1000 spectral bins,86 but rigorous analysis of this effect is also
lacking.

3.7 Imposing a Constant Temperature Gradient in Periodic Simulations

Periodically nanostructured materials are seen as a potentially effective way of design-
ing high-performance thermoelectric materials.99 Simulation of periodic structures under
an external temperature gradient is essential for the calculation of the effective thermal
conductivity of nanocomposites. In such calculations, significant efficiency gains can be
achieved by simulating only one period (unit cell) of the structure and imposing periodic
boundary conditions (e.g., see Fig. 3). However, periodic boundary conditions in their typ-
ical implementation do not allow for the presence of a temperature gradient.

An approach to overcome this was developed by Jeng et al.24 and later refined by Hao
et al.28 The fundamental assumption in their approach is that periodicity in the presence of
a temperature gradient can be reproduced by requiring the deviation from local equilibrium
to be periodic; in the nomenclature of Fig. 3, this can be written as

f(t, x1, y, z,ω, p)− feq(ω, T1) = f(t, x2, y, z,ω, p)− feq(ω, T2) (68)

This requirement is consistent with homogenization-type approaches,100 in which period-
icity over the unit cell is assumed to be a result of the small size of the unit cell com-
pared to the characteristic scale of variation of the externally imposed temperature gradi-
ent. More specifically, the above relation can be obtained101 from a first-order expansion
in the parameter defined as the ratio of the unit cell size in the direction of the tempera-
ture gradient to the characteristic scale of variation of the externally imposed temperature
gradient.

x1 x2

T1 T2

Heat flux

Periodic unit cell

FIG. 3: Nanocomposite formed of a pattern of rectangular second phase inclusions dis-
tributed in a semiconducting matrix (not shown). A single unit cell with an applied temper-
ature difference (T2 − T1) can be used to significantly decrease the computational domain
when simulating periodic nanocomposites.
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Implementation of condition (68) requires deletion of particles exiting the domain at
x = x2 and introduction of particles atx = x1 moving in the positive direction that sample
the distribution

f+(t, x1, y, z,ω, p) = f+(t, x2, y, z,ω, p)− feq(ω, T2) + feq(ω, T1) (69)

The most straightforward method to sample from this distribution begins28 by collecting
the pool of particles leaving the domain atx = x2. In traditional periodic boundary condi-
tions, this entire pool would be reintroduced atx = x1 satisfyingf+(t, x1, y, z,ω, p) =
f+(t, x2, y, z,ω, p). To satisfy Eqs. (69), one must modify this pool by deleting parti-
cles according to the distributionfeq(ω, T2) and introducing new particles that sample
feq(ω, T1). In order to remove particles fromfeq(ω, T2), a new set of particles must be
sampled from this distribution and then the particles in the pool that are most similar to
the newly sampled particles can be deleted. Particles leaving the domain atx = x1 can be
treated analogously.

This approach introduces an unknown amount of error because the particles crossing
periodic boundaries will not correspond exactly to the particles that are sampled to guide
the deletion process. Fortunately, an alternative formulation discussed in Section 4.2 based
on deviations from equilibrium is naturally suited to simulating Eq. (68) exactly, because
it allows for negative particles.

3.8 Beyond the Relaxation-Time Model

The difficulty associated with solution of the more complete BTE with the ab initio scat-
tering operator (10) lies in the computational cost required for recovering the possible
pathways associated with a particular scattering process (k → k′ + k′′ or k + k′ → k′′)
and the calculation of the matrix elements associated with the Hamiltonian of interaction
(e.g.,Qk′p′,k′′p′′

kp of (10)). Additionally, because the functional form of this scattering oper-
ator differs significantly from the traditional operators (e.g., hard-sphere and its variants10),
until recently, MC procedures for efficiently sampling scattering events appropriately (at
the correct relative rates) were not available. As a result, solutions of the Boltzmann equa-
tion involving this operator addressed primarily the space-homogeneous, time-independent
problem associated with determining the thermal conductivity of (homogeneous) semicon-
ductors, using deterministic iterative schemes.51,102–104

Some recent work attempting to improve the performance of MC solution methods has
focused on determining the scattering rates from molecular dynamics and density func-
tional theory–for example Refs. 96 and 105–108. Although these can be used to inform the
relaxation-time model,28 which appears to capture the decay of out of equilibrium modes
reasonably well,109–111ultimately, single mode relaxation-time models fail to capture im-
portant couplings between modes.112–114This, has long been cited as a limitation of the
MC approach,115,116because MC methods, unjustifiably, have been historically identified
with the relaxation-time approximation.

For the reasons discussed in Section 2.6, an MC approach for solving problems of engi-
neering interest using scattering operator (10) to describe phonon interactions is expected
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to be simpler and more efficient than an extension of the existing deterministic solution
methods51,102–104to temporally and spatially varying problems. To this end, Garcia and
Wagner have developed an extension of DSMC for the Uehling-Uhlenbeck scattering op-
erator that obeys Bose-Einstein (as well as Fermi-Dirac) statistics.117 While this method
correctly treats momentum and energy conservation, the scattering model clearly does not
model three-phonon interactions; moreover, the resulting algorithm requires reconstruction
of the distribution from its samples, which is very inefficient and negates one of the main
advantages of DSMC, namely the ability to simulate these processes without reconstruct-
ing the distribution function from its samples. Other models that attempt to account for
momentum and energy conservation, but fail to completely consider the Hamiltonian of
interaction (or scattering kernel) and introduce approximations that are difficult to justify,
have also been proposed.94,118,119We also mention Hamzeh and Aniel, who employed a
scheme similar to that of Ref. 51 to calculate the transition probability for each pathway
and a generalized Ridley scheme to estimate the transition probability (in terms of the
Grüneisen parameter). This study was limited to spatially homogeneous systems.

Recently, a deviational formulation for solving the BTE with ab initio scattering for
spatially and temporally varying problems in two dimensions has been proposed, validated
and used to study phonon transport in graphene ribbons.46,47 The proposed formulation
uses a discretized representation of reciprocal space as a means of evaluating (10) and uses
force constants (scattering rates) derived from density functional theory. With the exception
of the scattering substep which is very different, the discrete reciprocal space requires only
small changes to the other aspects of the deviational formulation as described in Section 4.
More details can be found in Refs. 46 and 47.

4. DEVIATIONAL METHODS AND VARIANCE REDUCTION

As shown in Section 3.5 and more generally in Ref. 7, the statistical uncertainty in the esti-
matorĀ of a quantity of interestA (e.g., heat flux) is of the formσĀ =

√
CA/N , whereN

is the number of independent samples used to calculate the estimateĀ; CA can be thought
of as the variance associated with the particle population used to calculateA. For tradi-
tional Monte Carlo methods where particles simulate the complete distribution function,
CA can be identified as the population variance associated with the phonon distribution. A
direct consequence of this result is that asA → 0, CA is the population variance associ-
ated with equilibrium and is independent of the magnitude ofA. As a result,σĀ/A → ∞
for fixed N , or alternatively, for a fixed signal-to-noise ratio, asA decreases,N needs to
increase asA−2.

This limitation is particularly important in the context of micro-/nanoscale science
and technology applications where kinetic effects are important due to small length scales
rather than large temperature differences. Examples include the transient thermoreflectance
technique,120–123which has recently received renewed attention as a potential tool for mea-
suring phonon mean free paths.40,41 In this technique, a laser pulse induces a local temper-
ature difference on the order of 1K, which then decays through transport by several orders
of magnitude. Resolution of these small temperature differences is impossible by regular
MC simulations; using Eq. (60), the Debye model predicts that to resolve a temperature
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difference of 1 K with a signal to noise ratio of 100, we need nearlyN = 3 × 108 in-
dependent samples per computational cell, which is clearly intractable. Another example
of problems of recent practical interest is the calculation of the “effective thermal conduc-
tivity” of nanostructured materials.24 In these simulations, small temperature differences
must be used, since large temperature differences will result in a non-linear response.

