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We present an efficient particle simulation method for the Boltzmann transport equation based on the low-
variance deviational simulation Monte Carlo approach to the variable-hard-sphere gas. The proposed method
exhibits drastically reduced statistical uncertainty for low-signal problems compared to standard particle
methods like the direct simulation Monte Carlo (DSMC) method. We show that by enforcing mass conserva-
tion, accurate simulations can be performed in the transition regime requiring as few as 10 particles per cell,
enabling efficient simulation of multidimensional problems at arbitrarily small deviation from equilibrium.

I. INTRODUCTION

Efficient simulation of low-signal small-scale gas flows,
such as those occurring in micro- and nano-electro-
mechanical systems (MEMS/NEMS),1–5 continues to
represent a significant computational challenge.6 This
is because the direct simulation Monte Carlo (DSMC)
method, the prevalent method for solving the Boltz-
mann equation,7 is most efficient for simulating highly
nonequilibrium flow conditions, but suffers from high
levels of statistical noise for smaller deviations from
equilibrium.8,9 Recently, stochastic particle methods
that employ variance-reduction techniques9 have demon-
strated considerable efficiency improvements over the
DSMC method. These approaches are based on the
method of control variates,10 but can be described
as falling into two broad subcategories: deviational
methods,9,11–14 where particles simulate the deviation
from equilibrium, and weight-based methods,15,16 which
exploit the correlation between an equilibrium and a non-
equilibrium simulation to reduce statistical uncertainty.16

A basic form of the correlated simulation approach, al-
beit without importance weights, was originally proposed
by Öttinger17 in the context of Brownian Dynamics sim-
ulations. Unfortunately, as Öttinger and his collabora-
tors originally observed,18 the correlation between the
two simulations cannot be maintained indefinitely, re-
sulting in loss of variance reduction; in Boltzmann sim-
ulations this manifests itself in the form of diverging
weights in weight-based simulations and diverging num-
ber of particles in deviational simulations. This diver-
gence can be mitigated by numerical procedures, such
as particle cancellation routines (deviational simulations)
or techniques for reconstructing the distribution function
(weight-based methods), albeit at the cost of numerical
error and computational cost. Here we mention that the
method outlined in Ref. 16 uses kernel density estima-
tion to ensure weight stability, and results in an efficient
variance-reduction procedure operating in parallel with
an essentially unmodified DSMC simulation.

Resolution of the above limitations came with the de-
velopment of low-variance direct simulation Monte Carlo

(LVDSMC),12,13 a deviational method which uses a form
of the hard-sphere collision operator, originally obtained
by Hilbert,19 in which the angular integration within
the Boltzmann collision integral is performed analyti-
cally. This has the effect of providing particle “pre-
cancellation” and leads to a stable simulation method
with no numerical intervention (and associated error).
The developers of the original LVDSMC method12,13

were made aware of this special form of the collision op-
erator via Cercignani’s various expositions,6,19,20 which
provide alternative derivations as well as a historical
perspective19 on related work by Hilbert, Enskog, Carle-
man, and Grad.

The LVDSMC methodology has been extended to
treat the Bhatnagar, Gross, and Krook (BGK) collision
model.21,22 These studies have also served to highlight
the differences between using a global or a local (spa-
tially variable) equilibrium distribution as a control; their
findings are briefly discussed in Sec. IV. Recently, the
LVDSMC methodology was put on a more precise theo-
retical footing.23 In the same publication, a collision algo-
rithm with no inherent timestep error that can also treat
the variable-hard-sphere (VHS) collision model24–which
is more realistic for engineering flows–was also proposed.

In this paper we present an LVDSMC algorithm
which combines the recently-introduced VHS collision
algorithm23 with a highly-efficient advection routine21

within a formulation that enforces mass conservation.
The latter significantly reduces the number of particles
required for accurate simulations compared to previous
implementations—as we show below accurate results can
be obtained with as low as approximately 10 particles
per cell, as in DSMC—resulting in a significantly more
efficient and versatile method. Since the primary appli-
cation domain of this method is low-signal flows, here, a
linearized version of the algorithm is presented; a non-
linear version will be presented in a future communica-
tion. Also, in the interest of simplicity, the present al-
gorithm simulates the deviation from a global (constant)
equilibrium distribution.

The paper is organized as follows: the overall simu-
lation method is described in Sec. II with the collision,
advection, property evaluation, and time step procedures
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discussed in separate subsections. A select number of
validation and demonstration cases in two-spatial dimen-
sions are presented in Sec. III; these demonstrate that the
proposed algorithm simulates Boltzmann transport with
considerable computational efficiency savings for prob-
lems in the linear regime. Finally, in Sec. IV, a summary
as well as a discussion of open issues and future research
directions is presented.