In the sections that follow, we discuss a class of formulations that address this limitation
by drastically reducing the statistical uncertainty of Monte Carlo methods. By adapting the
concept of control variates to the stochastic integration of the Boltzmann equation for the
purpose of removing the variance associated with the equilibrium part of the distribution,
these formulations result in a method which in the smallA limit is characterized by

√
CA =

αA, with α constant and much smaller than
√

var(A)/A. This has two consequences: first,
the relative uncertaintyσĀ/A is now independent ofA, leading to simulation methods
that can capture arbitrarily low signals at a cost that does not increase with a decreasing
A; second, this constant cost is small making such problems not only tractable but also
efficient to treat.124

These methods, referred to as deviational, were first introduced in the context of dilute
gases and the DSMC method.67,125 Since then, they have been adapted to phonon trans-
port61 and extended to improve their performance. In the rest of this section, we discuss
these methods and their extensions in detail.

4.1 Control Variates

The variance reduction approach described here is based on the general idea of control
variates which can be explained using the following identity

∫
A(Γ)f(Γ)dΓ =

∫
A(Γ)[f(Γ)− g(Γ)]dΓ +

∫
A(Γ)g(Γ)dΓ (70)

Here, the functiong(Γ) (the control) is chosen such that

• g(Γ) captures most of the variation off(Γ) [i.e., g(Γ) ≈ f(Γ)]

• ∫
A(Γ)g(Γ)dΓ can be deterministically (analytically or otherwise) evaluated

Using a Monte Carlo method to evaluate only
∫

A(Γ)[f(Γ) − g(Γ)]dΓ results in signif-
icantly reduced statistical uncertainty, because an appropriately selectedg(Γ) makes the
latter term and its corresponding statistical uncertainty small. The deterministic evaluation
of

∫
A(Γ)g(Γ)dΓ provides the remainder of the integration without stochastic noise.1

4.2 Deviational Monte Carlo Method

The control-variate formulation lends itself naturally to the MC methods considered here,
because the controlg(Γ) can be readily identified as a nearby equilibrium distribution
feq(ω, Teq) [i.e., Eq. (15)], whose moments are known semi-analytically. This results in a
simulation method that solves for the deviation from equilibriumfd = f − feq

Teq
, while the
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contribution of equilibrium to the properties of interest is added deterministically. To sim-
plify the notation, in what follows we will usefeq

T to denote the Bose-Einstein distribution
evaluated at a temperatureT . In previous sections, this function was denoted byfeq(ω, T ).

These “deviational” methods differ minimally from the standard methods discussed in
Section 3, yet deliver significant computational benefits in the small-signal limit because
they address the root of the problem. Low-signal-to-noise ratios in MC simulations are typ-
ically the symptom of small deviation from equilibrium [in the sense of small characteristic
temperature difference∆T and not a small deviation from the local equilibrium (see Sec-
tion 2.5 for a discussion)]. We also emphasize that Eq. (70) on which these methods are
based is exact. In other words, no approximation is committed by simulating the deviation
from equilibrium (provided the contribution of equilibrium is also accounted for). On the
other hand, the resulting computational efficiency will depend on the choice of the equi-
librium distribution (control). The closerfeq

Teq
is tof , the greater the computational benefit.

Methods that exploit this observation are discussed in Section 5.

As discussed in Ref. 61 and Section 3.4, simulatinged = ~ωfd = e − eeq
Teq

, lends
itself naturally to implementation of exact energy conservation, making this the preferred
formulation. The functioned obeys the energy-based deviational Boltzmann equation

∂ed

∂t
+ Vg · ∇xed =

eloc − eeq
Teq
− ed

τ(ω, p, T )
(71)

The similarity of Eq. (71) to the original Boltzmann equation (in the relaxation-time ap-
proximation) ensures that the deviational algorithm is not significantly different from the
one discussed in Section 3. Time integration proceeds using a splitting algorithm with time
step∆t. The choice ofTeq is fairly arbitrary, provided the resulting deviations fromeeq

Teq

are small (if deviations from equilibrium are small, any convenient temperature valueT ′eq

within the computational domain will be sufficiently close toTeq that deviations fromeeq
T ′eq

will also be small).

Simulation by particles corresponds to the approximationedD/(4π) = Ed
eff

∑
i siδ

3(x−
xi)δ3(ω − ωi)δp,pi

, wheresi is a sign parameter, made necessary becauseed can be
a negative quantity and where computational particles represent fixed amounts of devia-
tional energy denotedEd

eff. The latter quantity is also defined at the start of the simulation;
it is determined by balancing the competing requirements of low statistical uncertainty
and low computational cost, although the approach is problem dependent. For example,
if one wishes to initialize a simulation withNinit particles, then given the initial condition
f i(t = 0,x, ω, p), Ed

eff is determined from

Ed
eff =

1
Ninit

∫ ∫ ∑
p

D~ω(f i − feq
Teq

)

4π
d3ωd3x (72)

provided thatf i differs from the chosen equilibrium. Iff i = feq
Teq

(usually by choice in
steady-state problems, to simplify initialization) an alternative—and more general—way
of proceeding consists of calculating the total deviational energy involved in the simulation
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(namely, the total deviational energy associated with the initial condition, added to the
energies derived from the boundary and volume sources integrated in time). Dividing this
quantity by the desired total number of particles yields the value of the effective deviational
energy.

Here, we summarize the main differences between the traditional Monte Carlo algo-
rithm discussed in Section 3 and the deviational algorithm (more details can be found in
Ref. 61):

1. Becauseed can be positive or negative, a new degree of freedom, the particle sign, is
introduced.

2. The particles introduced in the system at the initialization step are drawn from the
deviational initial distributionei − eeq

Teq
.

3. The cell-based temperature is obtained by calculating the deviational energy density
Ud

cell = Ed
eff(N

+ − N−)/Vcell, whereN+ andN− respectively refer to the num-
ber of positive and negative computational particles in the cell of volumeVcell. The
temperature is then obtained by findingT such that

Ud
cell =

∫

ω

∑
p

D(ω, p)~ω
[

1
exp (~ω/kBT )−1

− 1
exp (~ω/kBTeq)−1

]
dω (73)

The pseudo-temperature, defined by the energy conservation statement (48) written
here in deviational form

∫

ω

∑
p

D(ω, p)(eeq
T̃
− eeq

Teq
)

τ(ω, p, T )
dω =

∫

ω

∑
p

D(ω, p)ed

4πτ(ω, p, T )
d3ω (74)

is similarly evaluated.

4. Particles to be scattered are chosen based on their respective frequency-dependent
scattering rates. Postcollision properties are then drawn from the deviational distri-
bution

~ωD(ω, p)
4πτ(ω, p, T )


 1

exp
(
~ω/kBT̃

)
− 1

− 1

exp
(
~ω/kBTeq

)
− 1


 (75)

Drawing particles from such a distribution can be tedious; computing for each time
step and for each cell the approximate cumulative distribution is computationally
costly. One can, instead, compute and store at the start of the simulation the cumula-
tive distribution function corresponding to Eq. (75) forT = T̃ = Tmax, whereTmax

is greater than the highest expected temperature in the system. Then, by drawing fre-
quencies and polarizations from this distribution and using an acceptance-rejection
scheme, one can draw samples corresponding to Eq. (75) without having to recom-
pute the cumulative distribution at the current local temperatures.
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5. A deletion scheme can be implemented in order to prevent uncontrolled growth of
the number of particles in the simulation. The deletion process takes advantage of
the fact that energy conservation only requires the net amount of energy to be con-
served during scattering. In other words, positive and negative particles selected for
deletion may be cancelled and only the net number of particles (of the appropriate
sign) need be generated. Some boundary conditions (e.g., isothermal boundaries)
also contribute to particle cancellation by allowing cancellation of particles incident
upon them. More details can be found in Ref. 61.