II. SIMULATION METHOD

The LVDSMC method is derived directly from the
Boltzmann transport equation

∂f(c)

∂t
+ c · ∂f(c)

∂x
+ a · ∂f(c)

∂c
= Q[f, f ](c) (1)

which it simulates. In the above, f = f(c) is the velocity
distribution function, t is time, c is the particle velocity,
x is the spatial coordinate, and a is the body force per
unit mass. In the flow regimes of interest for this work,
the gravitational body force is negligible, and thus in
what follows we assume a = 0; relaxing this assumption
requires small modifications to the present algorithm.

The collision operator for the VHS model is given by

Q[f, f ](c) = Cβ

∫
S2

d2Ω

∫
R3

d3c∗ ||c− c∗||β

· [f(c′)f(c′∗)− f(c)f(c∗)] , (2)

where primes denote post collision velocities {c′, c′∗} =
1
2 (c+ c∗ ± ||c− c∗||Ω), and the solid angle Ω is inte-

grated over the unit sphere S2. The relative velocity
exponent β is related to the temperature coefficient of
viscosity ω via β = 2(1 − ω); the constant prefactor

is given by Cβ = 1
4md

2
refc

1−β
r,ref , where m is the molecu-

lar mass, dref is the reference molecular diameter, and
cr,ref = 4

√
RTref/π is the mean relative molecular speed

at reference temperature Tref.
In the deviational approach, the velocity distribution

is split into an equilibrium, f0, and a deviational part,
fd. The equilibrium part is taken to be a fixed Maxwell-
Boltzmann distribution

f0(c) =
ρ0

π3/2c30
exp

(
−||c− u0||2

c20

)
, (3)

with density ρ0, mean velocity u0 = (u0,x, u0,y, u0,z),
most probable molecular velocity c0 =

√
2RT0, and

temperature T0. The deviational distribution is for-
mally represented by signed particles via fd(c) =

mW
∑N
i=1 siδ

3(x − xi)δ3(c − ci), where each particle is
characterized by a sign si ∈ ±1 in addition to a posi-
tion xi and velocity ci. Here, W is a constant which
relates the number of physical molecules to the number

of deviational particles in simulation. This quantity (W )
plays the role of Neff in DSMC simulations, by allowing
a numerical particle to represent a number of physical
particles; however, the relationship between W and the
ratio of physical to numerical particles is less direct in
the deviational approach (this point will be elucidated
with a numerical example in Sec. III).

The simulation domain is discretized into N∆V dis-
joint spatial cells, each with spatial volume ∆Vj , j ∈
1, 2, . . . , N∆V ; where the total volume is given by V =∑N∆V

j=1 ∆Vj . The set of particles contained within cell j
at the instantaneous state of the simulation is denoted
by Nj , where

⋃N∆V

j=1 Nj = {1, 2, . . . , N}. Likewise, the
boundary is discretized into N∆A surface elements, each
with area ∆Aj , j = {1, 2, . . . , N∆A}.

Similar to the DSMC method, evolution under Boltz-
mann dynamics is calculated by splitting into colli-
sion and advection steps. Using a formulation by
Cercignani,25 streamwise pressure and temperature gra-
dients are included using forcing terms that resemble ef-
fective “body forces”, implemented here as part of the
splitting algorithm. These steps are described in detail
in the following sections.

A. Collision step

The collision algorithm presented here was proposed
previously,23 and is presently extended to feature mass
conservation. By simulating the collision process as a
sequence of Markov particle creation and deletion events,
this collision algorithm has no intrinsic time step error,
in contrast to previous LVDSMC methods.12,13,21,22

In this method,23 collision events are processed in order
to simulate the Boltzmann equation (1) in the absence of
advection

∂f(c)

∂t
= Q[f, f ](c). (4)

By substituting f = f0 + fd into Eqn. (2), the colli-
sion operator is represented by linear L[fd] and nonlinear
Q[fd, fd] terms:

Q[f, f ](c) = L[fd](c) +Q[fd, fd](c). (5)

For this paper, we focus on the linear part of the colli-
sion operator; this is a reasonable approximation since we
are interested in low-signal problems. The more general
nonlinear approach has been published in a preliminary
study.26

The key to efficiently simulating collisions while main-
taining stability in the LVDSMC method is the exploita-
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tion of a special representation6,12,13,19,20,23

L[fd](c) =

∫
R3

d3c∗

[
2K(1) −K(2)

]
(c, c∗) f

d(c∗)

− ν(c)fd(c) (6)

K(1)(c, c∗) =
4Cβ

||c− c∗||

∫
Γ⊥(c−c∗)

d3ζ
f0(c+ ζ)

||c− c∗ − ζ||1−β
(7)

K(2)(c, c∗) = 4πCβ ||c− c∗||βf0(c) (8)

ν(c) = 4πCβ

∫
R3

d3c∗||c− c∗||βf0(c∗), (9)

where Γ⊥(c) is the plane perpendicular to c passing
through the origin. This structure allows for efficiently
sampling the [2K(1)−K(2)] term as a single distribution,
which produces fewer extraneous particles; moreover,
particle deletion through the term −νfd, lends stability
to the method by countering an unbounded increase in
the number of particles in the simulation. The origin of
representation (6) can be explained as follows: the con-
volution involving K(1)(c, c∗) follows from integration of
the linearized form of the gain term of the collision in-
tegral; the other two terms in (6) originate from the lin-
earized loss term: the convolution involving K(2)(c, c∗) is
obtained from integration of f0(c)fd(c∗), while the term
ν(c)fd(c) follows from integration of f0(c∗)f

d(c).
The collision rate and the kernel functions are related

as follows:

ν(c∗) =

∫
R3

d3c K(1)(c, c∗) =

∫
R3

d3c K(2)(c, c∗). (10)

Using the inequality

( ||c− c∗||
c0

)β
≤
[
β
||c− c∗||

c0
+ (1− β)

]
, ∀c, c∗ ∈ R3;

(11)
a tight bound on the collision rate ν can be formed:

ν(c) ≤ νmax(c) = 4πCβρ0c
β
0 [βψ(ξ) + (1− β)] , ∀c ∈ R3;

(12)
where ξ = (c − u0)/c0, ξ = ||ξ||, and ψ(ξ) is a pure
numerical function given by

ψ(ξ) =
e−ξ

2

√
π

+

(
ξ +

1

2ξ

)
erf(ξ). (13)

Here, equality for Eqns. (11, 12) is recovered for both
the hard-sphere (β = 1) and Maxwell-molecule (β = 0)
limits.

Using the common bound νmax (10, 12) for all terms
appearing in the collision operator (6), the simulation
is performed using a common (stochastic) time step δt
to process both deletion and particle generation events.
These stochastic time steps can be interpreted as waiting
times between “arrivals” in a Poisson process, in which
the state of the gas is transformed by adding or deleting
a particle, or remains unchanged. In this context, the
time steps δt are sampled from an appropriate exponen-
tial distribution: P (δt) = Λe−Λδt, δt ∈ (0,∞), which has
parameter

Λ = 16πCβρ0c
β
0

[
β

N∑
k=1

ψ(ξk) + (1− β)N

]
. (14)

The proper number of “arrivals” is simulated when the
total collision time (total sum of all stochastic time
steps for all collision steps) exceeds the simulation time
t+ ∆tcol, at which point the collision routine passes con-
trol over to the advection routine (c.f. Sec. II E). For
each time step, a trial deletion step is performed with
probability 1/4 and a trial particle generation step is per-
formed with the remaining probability. Each routine is
summarized and discussed below.

Particle generation routine

The particle generation step is the most complex part
of the VHS collision algorithm; here we summarize the
basic steps of the algorithm, while the mathematical
derivation of these procedures is available elsewhere.23

In the algorithm below, the notation πc−ci
(c∗) refers to

the vector projection of c∗ onto the plane Γ⊥(c − ci),
while I0

Γ⊥
(c, ck) is given by

I0
Γ⊥

(c, ck) =

∫
Γ⊥(c−ck)

d3c∗ f
0(c+ c∗)

=
ρ0√
πc0

exp

(
−|(c− u0) · (c− ck)|2

c20||c− ck||2
)
. (15)

We also introduce two additional notations: an accep-
tance probability P 0

β (c, c∗) and particle sign for the ac-

cepted particles s0
β(c, c∗) given by
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P 0
β (c, c∗) =

∣∣∣∣∣∣
∑
k∈Nj

sk

[
2 I0

Γ⊥
(c, ck)/cβ0

||c− ck|| ||c− ck − πc−ck
(c∗)||1−β

− π
( ||c− ck||

c0

)β
f0(c)

]∣∣∣∣∣∣∑
k∈Nj

{
2 I0

Γ⊥
(c, ck)

||c− ck||

[
β

c0
+

1− β
||c− ck − πc−ck

(c∗)||

]
+ π

[
β
||c− ck||

c0
+ (1− β)

]
f0(c)

} (16)

and

s0
β(c, c∗) = sgn

∑
k∈Nj

sk

[
2 I0

Γ⊥
(c, ck)

||c− ck|| ||c− ck − πc−ck
(c∗)||1−β

− π||c− ck||βf0(c)

] . (17)

Algorithm 1. Particle generation routine for VHS col-
lisions

1. Choose a particle index i according to the proba-
bilities

βψ(ξi) + (1− β)

β
∑N
k=1 ψ(ξk) + (1− β)N

. (18)

Determine the cell index j to which particle i be-
longs.

2. Based on index i, generate a velocity c from distri-
bution

4πCβc
β
0

νmax(ci)

[
β
||c− ci||

c0
+ (1− β)

]
f0(c). (19)

3. With probability 2/3, perform step 4. Otherwise,
perform step 5.

4. Continue to step 4.1.

4.1. Replace c with a post collision velocity c→ c′, via
c′ = 1

2 (c+ ci + ||c− ci||Ω) where Ω is sampled

from S2 uniformly.