6. Boundary conditions can usually be written in terms of deviational distributions
making their interpretation analogous to the standard cases discussed in Section 3.
For instance, emission of deviational particles from an isothermal boundary at tem-
peratureTb follows the development of Section 3.2.1 with the Bose-Einstein distri-
bution feq

Tb
replaced by~ω(feq

Tb
− feq

Teq
). Because the Bose-Einstein distribution is

monotonic, the sign of the emitted particles is the same as the sign of the difference
Tb − Teq.

4.3 Computational Gain

In this section we use an archetypal 1D problem, namely steady-state, cross-plane heat
transfer in a nanofilm bounded by two isothermal walls at temperaturesTl andTr, respec-
tively,76,95 to highlight some of the features of deviational methods. We use the material
properties of silicon, as described in Ref. 61. The mean free pathΛ = 388 nm was calcu-
lated using

Λ =

∑
p

∫
VgτDfeq

Teq
dω∑

p

∫
Dfeq

Teq
dω

(76)

Figure 1 shows the steady-state temperature calculated for such a system, withTl =
330 K, Tr = 270 K, for various values of Kn. Figure 2 shows the statistical uncertainty
in the heat flux normalized by the local value of the heat flux (in this problem, the local
value is constant across the domain),σq̄′′x /q̄′′x , for Kn = 1 as a function of the normalized
temperature difference|Tl − Tr|/T0. Specifically, we compare the statistical uncertainty
of the variance-reduced case withTeq = 300 K to the nonvariance-reduced case for the
silicon model (dispersion relation and relaxation times) described in Ref. 97, denoted as the
frequency-dependent model, as well as for theoretical estimates corresponding to the gray
Debye model of Section 3.5. Results for the formulation where each particle represents a
fixed number of phonons and where each particle represents a fixed amount of energy are
very close on the logarithmic scale and we therefore only show the latter. Figure 2 verifies
that in the variance-reduced case, the standard deviation is proportional to the deviation
∆T = |Tl − Tr|. For∆T/Teq = 0.1—which, forTeq = 300 K, corresponds to a relatively
large amplitude of 30 K; the standard deviation is reduced by a factor of 7, meaning that the
variance-reduced method can reach a given level of statistical uncertainty using72 ≈ 50
times less samples. For∆T/Teq = 0.01, which corresponds to a temperature difference
of 3 K, the speedup is approximately 5000 times. This is particularly important because it
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is achieved without introducing any approximation, using algorithms of complexity that is
comparable to the traditional methods discussed in Section 3.

5. SPATIALLY VARYING CONTROLS

In Section 4, we reviewed methods that use a simple class of functions as controls, namely,
functions that are independent of time and space. On the other hand, Eq. (70) suggests
that the amount of variance reduction increases as the control function approaches the
nonequilibrium distribution. Methods that exploit this property by using a spatially depen-
dent equilibrium designed to approximate the local equilibrium were originally developed
for dilute gases.67,82 Section 5 discusses a broader class of control functions that can be
used to improve the efficiency but also the versatility of MC methods for simulating phonon
transport.

Consider the following control function,eeq
Teq(x), defined as a Bose-Einstein distribu-

tion with nonuniform temperatureTeq = Teq(x). The equation governing the deviation
ed = e− eeq

Teq(x) can be written as follows:

∂ed

∂t
+ Vg · ∇xed =

[
eloc − eeq

Teq(x)

]
− ed

τ(ω, p, T )
−Vg · ∇xTeq

deeq
Teq(x)

dT
(77)

where the new “source term” on the right-hand side is a result of the fact thateeq
Teq

is no
longer constant. As the name suggests, the term can be interpreted as a source of compu-
tational particles. Source terms arise in a number of contexts and are particularly useful in
linear transport theory.126,127They will be discussed more in the context of linear problems
in Section 6.

The total number of particles emitted by the source term in a time step∆t is given by

Nsource=
1
Ed

eff

∫ ∫ ∑
p

D

4π
|Vg · ∇xTeq|

deeq
Teq(x)

dT
d3ωd3x∆t (78)

where the integration is performed over the whole domain. In addition to the above gen-
eration term, a spatially variable control requires the following changes compared to the
constant control case described in Section 4.2:

1. The computational particles due to the source term must be generated from a distri-
bution proportional to

−D(ω, p)Vg · ∇xTeq

deeq
Teq(x)

dT
(79)

A convenient way to ensure the proper distribution in space is to mix the approach
based on a discretization of the cumulative distribution in frequency described in
Section 3.1, and the acceptance-rejection method. Namely, one can first identify the
maximum equilibrium temperatureTmax and drawω0 and p0 by numerically in-
verting the cumulative distribution taken at temperatureTmax. The particle position
x0 is then drawn uniformly and accepted ifR ≤ (deeq

Teq(x0)
/dT )/(deeq

Tmax
/dT ). In

case of rejection, the process is repeated until a sample is accepted. The traveling
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direction and the sign are then chosen from the angular distribution corresponding
to−Vg · ∇xTeq. Because of the symmetry between positive and negative particles,
simulations can be made more accurate by symmetrizing the emitted particles: if
a positive particle is emitted at pointx with properties (ω, p) and with direction
Ω (implying thatΩ · ∇xTeq < 0) a negative particle with the same properties is
emitted in the symmetric directionΩ − 2(Ω · n̂)n̂, wheren̂ is the normalized vec-
tor n̂ = ∇xTeq/‖∇xTeq‖. This process ensures that both the emitted heat flux and
energy are zero. Although not essential, this contributes to reducing the statistical
uncertainty.

2. Temperature (and pseudo-temperature) calculations in each cell need to account for
the fact that the equilibrium energy density corresponding to the control function
is spatially dependent. The heat flux due toeeq

Teq(x) is zero, because the equilibrium
distribution is isotropic in phase space.

3. Postscattering properties should be drawn from the distribution (75), accounting for
the fact thatTeq is cell dependent. AlthoughTeq varies within cells, one can use
the cell-average value, because the temperatureT and pseudo-temperaturẽT are
already (approximately) calculated based on cell-averaged properties. Drawing par-
ticle properties can again be achieved by combining the approach based on the inver-
sion of the cumulative frequency distribution with the acceptance-rejection scheme.

Although a spatially variable control leads to a moderately more complex algorithm, it
results in a number of benefits. In Section 5.1 we show how, when chosen suitably, a spa-
tially variable control further reduces variance. This feature can be exploited for developing
powerful multiscale simulation methods because it provides a means for focusing compu-
tational resources in regions where kinetic effects are important; this is further discussed
in Section 7. In Section 6.6, we highlight a second benefit of this approach in connection
with the simulation of externally applied temperature fields, which is of particular interest
in the context of calculating the effective thermal conductivity of nanostructured materials.

5.1 Efficiency Gains in the Low-Knudsen Number Limit

The effect of a spatially variable control on the computational efficiency has been studied
in more detail in the case of dilute gases, in which algorithms for spatially variable equi-
librium with the objective of minimizing computational cost have been developed.67,82 In
these methods, the control is treated as piecewise constant in each cell and updated at the
end of each time step, using a prescription that is designed67,82 to enable the control to
track the local equilibrium distribution.

Figure 4 shows a comparison of constant and variable-control methods in a dilute-
gas analog of the problem described in Section 4.3, namely, heat exchange between two
boundaries at different temperatures. Figure 4 compares the relative statistical uncertainty
in the temperature measurement in a constant-control and variable-control simulation over
the range0.1 ≤ Kn ≤ 10. The simulations (described in detail in Ref. 82) used∼950
particles per cell. Figure 4 shows that as Kn decreases, the relative statistical uncertainty
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FIG. 4: For low Knudsen numbers, the relative statistical uncertainty is significantly re-
duced when a spatially variable equilibrium is used. From Ref. 82.

of the spatially variable control simulation decreases, leading to a variance reduction on
the order of 50 as Kn goes from 10 to 0.1. This corresponds to a speedup on the order of
50. The reason for the improved performance is that as Kn decreases, the local equilibrium
assumption becomes more appropriate (that is, as shown in Section 2.4, as Kn→ 0, f →
f loc), ensuring that less particles are required to describef , or for the same number of
particles, lower variance is achieved.