4.2. Produce a sample c∗ from distribution f0(c +
c∗)/ρ0.

4.3. With probability

β + (1− β)c0||c− ci − πc−ci(c∗)||−1

β + (1− β)c0||c− ci||−1
(20)

go to step 6. Otherwise, return to step 4.2.

5. Produce a sample c∗ from f0(c+ c∗)/ρ0.

6. Acceptance/rejection step: with probability
P 0
β (c, c∗) (16) accept generated particle by adding

it to the simulation with velocity c, position x
sampled uniformly from cell j, and sign s0

β(c, c∗)

(17). Otherwise, the procedure finishes without
generating a particle.

Here, the acceptance probability (16) entails summing
over all particles in the cell. In the original,23 the possi-
bility of performing this summation over a fraction of the
particles in the cell is discussed. Because in our current
implementation a small number of particles are required,
we have limited our approach to performing the summa-
tion over the entire cell. Some discussion of the appro-
priate number of particles to average over can be found
in Ref. 23, but this issue merits future investigation.

Particle deletion routine

In the particle deletion routine, the first two steps of
the particle generation routine are performed by: choos-
ing a particle (i) from the index distribution (18), and
sampling a velocity c from distribution (19). The parti-
cle is deleted with probability

(||c− ci||/c0)β

β||c− ci||/c0 + (1− β)
. (21)

Otherwise, the simulation remains unchanged.

Mass conservation

The LVDSMC collision algorithm conserves mass, mo-
mentum, and energy only on average; this is a weaker
sense of conservation compared to DSMC, which con-
serves these quantities for individual collision events.
Here, we are able to achieve conservation of mass by
appropriate stochastic steps that correct the total mass
residual. This is performed at the end of each collision
step by resampling particles from the set G of particles
which were generated during the previous collision step,
but weren’t subsequently deleted. The mass conservation
algorithm makes use of the stochastic particle creation
routine (above) from the collision algorithm.

The mass residual ∆S is defined as the total sign of
all generated particles minus the total sign of all deleted
particles for all previous collision steps. This is contin-
uously tracked: first by initializing ∆S = 0 at the start
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of the simulation (unless ∆S is available from a restart
file), and by updating ∆S = ∆S + sgen for each gener-
ated particle with sign sgen and ∆S = ∆S− sdel for each
deleted particle with sign sdel. Following each collision
step, ∆S is reduced to its minimum possible absolute
value (typically, to zero). In the event that the residual
is not eliminated, it is carried over to be addressed during
the next time step.

When ∆S is an odd number, it cannot be reduced to
zero by resampling processes; thus, the initial step in the
mass conservation process involves correcting the parity
of the mass residual. This step consists of repeating the
particle generation routine (above) until a single particle
is accepted, with probability 1/2; or by deleting a ran-
dom particle (uniformly) from G (by removing it from the
simulation), with probability 1/2. This step can only be
performed if the number of particles NG in G is nonzero;
otherwise ∆S cannot be changed in the current time step,
and the parity correction step (as well as the resampling
step) will be skipped entirely.

Following the parity correction step, resampling events
are performed until the optimal mass residual ∆Sopt is
attained. Here, the optimal mass residual is defined as
the minimum absolute mass residual obtainable by re-
sampling from set G, initially containing N+

G positive and

N−G negative particles:

∆Sopt =

{
0 if N∓G ≥ 1

2 |∆S| and ∆S ≶ 0
∆S ± 2N∓G if N∓G < 1

2 |∆S| and ∆S ≶ 0.
(22)

For the trivial case, ∆S = ∆Sopt = 0 and no resampling
is needed.

Here, we introduce the partition G = G+ ∪ G−, where
G± are the subsets of G with positive and negative signs,
respectively. The resampling procedure consists of per-
forming the following two steps in random order: (i)
delete a random particle (uniformly) from Gsgn(∆S), and
(ii) generate a particle with sign − sgn(∆S). In step (ii),
we use the particle generation step used in the collision
routine, repeating the routine automatically rejecting all
particles with sign sgn(∆S) until a single particle is gen-
erated with the correct sign, which is added to the sim-
ulation. This procedure is repeated until ∆S = ∆Sopt.

B. Advection step

The advection procedure is based on a previous
method,21 with a few key differences in the present treat-
ment. First, in this paper, we are simulating deviation
from a fixed equilibrium distribution f0, rather than a
spatially-variable equilibrium distribution. Although the
former method has a clear efficiency advantage for one-
dimensional flow in the Navier-Stokes limit (Kn → 0),
it becomes significantly more expensive as the number
of dimensions increases as it requires particle generation
at all cell interfaces. The second key difference is the

inclusion of mass conservation to complement the mass
conservative collision routine. Finally, while the previ-
ous method21 is strictly valid only for small perturba-
tions from equilibrium, here we generalize the method
for all regimes; a version without mass conservation was
presented in a previous paper.26

The advection step simulates the left-hand side of the
Boltzmann equation (1), i.e.:

∂f(c)

∂t
+ c · ∂f(c)

∂x
= 0. (23)

By introducing f = f0 +fd into Eqn. (23), the following
deviational advection equation is obtained

∂f(c)

∂t
+ c · ∂f(c)

∂x
=
∂fd(c)

∂t
+ c · ∂f

d(c)

∂x
= 0, (24)

which shows that deviational particles advect identically
to physical particles. Thus, in the absence of boundary
interactions, particles are advected according to usual

DSMC rule: {xk(t+ ∆tadv) = xk(t) + ck(t)∆tadv}Nk=1
for the advective time step ∆tadv.

For boundary interactions, the standard DSMC rules
are extended. When the particle strikes a boundary, it
is reflected according to the standard DSMC rules (e.g.
by redrawing the velocity from the appropriate fluxal
boundary distribution). However, when a pair of par-
ticles of opposite sign strike the same boundary element
and diffusively reflect in their first wall collision during
an advective time step, they can both be removed from
the simulation. This step is necessary to stabilize simu-
lations in the collisionless (Kn→∞) limit by preventing
an unbounded increase in the number of particles.

In addition to reflecting escaping particles back into
the simulation domain, additional particles must be
generated at the boundary to account for the differ-
ence in fluxes between the equilibrium and boundary
distributions.12,13,21–23 The boundary generation proce-
dure for Maxwell’s accommodation model has been de-
rived previously for the special case of the no-flux bound-
ary condition with uB,j ·nj = 0,21,22 where j indexes the
boundary surface element with (inward) surface normal
nj , velocity uB,j , temperature TB,j , and accommodation
coefficient αj . In this case, the particle generation term
is

∂f(c)

∂t
∆Aj = ∆Ajαjc · nj

[
ρB,jφ

B

j (c)− f0(c)
]
, (25)

where

φB

j (c) =
1

π3/2c3
B,j

exp

(
−||c− uB,j ||2

c2
B,j

)
, cB,j =

√
2RTB,j ;

(26)
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and the “boundary density” (ρB,j) is evaluated via mass
conservation at the boundary

ρB,j

∫
c·nj>0

d3c (c · nj)φB

j (c) =

∫
c·nj<0

d3c (−c · nj) f0(c),

(27)
which can be analytically solved for ρB,j . For u0 ·nj = 0,
distribution (25) is conveniently sampled in terms of a
dimensionless velocity ξ = (c− u0)/c0:

∂f(c)

∂t
∆Aj d3c = ∆Ajαjρ0c0F

B

j (c)d3ξ,

FB

j (c) =
c20
ρ0
c · nj

[
ρB,jφ

B

j (c)− f0(c)
]
. (28)

Without loss of generality, we will assume that nj is
in the +x direction; the more general case can be han-
dled by the appropriate vector transformations. The
generation term (28) is efficiently sampled by using the
ratio-of-uniforms method,27 as implemented in a previ-
ous publication.21 The ratio of uniforms method produces
samples from a transformed distribution H(η), which is
related to the original distribution via |FB

j | = H5/2 and

ξ = η/
√
H. An important advantage of this formulation

is that the transformed variables are all bounded quan-
tities:

0 ≤ H ≤ aB

j (29)

0 ≤ ηx ≤ bB

j,x (30)

−bB

j,y ≤ ηy ≤ bB

j,y (31)

−bB

j,z ≤ ηz ≤ bB

j,z. (32)

For small perturbations from equilibrium, tight bounds
can be obtained via a Taylor expansion of FB

j about f0,

as was done in a previous paper.21 These are listed below
as functions of the boundary properties



(
aB,0
j

)5/2(
bB,0
j,x

)5(
bB,0
j,y

)5(
bB,0
j,z

)5


= MB ·



∣∣∣∣ρB,j − ρ0

ρ0
− 3

cB,j − c0
c0

∣∣∣∣
2
|uB,j,x − u0,x|

c0

2
|uB,j,y − u0,y|

c0

2
|uB,j,z − u0,z|

c0

2
|cB,j − c0|

c0


, (33)

where MB is a constant matrix given by

MB =
1

π3/2


1/
√

2e 1/e 1/(2e) 1/(2e) [3/(2e)]3/2

(3/e)3 [7/(2e)]7/2 27e−7/2/
√

2 27e−7/2/
√

2 (4/e)4

55/2/(2e)3 (5/2)5/2e−7/2 27e−7/2/
√

2 55/2/(2e)7/2 205/2/(27e4)

55/2/(2e)3 (5/2)5/2e−7/2 55/2/(2e)7/2 27e−7/2/
√

2 205/2/(27e4)

 . (34)

These bounds are extended to more general conditions by
introducing numerical factors (Y ), which are dynamically
updated during the simulation:

aB

j = Y B

a a
B,0
j (35)

bB

j,x = Y B

b,xb
B,0
j,x (36)

bB

j,y = Y B

b,yb
B,0
j,y (37)

bB

j,z = Y B

b,zb
B,0
j,z . (38)