This feature has important implications in the context of multiscale applications be-
cause it implies that such algorithms are able to focus the computational effort in regions
where kinetic effects are important thus removing the stiffness associated with approaching
the Kn→ 0 limit with a Boltzmann solver.82,128This is further discussed in Section 7.

6. EFFICIENT METHODS FOR LINEARIZED PROBLEMS

In this section, we discuss a particularly efficient MC simulation method for solving the
BTE in the relaxation-time approximation under linearized conditions. The computational
benefits derive from combining the energy-based deviational formulation of Section 4.2,
with two additional observations: first, for the small deviations from equilibrium encoun-
tered in practice, the governing BTE may be linearized with small error; second, in the
relaxation-time approximation, modes (particles) are coupled only via the energy conser-
vation statement (48).
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By combining these ingredients, it is possible to show64 that integration of the lin-
earized Boltzmann equation can proceed with no need to calculate the temperature and
pseudo-temperature; the latter is true because the linearized form of the energy conser-
vation statement (48) is satisfied automatically in the energy-based formulation (by par-
ticle conservation). Particle trajectories are therefore no longer coupled (via the pseudo-
temperature) and can be more efficiently simulated one at a time, using formulations that
are reminiscent of neutron transport simulations.126,129In these formulations, no spatial or
time discretization is used—in the form of cells and time step, respectively—leading to a
simpler and more efficient simulation method that introduces no approximation (provided
linearization is appropriate).

6.1 Linearized Boltzmann Equation in the Relaxation-Time Approximation

To derive the linearized Boltzmann equation we assume that the quantitiesT − Teq and
T̃ − Teq are comparable and small. We then use a Taylor expansion to write

D

4π

eeq
T̃
− eeq

Teq

τ(T )
=

D

4πτ(Teq)

deeq
Teq

dT
(T̃ − Teq) +O

(
T̃ − Teq

Teq

)2

(80)

where, for clarity, only the temperature dependence is made explicit.

The resulting linearized Boltzmann equation can be written as follows:

∂ed

∂t
+ Vg · ∇xed =

L(ed)− ed

τ(ω, p, Teq)
(81)

where

L(ed)(ω) =

∫
ω′

∑
p′(Ded/4πτ)d3ω′

∫
ω′

∑
p′(D/τ)(deeq

Teq
/dT )dω′

deeq
Teq

dT
(ω) (82)

The last expression follows from the identity

(T̃ − Teq)
∫

ω

∑
p

deeq
Teq

dT

D(ω, p)
τ(ω, p, Teq)

dω =
∫

ω

∑
p

D(ω, p)ed

4πτ(ω, p, Teq)
d3ω (83)

which is the linearized form of Eq. (74).

Following the interpretation of Section 4.2, the linearized dynamics can be simulated
by deleting particles according to the probability (47) with temperatureTeq and generating
particles from the distribution

D

4πτ(Teq)

deeq
Teq

dT
(T̃ − Teq) (84)
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Once normalized, this distribution does not depend on the pseudo-temperature or the tem-
perature. Hence, at any time and at any location in the system, the properties of the scat-
tered particles are drawn without knowledge of these two quantities; measuring them is
therefore not necessary in this approximation, and discretization can be dispensed with,
except for obtaining the desired estimates as outputs. Instead, particle trajectories can be
simulated independently and, if the equilibrium temperatureTeq is constant in space and
time, their motion can be simply simulated using a kinetic-Monte-Carlo-type algorithm130

with a constant survival probability. This is discussed in more detail in Section 6.3.

6.2 Sources in Linear Transport Theory and the Superposition Principle

The linear formulation described above lends itself naturally to a number of powerful math-
ematical tools, such as superposition. In this section, we briefly describe how the idea of
a source term, first introduced in Section 5, can be generalized to include terms resulting
from initial and boundary conditions. Such formulations are very common in the formalism
of linear transport theory,126 where source terms are utilized to achieve additional variance
reduction. In this review, we discuss generalized sources in the context of initializing simu-
lations and simulating externally imposed temperature gradients. Examples of generalized
source terms are given below.

Consider a system that is initially at temperatureTi(x) in contact with an isothermal
wall at temperatureTw atx = 0. This system can be modeled using the Boltzmann equation

∂ed

∂t
+ Vg · ∇xed =

L(ed)− ed

τ
+

∑

j

Qj (85)

where
∑

j Qj = Qi + Qw. The first term in the sum corresponds to the contribution of the
initial condition and is given byQi = δ(t)(Ti − Teq)deeq

Teq
/dT . The source resulting from

the isothermal wall is given byQw = δ(x)H(Vg · n̂)(Vg · n̂)(Tw − Teq)deeq
Teq

/dT . The
Heaviside function specifies the direction of particle emission. The superposition principle
allows one to solve for various subproblems using individual sourcesQj separately and to
find the final answer by addition. This can be advantageous in a number of situations, for
example, by allowing the number of particles used for each subproblem to be optimized
separately.126

6.3 The Linearized Algorithm

Under the linearized formulation, particle trajectories are independent and particles can be
simulated one at a time, which results in substantial memory savings. It also removes the
burden of managing variable-size lists of particles because of particles leaving or entering
the system.

Below, we describe the algorithm in the time-dependent case, with a fixed (in time
and space) control temperatureTeq; we assume that we seek to calculate quantities such
as the average temperature or heat flux in a given volume at timest̃1, t̃2, ..., t̃n. Steady
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problems can be treated more efficiently with a variant of this algorithm that does not
require integration to steady state. This algorithm is discussed in Section 6.5.

Let the total deviational energy in the calculation due tons sourcesQj , 1 ≤ j ≤ ns

be given by

Etot =
∫

Γ

D

4π

∑

j

|Qj |dΓ =
∑

j

|Ej | (86)

whereΓ = (x, ω, p, t) includes the “general phase-space coordinate” (which includes
time and polarization). Given a desired number of simulation particlesNpart, the effective
deviational energy is determined byEd

eff = Etot/Npart.
Individual particle trajectories are simulated as follows:

1. Draw the particle initial propertiesΓ0 = (x0, y0, z0, ω0, θ0, φ0, p0, t0) from the
appropriate source term as described in Section 3. The source from which the particle
is to be generated is determined stochastically by noting that the probability of a
particle originating from sourcek is given by|Ek|/

∑
j |Ej |.64,131

2. Calculate the time to the next scattering event∆t = −τ(ω0, p0, Teq) ln(R), where
R is a random number uniformly drawn in(0, 1).

3. Define x̃1 = x0 + Vg∆t. If the particle encounters a boundary along the line
segment(x0, x̃1], then setx1 to this encounter location and the time to the corre-
sponding encounter timet1. If no boundary interaction is detected, then setx1 = x̃1

andt1 = t0 + ∆t.

4. Update the particle properties toω1, θ1, φ1, p1. If x1 is determined by collision with
a boundary, then these properties are determined by the corresponding boundary
condition. If x1 is determined by a relaxation event, then the new properties are
drawn from the postscattering distribution

D(ω, p)
4πτ(ω, p, Teq)

deeq
Teq

dT
(87)

Finally, the effective energy of the particle and the sign do not change over the com-
plete trajectory. The energy-based formulation ensures that energy is conserved even
when particles are considered individually.

5. Determine whether any of the measurement times (t̃1, ..., t̃n) fall in the range[t0, t1).
If t̃i falls betweent0 andt1, find the position of the particle att = t̃i by interpolation.
If the particle is located in the volume where the quantity of interest is calculated,
then add the contribution of the particle to the average temperature in this volume at
time t̃i. For a total numberN of simulated particles, the contribution to the energy
from a particle with signs is sEd

eff and the contribution to the temperature is therefore
sEd

eff/(CV ), whereV is the volume of consideration andC =
∑

p

∫
Cω,pdω is the

heat capacity. The contribution to the heat flux att̃i is thensEd
effVg,0/V .
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6. If t1 > t̃n, or if the particle is absorbed by a boundary, then the current particle
trajectory is terminated. Otherwise, updateΓ0 = Γ1 and return to step (2).

6.4 Domain of Validity

According to Eq. (80), the error committed by linearizing the Boltzmann equation is sec-
ond order in the differenceT − Teq. Figure 5 shows a more quantitative measure of the
discrepancy between the variance reduced [from Eq. (75)] and linearized [from Eq. (87)]
gain term in the collision operator for silicon as a function ofT − Teq for Teq = 300 K,
defined as

ε =

{∫

ω

∑
p

~ω
∣∣∣∣

D

τ(ω, p, T )

[
1

exp (~ω/kBT )− 1
− 1

exp (~ω/kBTeq)− 1

]

− (T − Teq)
D

τ(ω, p, Teq)

deeq
Teq

dT

∣∣∣∣dω

}/[ ∫

ω

∑
p

~ωD

τ(exp (~ω/kBTeq)− 1)
dω

]
(88)

Figure 5 verifies that the error is second order inT − Teq. This analysis suggests that the
error is still acceptable (<3%) up to temperature differences on the order of 30 K.

Here we note that according to this analysis, quantities such as temperature or heat flux
in the linear approximation are accurate to the second order in∆T . The effective thermal
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FIG. 5: Normalized error between the linearized and exact collision operator, in the case
whereTeq = 300 K. For ∆T/Teq = 0.1, i.e., for a temperature difference∆T = 30 K, the
relative error,ε, is∼2.2%.
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conductivity, however, is first-order accurate because it is calculated by dividing the heat
flux by a quantity proportional to∆T .

Because the accuracy of the method is directly related toT −Teq, it could be improved
by choosing a spatially variable control. This however would require a significantly more
complex simulation algorithm because it would lead to trajectory-dependent relaxation
times.

6.5 Steady-State Formulations

Particle simulation methods are inherently explicit in time. Therefore, even steady prob-
lems are solved by integrating to the steady state and then sampled by extending the time
integration further. Recent work95 on simulation methods that arrive to the steady solution
without explicit integration to it required the introduction of iteration as well as approxi-
mations (see Section 6.6.1, for more details). An alternative approach based on the Wild
sum has also been pursued,132,133but has been limited to simple models and required the
use of approximations.

The linearized algorithm discussed above lends itself naturally to the simulation of
steady-state solutions directly and without integrating to steady state first, primarily because
individual particle trajectories are decoupled. Such steady-state formulations and the asso-
ciated class of steady-state estimators that record continuously126 over the particles trajec-
tories are presented here as extensions of the time-dependent case. Alternative (more math-
ematical) developments of the methodology for treating steady-state problems directly can
be found in the linear transport theory literature (see, for example, Ref. 126).

In transient problems, quantities of interest at timet can be written as follows:

Ag(t) =
∫

x

∫

ω

∑
p

g
Ded

4π
d3ωd3x (89)

whereed is taken at timet and both the integration bounds and functiong depend on the
quantity of interest. For instance, in the case of the average heat flux in a volumeV , g
is the vectorVg/V . As in Section 3.5, replacingDed/(4π) by its particle approximation
yields

Āg(t) = Ed
eff

Npart∑

i=1

sig[xi(t), ωi(t), pi(t)] (90)

The steady-state case can be motivated by introducing time averaging

Āg(ss) =
1
T

∫ tss+T

t′=tss

Āg(t′)dt′ (91)

over a time periodT , after timetss has passed deemed sufficient for steady conditions to
prevail. This results in the estimator
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Āg(ss) =
Ed

eff

T
Npart∑

i=1

si

∫ tss+T

t′=max(tstart
i ,tss)

g(xi(t′), ωi(t′), pi(t′))dt′ (92)

wheretstart
i is the time at which particlei is emitted.

Here we note that for a steady-state (time-independent) solution to exist, all sources
must be time independent. Hence, the definition of the total deviational energy rate follows
from Eq. (86)

Ėtot =
Etot

(tss + T )
=

∫

x

∫

ω

D

4π
|Q|d3ωd3x (93)

where, here,Q =
∑

Qj denotes all steady particle sources.
Let us examine now what happens if, instead of terminating the particle trajectories

at t = tss + T , we keep track of them indefinitely until they exit the simulation, which
will usually happen through an absorbing boundary (e.g., isothermal wall). This amounts
to letting T → ∞, which has two implications. First, the expected number of particles
emitted beforet = tss is negligible, which implies that all particle contributions to the
quantity of interest are recorded over their complete trajectory, from emission to exit or
termination; in other words, the time interval0 ≤ t ≤ tss need not be explicitly simulated.
Second, the expression of the estimate (92) tends to

Āg(ss) =
Npart∑

i=1

Ėd
eff

∫ tend
i

t′=tstart
i

g(xi(t′), ωi(t′), pi(t′))dt′ (94)

wheretend
i is the exit or termination time for a given particlei. The particle contribution

is therefore a curvilinear integral over the whole trajectory. Estimators such as (94) are
typically referred to astrack length estimators. We note that the effective deviational energy
is now replaced by the effective deviational energy rateĖd

eff ≡ Ėtot/Npart, which results
from the removal of the time dimension.

In Section 6.6, we will be interested in the average heat flux over the whole simulation
domain in the direction of an applied temperature gradientn̂ = −∇xT/‖∇xT‖. Let us
consider this case as an illustration of the above development. The quantity of interest can
be written as

q′′n̂ =
1
V

∫

x

∫

ω

Vg · n̂Ded

4π
d3ωd3x (95)

allowing us to identify the individual particle contribution as

q′′n̂,i =
Ėd

eff

V

∫

path
Vg · n̂dt (96)

For the time intervalt0 ≤ t ≤ tf in which the particle travels fromx0 to xf

∫ tf

t=t0

Vg · n̂dt = (xf − x0) · n̂ (97)
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We note that the time coordinate, formally used for the purpose of the derivation, is not
present in the final expression.

6.6 Application: Thermal Conductivity of Periodic Nanostructures

The linearized formulation described in Section 6 is particularly suited to the calculation
of the effective thermal conductivity of periodic nanostructures, which are inherently low
temperature-difference, steady-state simulations. In this section, we describe how such cal-
culations can be performed using a spatially variable equilibrium to simulate an “imposed
temperature gradient.” The discussion that follows refers to Fig. 6, which shows the unit
cell of a chosen periodic nanostructure.

We assume that we seek to calculate the effective thermal conductivity in the direction
n̂. This is achieved by applying a macroscopic temperature gradient∇xT in this direction
and calculating the resulting average heat flux. Because the temperature gradient is not
constant inside a unit cell, the notion of an imposed temperature gradient needs to be
understood as the overall temperature gradient perceived at length scales large compared
to the size of the unit cell.100 We also assume that the temperature gradient applied is
small, because a large temperature gradient would result in a nonlinear response which is
undesirable (in the definition of the thermal conductivity).

Here we start our discussion by reviewing the approach of Hao et al.,28 which states
that, referring to pointsx1 andx2 in Fig. 6, the deviation from equilibrium is periodic [see
Eq. (68)], leading to

ein
1 − eeq

T1
= eout

2 − eeq
T2

(98)

FIG. 6: Example of periodic nanostructure with hexagonal symmetry. The cylindrical pores
are assumed to be diffusely reflecting.
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ein
2 − eeq

T2
= eout

1 − eeq
T1

(99)

whereein
1,2 (respectively,eout

1,2) refers to the distribution entering (respectively, exiting) the
cell, such thatΩ · m̂ < 0 (respectively,Ω · m̂ > 0), wherem̂ is, as shown in Fig. 6,
the outward-pointing normal. The difference betweenT1 andT2 results from the applied
macroscopic thermal gradient.