The number of trial samples (in H, η space) is cal-
culated based on these bounds and the Jacobian of the
transformation (= 5/2), yielding

N trial
B,j =

5

2

Ajαjρ0c0∆tadv

mW
aB

j b
B

j,x(2bB

j,y)(2bB

j,z). (39)

Here, ∆tadv is the advective time step. For each trial
step, a sample (H, η) is generated (uniformly) utilizing

bounds (35–38). Using c = c0η/
√
H + u0, FB

j is evalu-
ated from Eqn. (28), and the trial particle is accepted
if H < |FB

j |2/5. Accepted particles are advected a ran-
dom fraction of the advective time step away (performing
standard DSMC procedures for any boundary interac-
tions) from a uniformly distributed random position on
the boundary surface element and added to the simula-
tion with sign sgn(FB

j ).
The ratio-of-uniforms sampling bounds are dynami-

cally updated using the following procedure. At the start
of the advection step, the bounds (35–38) are fixed based
on current values. During the advection step, when ac-
cepted particles are added with H or η values very close
to one of the sampling bounds, the numerical factor is in-
creased for the next advection step. For example, when
a particle is accepted with H > (1−χ)aB

j , the numerical
factor is updated to

Y B

a = max

{
H

(1− χ)aB,0
j

, Y B

a

}
. (40)
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Here, the sampling margin χ is a small, positive numer-
ical parameter which controls the responsiveness of the
dynamic update; typically χ is chosen to be a few percent.
The updated Y B

a value does not take effect until subse-
quent time steps, when sampling bounds are reevaluated
via Eqn. (35). A similar procedure is followed for dy-
namically updating the remaining bounds. For typical
simulations, the bounds are well-charecterized by their
approximate values (33,34), and the numerical factors
represent only small corrections.

Mass conservation

Mass conservation requires only a simple modification
to the advection step, accomplished by applying a strat-
ified sampling approach.10 The particle generation rou-
tine is split into two separate processes. First, only half
N trial

B,j /2 of the trial generation steps are performed, keep-
ing track of the actual number of positive and negative
particles N±

B,j which are accepted and added to the sim-
ulation. Finally, particle generation steps are repeated
until precisely N−

B,j positive and N+
B,j negative particles

are added to the simulation, rejecting all accepted parti-
cles of unneeded sign.

C. Effective body force step

In the linearized regime, it is possible to simulate
streamwise pressure and temperature gradients in a long
duct without simulating the streamwise direction (z) in
physical space, by introducing an effective “body force”
term into the simulation.21,25,28–30 This approach was pi-
oneered by Cercignani25 as a mathematical formulation
of pressure-driven flow in small capillaries; using this for-
mulation, Cercignani and his collaborators25 proceeded
to solve the Boltzmann equation in the relaxation ap-
proximation numerically for a two-dimensional channel
geometry and thus theoretically verify, for the first time,
the existence of a Knudsen minimum in the scaled flow
rate as a function of non-dimensional channel height (see
also Fig. 2). This minimum was originally experimen-
tally observed by Knudsen.31

If we let κP = − 1
P
dP
dz and κT = 1

T
dT
dz denote the scaled

pressure and temperature gradients, the change in the
distribution function due to these two effects is given by

∂f(c)

∂t
V = V cz

[
κP +

(
5

2
− ||c− u0||2

c20

)
κT

]
f0(c).

(41)

For the choice of f0(c) considered here, namely u0 = 0,
we perform the sampling in terms of ξ, as was done for
advection as shown below:

∂f(c)

∂t
V d3c =

V ρ0c0
L

F F(c)d3ξ,

F F(c) =
c20L

ρ0
cz
[
κP +

(
5
2 − ξ2

)
κT

]
f0(c). (42)

Here, L is a physical length scale used to make distri-
bution F F dimensionless. This distribution is sampled
using the ratio-of-uniforms method21 in the transformed
variable space: |F F| = H5/2, ξ = η/

√
H (cf. Sec. II B),

with bounds

0 ≤ H ≤ aF (43)

−bF

x ≤ ηx ≤ bF

x (44)

−bF

y ≤ ηy ≤ bF

y (45)

−bF

z ≤ ηz ≤ bF

z . (46)

Analytical bounds were derived for small perturbations
from equilibrium:21


(
aF,0

)5/2(
bF,0
x

)5(
bF,0
y

)5(
bF,0
z

)5
 = MF ·

[∣∣κP + 5
2κT

∣∣
|κT|

]
L, (47)

where

MF =
1

π3/2


1/
√

2e [3/(2e)]3/2

55/2/(2e)3 205/2/(27e4)
55/2/(2e)3 205/2/(27e4)

(3/e)3 (4/e)4

 . (48)

Since the effective ”body force” approach is only valid for
small perturbations from equilibrium, there is no reason
to extend these bounds to larger deviations from equilib-
rium as was done for the advection routine (Sec. II B).
Thus, we shall use aF = aF,0 and bF = bF,0 for the bounds
in the simulation.