In the case of a fixed control equilibrium, we can write these boundary conditions in
the deviational form

ein
1 − eeq

Teq
= eout

2 − eeq
Teq

+ eeq
T1
− eeq

T2
(100)

ein
2 − eeq

Teq
= eout

1 − eeq
Teq

+ eeq
T2
− eeq

T1
(101)

Given these expressions, the deviational approach with fixed equilibrium amounts to emit-
ting particles at the periodic boundaries from the distributionseeq

T1
− eeq

T2
or eeq

T2
− eeq

T1
,

respectively. The trajectories of these particles are then computed following the standard
algorithm, subject to periodic boundary conditions appropriate to the unit cell simulated.
In the general case, such as the one shown in Fig. 6, the values ofT1 andT2 can vary along
the boundaries, making generation of particles from these surface sources cumbersome.

An alternative approach consists of using a spatially variable equilibrium (control).
As shown in Section 5, a spatially variable equilibrium requires volumetric generation of
particles from the source

Qs = −Vg · ∇xTeq

deeq
Teq

dT
. (102)

Despite this, it is the preferable approach because it results in a simpler overall algorithm.
To show this, we linearize the boundary conditions (101) aboutT0, the temperature at
which we calculate the thermal conductivity, to obtain

ein
1 − eeq

T0
= eout

2 − eeq
T0

+
deeq

T0

dT
(T1 − T2) (103)

ein
2 − eeq

T0
= eout

1 − eeq
T0

+
deeq

T0

dT
(T2 − T1) (104)

which, usingTeq(x) = T0 + x · ∇xTeq, becomes

ein
1 − eeq

T0
= eout

2 − eeq
T0

+
deeq

T0

dT
∇xTeq · (x1 − x2) (105)

ein
2 − eeq

T0
= eout

1 − eeq
T0

+
deeq

T0

dT
∇xTeq · (x2 − x1) (106)

Finally, noting that the control function, under linearized conditions, iseeq
T0

+ x ·
∇xTeqdeeq

T0
/ dT , we can write

ein,d
1 = eout,d

2 (107)

ein,d
2 = eout,d

1 (108)
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In other words, the requirement of periodic deviation from local equilibrium (68) can be
achieved using a spatially variable control to impose the temperature gradient, while sub-
jecting the deviational particle population to periodic boundary conditions. Although the
two approaches are equivalent, the latter is arguably simpler, more efficient, and allows one
to conveniently calculate the thermal conductivity in an arbitrary direction. We also remark
that the latter formulation directly follows from a homogenization approach,101 treating the
ratio of the unit cell size to the length scale of the externally imposed temperature gradient
as a small parameter.

Because of the steady-state nature of the problem sketched in Fig. 6, and due to its
reduction to a 2D problem in physical space, the computational particles represent here a
deviational energy per unit time and per unit length given by

Ėd
eff =

1
Npart

∫ ∫ ∑
p

∇xTeq ·Vg
D

4π

deeq
Teq

dT
d3ωd2x (109)

where the integration in space is performed over a unit cell of the periodic structure. More-
over, using steady-state sampling means that the heat flux along the temperature gradient
can be evaluated over the whole unit cell using

q′′n̂ =
1
A

∫ ∫
ed D

4π
Vg · n̂d3ωd2x (110)

whereA is understood here as the area of the unit cell. In three dimensions, this is replaced
by the cell volume. The simulations otherwise proceed as outlined in Sections 6.3 and 6.5,
with the addition of a mechanism for terminating particle trajectories, which is necessary
because of the steady-state formulation and the type of boundary conditions used here; this
is discussed in detail in Section 6.6.1. Regarding boundary conditions, any particle leaving
the cell is reinserted through the corresponding periodic side. For instance, in Fig. 6, a
particle exiting the cell at pointx1 would reenter atx2.

6.6.1 Termination of Particle Trajectories

In a number of practical cases, particle trajectories terminate when the particle exits the
system, usually through an absorbing boundary (isothermal wall). In periodic nanostruc-
tures, this cannot happen due to the periodic boundary conditions; therefore other termina-
tion criteria must be developed. In Ref. 64, it was observed that the average contribution
of particles to the heat flux monotonically decreases in absolute value along the particle’s
trajectory (with the number of scattering events). It was therefore proposed that a parti-
cle trajectory can be terminated when its contribution to the heat flux reaches the order of
magnitude of the statistical uncertainty associated with each trajectory segment. This was
empirically determined to correspond to a number of scattering events,Ns, on the order of
50.64 Estimates of the heat flux field resulting from this method are shown in Fig. 7.

In their steady-state formulation, Randrianalisoa and Baillis95 proposed an approach
for imposing energy conservation that can be adapted here for terminating the particle tra-
jectories, at the expense of introducing discretization in space. We illustrate this approach
with the following example: we consider a periodic nanostructure composed of parallel,
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FIG. 7: x andy components of the heat flux in the elementary cell of a triangular network
of cylindrical pores subjected to a temperature gradient of106 K m−1 in the y-direction.
The pore surfaces are assumed diffusely reflective.

adiabatic (diffusely reflective) plane surfaces normal to the applied temperature gradient;
the spacing between the surfaces isd = 100 nm (see Fig. 8). This example was chosen be-
cause the effective thermal conductivity of this structure is exactly known (κeff = 0). This
allows us to investigate the error associated with the discretization in space introduced by
this method but also more easily illustrate the theoretical concept on which this algorithm
is based.

FIG. 8: Fictitious material with diffusely reflective interfaces normal to the direction of
the applied temperature gradient. Dashed lines denote the cell grid used to calculateψj(x),
defined in Section 6.6.1.



250 ANNUAL REVIEW OF HEAT TRANSFER

The simulation proceeds in general terms as described in Section 6.3, but with one ma-
jor difference. Instead of simulating each particle to the end of their trajectory, each particle
is simulated until its first relaxation event. At this time, the local density of energy “loss”
events

ψ1 =
1

∆x

∫

x∈cell

∫

ω

Ded
1

4πτ
d3ωdx (111)

is calculated by recording the number of trajectories terminating at each of the computa-
tional cells of length∆x in which the domain is discretized. For this a cell-grid is used
that is similar to the one in the cell-based algorithms described in Sections 3 and 4; for the
particular one-dimensional problem discussed here, the cell-grid is shown in Fig. 8.

Energy conservation requires that energy relaxation events are followed by the emis-
sion of new computational particles from the “gain” term of the Boltzmann equation,
L(ed

1)/τ. The number of these particles is determined from energy conservation, which
requires their number be such that they carry the same amount of energy as the net en-
ergy carried by particles whose trajectories have been terminated. The intermediate step
of advancing all particles up to their first scattering event coupled with the observation
that the net amount of energy needs to be conserved, allows cancellation between positive
and negative particles within the same cell to take place, as was utilized before in the time
step-based algorithm of Section 4.

Following this cancellation, the algorithm can proceed by noting that integration of the
particle trajectories up to the first relaxation event corresponds to solution of the equation

Vg · ∇xed
1 = −ed

1

τ
+ Qs (112)

whileψ1 is a register of the amount of particles to be generated in each cell fromDL(ed
1)/τ.

This information can now be used for solving

Vg · ∇xed
2 = −ed

2

τ
+
L(ed

1)
τ

(113)

where the new source termL(ed
1)/τ is approximated by generatingψ1∆x/Ėd

eff particles
whose frequencies and polarizations are drawn from the postscattering distribution
DL(ed

1)(ω, p)/τ(ω, p, Teq). Here,Ėd
eff is the particle effective energy rate per unit area.

The starting position for each particle is uniformly drawn within the given cell, and the trav-
eling direction is isotropically chosen because the postscattering distribution is isotropic in
this model.

The process is repeated until the number of particles emitted by the new sources is 0,
that is, until complete cancellation has been achieved. The latter is guaranteed by the fact
that the net energy rate emitted by the initial source is 0 (the same number of positive and
negative particles are involved in the simulation). (If this was not the case, i.e., if a nonzero
energy rate was emitted, the problem would be ill-posed because a steady state could not
exist without absorbing boundaries.)

This approach can now be explained by noting that it corresponds to the decomposition
ed = ed

1 + ed
2 + ..., where stepj > 1 in the above process solves the equation
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Vg · ∇xed
j = −ed

j

τ
+
L(ed

j−1)
τ

(114)

At each level, the number of particles to be generated from the source termDL(ed
j)/τ is

given byψj . Stepj = 1 corresponds to Eq. (112). Summing over allj recovers the lin-
earized Boltzmann transport equation

Vg · ∇xed =
L(ed)− ed

τ
+ Qs (115)

From the above, it follows that the track length estimator needs to be applied to each
segment of trajectory in order to calculate the corresponding heat flux contributions. Fig-
ure 9(a) shows the distribution ofψ and heat flux corresponding to various steps in the
process for the problem considered here. In this particular example, the heat flux at any
level j [Fig. 9(b)] is nonzero. However, the combined contribution of all steps results in a
zero heat flux (within the numerical approximation), as expected.

The latter observation is used here to investigate the numerical error associated with
the introduction of a grid for the calculation of the source termsψj . Figure 10 shows the
difference between the numerical value of the heat flux and the exact result as a function of
the cell size (∆x). The results show that the discretization error is of second order in∆x, in
analogy with the second-order accuracy observed70,71,74 in DSMC algorithms. Extension
to 2D and 3D cases is straightforward.

In summary, while the cancellation approach outlined here is not needed in cases where
particle trajectories are made finite due to the existence of absorbing boundaries, combin-
ing it with the linearized and variance-reduced approach can benefit the case of periodic
nanostructures where absorbing boundaries may not be present. Figure 11 shows that the
number of particles decreases exponentially as a function ofj. This results in an appre-
ciable speedup (factor of around 10) with respect to the approach based on an empirical
choice of the termination criterion,64 at the expense of a second-order approximation in
∆x and a slightly more complicated algorithm.
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FIG. 9: (a) ψ1 andψ4 and (b) heat flux contributions resulting fromQs, L(ed
1)/τ and

L(ed
4)/τ. These results were obtained using an imposed temperature gradient of106 K m−1.
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FIG. 10: Error in the effective thermal conductivity of the structure in Fig. 8 as a function
of the cell-grid size∆x. The convergence order is quadratic.
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FIG. 11: Using the termination technique based on spatial discretization, the number of
particles in the system decreases exponentially.

6.6.2 Final Remarks

Here we note that the linearized algorithm owes much of its simplicity to the fact that the
particle survival probability is constant. When temperature changes across the domain are
large, the relaxation time is no longer constant along particle trajectories making prediction
of the next relaxation event path dependent and, as a result, significantly more complex.
This appears to have been neglected in Ref. 95.

Finally, we also note that the example of Fig. 8 provides another illustration of the fact
that, as detailed in Section 2.4, calculating the effective thermal conductivity based on the
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mean free path including boundary scattering is in general incorrect. The effective ther-
mal conductivity of the structure shown in Fig. 8 is nonisotropic and zero in the direction
normal to the diffuse interfaces. On the other hand, the average distance a particle travels
between relaxation events or collisions with an interface is clearly finite, thus yielding the
wrong estimate for the effective thermal conductivity if used in the first term of Eq. (23).

6.7 Computational Efficiency

The benefits associated with the linearized formulation are numerous, provided lineariza-
tion of the governing equation is justified. In addition to being significantly easier to code,
the linearized simulation is significantly more efficient because it involves less operations
per simulated particle and uses significantly less memory. Of particular note is its ability
to avoid the stiffness associated with disparate relaxation times because it allows each par-
ticle to evolve at its own characteristic time, rather than requiring a time step that is much
smaller than the smallest relaxation time.

Clearly, the speedup compared to other methods will be problem dependent because it
will depend on a number of factors, such as the ratio of the largest to the smallest relaxation
time. It was reported in Ref. 64 that over a number of applications, the speedup ranged be-
tween a factor of 100 and 1000. Figure 12 shows a comparison between two simulations of
a transient thermoreflectance (TTR) experiment61 using the deviational algorithm of Sec-
tion 4.2 and the linearized algorithm described in Section 6. More details on the problem
formulation can be found in Ref. 61. Figure 12 shows that for (approximately) the same
computational cost, the linearized algorithm can reach simulation times up to 10µs, which
is approximately three orders of magnitude longer than the other deviational method.
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FIG. 12: Surface temperature in simulation of a TTR experiment as a function of time,
calculated with the variance-reduced Monte Carlo method using time steps,61 and the lin-
earized method presented in Ref 64 and 131. The latter reaches significantly longer times.
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Similar speedups have been observed in calculations of nanostructured materials. Spe-
cifically, a highly resolved (results reported on a50× 50 grid) simulation of the 2D nanos-
tructure discussed in Section 6.6, using the silicon material model discussed in Ref. 61,
and featuring25 × 106 simulation particles (Ns = 40) and 1000 points to discretize the
dispersion relation, requires∼30 min on a single core of an Intel I-7 processor. On the
other hand, an estimate for the effective thermal conductivity, which does not require spa-
tial resolution of the temperature field, requires only 1 min of run time because all particles
contribute toward the heat flux estimate. For this reason, we expect that the simulation of
three-dimensional geometries will not result in a large increase in computational cost.

The above examples show that the linear method discussed in this section has the
potential to play an important role in interpreting experimental investigations of phonon
transport because it lends itself naturally to problems which require variable/adaptive reso-
lution (e.g., transient thermoreflectance40,41), by using more computational particles where
the deviation from equilibrium is large and less particles in regions where the solution can
be described analytically.

In some cases, additional speedup may be possible by exploiting the duality between
the Boltzmann equation and its adjoint, using techniques already developed in the fields of
neutron and photon transport, and more generally in linear transport theory.126,134 In the
case of phonon transport, it can be shown135 that in cases where a signal detector is small
but the signal source is large, that is when the signal is only needed in some small spatial
or spectral region, significant computational savings can be achieved by solving the adjoint
Boltzmann equation

−∂e∗

∂t
−Vg · ∇xe∗ =

L(e∗)− e∗

τ
+ g (116)

In Eq. (116) particles simulating the adjoint solutione∗ evolve backward in time and are
emitted by the sourceg, which is related to the detector in the original problem. Conversely,
computational particles are collected by a detector that is related to the source in the origi-
nal problem. Because of the large difference in size between the source and detector in the
original problem, the adjoint formulation ensures that the signal collected by the detector
will be significantly enhanced leading to improved variance reduction.

7. MULTISCALE PROBLEMS

Computational methods that can efficiently but also accurately model problems exhibiting
a wide range of length and time scales remain highly desirable and the subject of consid-
erable research effort.