Based on the advective time step, the number of trial
samples to generate is computed as

N trial
F =

5

2

V ρ0c0 ∆tadv

mWL
aF(2bF

x)(2bF

y)(2bF

z). (49)

As before, a sample (H, η) is generated (uniformly) uti-
lizing bounds (43–46) for each trial step. Using c =

c0η/
√
H, F F is evaluated from Eqn. (42), and the trial

particle generation is accepted if H < |F F|2/5. Accepted
particles are added to the simulation with sign sgn(F F)
and with a position x sampled uniformly from V .
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Mass conservation

Mass conservation is again enforced via stratified sam-
pling (cf. Sec. II B). In the first step, N trial

F /2 trial gener-
ation steps are performed, which adds N±F positive and
negative particles to the simulation. Additional particle
generation steps are performed to produce N∓F additional
positive and negative particles.

D. Property evaluation

Hydrodynamic properties are evaluated by simple ex-
tensions to the rules developed for evaluating DSMC

properties.12,13,21,22 For example, the DSMC estimate of
temperature in the jth cell is obtained from

ρj
(
3RTj + u2

j

)
=
mNeff

Vj

∑
k∈Nj

c2k. (50)

In the LVDSMC approach, the above summation now in-
cludes the sign, and corresponds to the difference between
the group of cell properties ρj

(
3RTj + u2

j

)
and the cor-

responding equilibrium values (Eqn. (54), below). These
results are summarized below for the density, mean ve-
locity, pressure tensor (P), temperature, and heat flux
(q), where P0 = ρ0RT0I and I is the identity tensor.

ρj = ρ0 +
mW

∆Vj

∑
k∈Nj

sk (51)

ρjuj = ρ0u0 +
mW

∆Vj

∑
k∈Nj

skck (52)

Pj + ρujuj = P0 + ρ0u0u0 +
mW

∆Vj

∑
k∈Nj

skckck (53)

ρj
(
3RTj + u2

j

)
= ρ0

(
3RT0 + u2

0

)
+
mW

∆Vj

∑
k∈Nj

skc
2
k (54)

2 (qj + Pj · uj) + ρj
(
3RTj + u2

j

)
uj = 2P0 · u0 + ρ0

(
3RT0 + u2

0

)
u0 +

mW

∆Vj

∑
k∈Nj

skckc
2
k (55)

E. Time step

In order to improve the overall rate of time conver-
gence, a symmetrized version of the algorithm was im-
plemented. Previous convergence studies32 have shown
that Strang’s method33 achieves second-order time con-
vergence for DSMC; we adopt this approach, with the
additional effective body force generation terms (not ap-
pearing in DSMC) symmetrically split around collision
step as shown below based on an overall time step of ∆t.

Algorithm 2. Symmetrized time stepping algorithm.

1. Half advection (∆tadv = 1
2∆t)

2. Half body force (∆tadv = 1
2∆t)

3. Full collision (∆tcol = ∆t)

4. Half body force (∆tadv = 1
2∆t)

5. Half advection (∆tadv = 1
2∆t)

6. Sample properties

III. RESULTS

We performed a number of two-dimensional simula-
tions in order to highlight the key features of the method
and to showcase its ability to efficiently simulate prob-
lems with arbitrarily small deviations from equilibrium
with drastically reduced levels of statistical noise. In
all cases presented here, we simulate the deviation from
a global equilibrium distribution (with u0 = 0). The
normalized characteristic deviation from equilibrium is
quantified by ε, which is typically related to the charac-
teristic temperature difference (ε = ∆T/T0) or velocity
(e.g. ε = ux/c0) of the problem. We note that, in con-
trast to DSMC, the cost of the proposed method does
not increase as ε decreases. For this reason, all results
presented here are scaled by ε.

In order to verify correct representation of the VHS col-
lision operator, viscosities were obtained for hard-sphere,
helium, argon, and Maxwell molecules (ω = 0.5, 0.66,
0.81, and 1, respectively) and compared to results for
the DSMC method in a Kn = 0.05 shear flow. Excellent
agreement was observed.

The accuracy of the LVDSMC method, like the DSMC
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method on which it is based, depends on the spatial cell
size ∆x, the overall time step ∆t and the average number
of computational particles per cell NC. The LVDSMC
simulation approach utilizes ∆x and ∆t in similar ways
to DSMC; however, the average number of computational
particles per cellNC has a dramatically different behavior
in each method, and merits further discussion.

In the DSMC method, the number of simulation parti-
cles is well defined in terms of problem and discretization
parameters. For example, the average number of parti-
cles per cell for a simulation with zero-mass-flux bound-
ary conditions is given by

NC =
ρ0∆V

mNeff
, (56)

where ∆V = V/N∆V is the average cell volume; here,
we have taken ρ0 to be the density of the initial state.
However, for the LVDSMC method, the local number of
particles depends on the local deviation from equilibrium,
and as a result, NC depends on the “average” degree of
deviation from equilibrium ε, for which no established
measure exists.