The first attempts for addressing this need in the field of kinetic transport appeared
more than two decades ago,136 in the form of hybrid methods. These methods aim to
minimize the computational cost by using the kinetic description (e.g., MC simulation)
only in regions where it is needed, while the remainder of the computational domain is
treated by the less expensive NSF description. The literature on such methods is quite ex-
tensive, with the majority of methods addressing the dilute-gas problem. Our discussion
here will briefly review the basic ideas behind these methods from the point of view of
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phonon-mediated heat transport. The hybrid formulations described above typically em-
ploy domain decomposition techniques137 to separate the two regions in question. As a
result, appropriate information exchange between the two descriptions becomes central to
the success of the method.138 Fortunately, a recipe for information exchange is readily
available in kinetic transport problems: the CE expansion, briefly discussed in Section 2.4,
provides an analytical description of the distribution function in the limit Kn→ 0.9,11,59

This distribution, parameterized by the local values of the NSF solution field at the cou-
pling boundary, can be used as a rigorous boundary condition for the kinetic (BTE) solver.
Methods for generating the CE expansion have also been developed.139 Transitioning from
the kinetic solver to the NSF description is simple because this corresponds to a process
of averaging (moment evaluation). The existence of CE theory has led to the development
of fairly sophisticated hybrid simulation methods140–142 in which the transition from one
description to the other is automatic and, in some cases, seamlessly integrated within a
mesh refinement process. Criteria for transition from one description to the other have also
been investigated.140,143

These methods assume that the region where kinetic effects are important is sufficiently
localized and small that the kinetic part of the calculation is feasible. For a large class of
problems of practical interest, this is not the case. As discussed in more detail in Ref. 128,
the deviational methods described in Section 4 can be thought of as multiscale methods that
utilize algebraic decomposition of the distribution function into an equilibrium part and the
deviation therefrom to more efficiently simulate multiscale problems. By separating out
the (large) part that can be described by an equilibrium distribution, the number of particles
needed to describe the phenomenon of interest is reduced drastically, or alternatively, fo-
cused on the regions where kinetic effects are appreciable. In other words, these algorithms
automatically and adaptively focus computational resources where kinetic effects are im-
portant. An example is the simulation of the TTR experiment discussed in Section 4: as a
result of the localized heating, large parts of the computational domain are in thermal equi-
librium, especially for early times. Algebraic decomposition enables the use of particles
only in regions whereed 6= 0, thus significantly reducing the computational cost compared
to traditional approaches, which would need to fill the whole computational domain with
computational particles, the vast majority of which would be reproducing, albeit noisily, an
equilibrium distribution.

In the above context, deviational methods using a spatially variable equilibrium distri-
bution are even more powerful because they can use a control that captures locally varying
equilibrium conditions. Specifically, as shown by Eq. (20), local equilibrium corresponds
to the leading order term in the Chapman-Enskog expansion, with deviations therefrom
(requiring particles for their description) scaling as O(Kn) or higher. Thus, in contrast to
standard particle simulation methods that become increasingly more expensive as the NSF
(Kn → 0) limit is approached (larger length scales imply not only more simulation parti-
cles, but also longer evolution time scales), deviational methods with a spatially variable
equilibrium distribution become more efficient as this limit is approached because they are
able to relegate increasingly more of the description to the equilibrium part, thus reducing
the number of particles required for the simulation.128 Such methods have been developed
for dilutes gases67,82 and shown to exhibit enhanced variance reduction, particularly as
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Kn → 0, as expected (see Fig. 4). In these implementations, the variable control was im-
plemented as piecewise constant within each cell, requiring source terms resulting from
the discontinuities at cell boundaries and making multidimensional implementations com-
plex.82,128This complexity can be alleviated by a formulation using a continuously variable
control, which, as shown in Section 6.3, results in a volumetric source term that can be im-
plemented relatively straightforwardly. Such a formulation will require the development of
a method for (approximately) describing the local temperature variation as recovered from
cell-based sampling using functions with continuous derivatives.

A hybrid approach for reducing the computational cost associated with deterministic
discretization-based solution of the Boltzmann equation in the relaxation-time approxima-
tion has recently been proposed by Loy et al.144 In this approach, the computational cost
is reduced by identifying a cutoff lengthscale below which transport is expected to be dif-
fusive and using the heat conduction equation to treat modes with shorter expected travel
distances between scattering events. The computational speedup results from reducing the
number of modes for which the BTE needs to be solved (solving the heat conduction
equation for the remaining modes is significantly more efficient since no angular discretiza-
tion is required), but also because the remaining modes are the ones that are typically less
costly to treat by the BTE.144 Although this approach is, in general, approximate, the small
coupling between different modes in the relaxation-time approximation means that if this
cutoff length scale is chosen conservatively (that is the Knudsen number based on it is
small), then the error is small (on the order of a few percent). The resulting speedup is on
the order of 100. As in the case of the linearized method of Section 6, it is not clear whether
or not this approach can be successfully extended to more realistic scattering models that
feature considerably more complex coupling between different modes.

8. DISCUSSION

As in many fields involving transport mediated by particles, MC methods are one of the
prevalent computational methods because they combine simplicity with computational ef-
ficiency while retaining an intuitive connection to the problem physics. Review of the liter-
ature suggests that, similarly to the rarefied-gas-dynamics field,145 MC methods currently
hold a computational advantage over discretization-based methods of solution for prob-
lems of engineering interest, where an accuracy of the order of 1% is sufficient. This
appears to be in part because of the good balance—in the context of current computa-
tional resources—they strike between statistical uncertainty and efficiency. In contrast to
deterministic methods which exhibit no statistical uncertainty but need to discretize the
complete phase space, MC methods avoid some of the discretization, thus making sim-
ulations more feasible, by introducing statistical uncertainty. Paradoxically, the resulting
robustness has its origins in the poor convergence of statistical sampling with the number
of samples: the “flip-side” of the square-root-convergence is that the solution quality does
not degrade fast with decreasing number of samples (a simulation with 10 times less sam-
ples, will exhibit a statistical uncertainty that is only 3 times larger). As a result, state of the
art MC methods are able to provide well-resolved solutions to three-dimensional, transient
problems in realistic geometries without using massively parallel computational resources.
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At the same time, using similar computational resources and no additional simplifying
assumptions (e.g., gray approximation), state of the art discretization-based methods of
solution are currently limited to moderately resolved two-dimensional problems.144–146

It is not yet clear what the effect of the trend towards increasingly larger numbers of
cores per chip will be on this balance. On one hand, more cores seems to favor MC meth-
ods which lend themselves naturally to parallel implementation via ensemble averaging.
On the other hand, the slow statistical convergence of MC sampling means that as the avail-
able computational resources increase (either via faster processors or better parallel effi-
ciencies), MC methods are expected to benefit less compared to high-order discretization-
based schemes. MC methods can remain competitive for a long time via variance reduction
techniques such as the ones discussed in Section 4, which significantly reduce the level of
statistical uncertainty.

Although having their origin in the DSMC method, phonon MC simulation methods
have not been subject to the same level of numerical analysis, perhaps because they are sig-
nificantly more recent than DSMC (the convergence proof for DSMC4 arrived almost 30
years after Bird’s original paper). Although it is expected that many of the results derived
for DSMC discussed in Section 2.6, at least qualitatively, hold for phonon MC, rigorous
numerical analysis of the latter is still warranted, especially for the collision (scattering)
part of the algorithm which is fairly different to those of dilute gases and in some im-
plementations quite ad-hoc. The benefits will include improved understanding of the ap-
proximations involved, but also possibly reduced numerical error; for example, for certain
classes of scattering operators, simulation of the scattering process with no time step er-
ror is possible64,98 (note that this does not eliminate the splitting error, which in the first
example is absent, but in the second is not).

Deviational methods have been subject to considerably less analysis. For example, lit-
tle is known about their fluctuation spectrum and the latter’s relation to the nonequilibrium
fluctuation spectrum associated with phonon transport. Expressions analogous to Eq. (60),
relating the statistical uncertainty as a function of the number of computational (devia-
tional) particles, would be very useful because they would allow users to select simulation
parameters such asNeff andEeff without trial and error.

Recent interest has focused on low-dimensional materials in which transport is affected
by a number of features that cannot be accurately captured by the relaxation-time approx-
imation.30,112,113The recently developed46–48 deviational formulation for integrating the
BTE with the more realistic scattering operator (10) is an exciting first step towards high-
fidelity solutions of complex problems of engineering interest involving phonon transport.
As discussed in Refs. 46–48, considerable improvements to this first step are possible us-
ing ideas reviewed here, such kinetic-Monte-Carlo-type algorithms in which computational
particles evolve independently, steady-state formulations and methods for efficiently ter-
minating trajectories. A more complete discussion can be found in Ref. 46.
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