For a suitably defined ε, and for simulations in the
transition regime (0.1 ≤ Kn ≤ 10), we have observed that
the number of particles per cell, at a nontrivial steady
state, can be approximately scaled using

Ξ =
ερ0∆V

mW
, (57)

in the sense that NC ∼ Ξ. In other words, instead of
using NC as a separate convergence parameter (as in
DSMC), the parameter Ξ is used. This is illustrated
in Fig. 1 which shows the actual number of particles
for various values of ∆x and Ξ for heat transfer be-
tween parallel plates at Kn = 0.1; the gas is argon
(ω = 0.81) and the boundary conditions are diffusely-
reflecting (α = 1) with temperatures T (0) = (1 + ε)T0

and T (L) = (1 − ε)T0, where ε � 1. The figure shows
that for large Ξ, there is a direct relationship between NC

and Ξ, while for small Ξ, the smaller number of particles
makes the “particle cancellation effect” in Eq. (16) less
effective (see Sec. II A and discussion in Ref. 23) lead-
ing to a larger number of particles. For all the sim-
ulation results presented in this section, excellent re-
sults were achieved using Ξ = 10. Such results are
significant because they demonstrate that simulations
with approximately 10 particles per cell are achievable
in mass-conservative LVDSMC simulations without ap-
parent random walks in any non-negligible hydrodynamic
variables, a substantial improvement over the previous
implementation.26 This dramatic improvement enables
efficient simulation in multiple spatial dimensions, as we
show below.

Here, the time step was chosen as ∆t = ∆x/c0, where
∆x is the smallest cell dimension, which effectively treats
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ṁP

Knx

1

2

5

Ly/Lx = ∞

10
-1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

ṁT
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FIG. 1. Average number of deviational particles per cell
for a heat flux through a layer of argon gas confined between
parallel plates with Kn = 0.1. The data (symbols) are shown
in terms of the computational parameters (∆x, Ξ), while the
line indicates NC = Ξ, for comparison.

the effect of ∆x and ∆t as a single convergence param-
eter (∆x). More rigorous convergence studies for the
method are needed, which are left to future studies. For
all simulations with Kn > 1, the boundary cancellation
procedure (see discussion in Sec. II B) was used. While
the simulations performed in this work (up to Kn = 10)
remained stable without boundary cancellation, the num-
ber of simulated particles per cell tended to scale with
ΞKn (rather than Ξ) and the overall computational ef-
ficiency of the method was noticeably degraded. For
Kn ≤ 1, the boundary cancellation procedure is unnec-
essary, and was not used.

A. Poiseuille and thermal creep flow in a rectangular
microchannel

As a validation of the overall method in two-
dimensional geometries, as well as to highlight an ap-
plication of the effective body force term (Sec. II C),
Poiseuille (ε = κPLx � 1) and thermal creep (ε =
κTLx � 1) flows of a hard-sphere gas were simulated for
a rectangular microchannel geometry with cross-section
Lx×Ly. The Knudsen number Knx is defined as Knx =

λ/Lx, where λ−1 =
√

2π(ρ0/m)d2
ref. Shown in Figs. 2–

3 are the dimensionless flow rates ṁP,T = uz/(εc0) for
various aspect ratios as a function of Knx, where the
overbar denotes the spatial average in x and y. Due to
two-fold symmetry, only a quarter of the channel cross-
section was simulated. For most cases, a cell size of
∆x/Lx = ∆y/Lx = 0.02 was used to obtain better than
1% agreement in the total mass flow rates compared to
the results of Doi34 For many cases with Kn = 0.1, fur-
ther refinement was required to obtain the same level of
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ṁP

Knx

1

2

5

Ly/Lx = ∞

10
-1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

ṁT
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FIG. 2. Flow rate for Poiseuille flow through a rectangular
microchannel for various Knudsen numbers and aspect ratios.
The LVDSMC results (symbols) are compared with data from
Doi34 (lines).
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FIG. 3. Flow rate for thermal creep flow through a rectan-
gular microchannel for various Knudsen numbers and aspect
ratios. The LVDSMC results (symbols) are compared with
data from Doi34 (lines).

agreement, and ∆x/Lx = ∆y/Lx = 0.01 was used.35

Figure 4 shows the velocity field for Poiseuille flow
through a square microchannel (L = Lx = Ly) for
Kn = 0.1 using 50 × 50 spatial cells. By performing
steady-state averaging over 106 time steps (∆t = ∆x/c0)
after steady state was reached, this simulation resulted
in a velocity field with a relative statistical uncertainty8

of ∼ 0.1%. In order to obtain a 0.1% statistical uncer-
tainty in ṁP, 5× 105 times steps are required, using ap-
proximately 16 hours on a single core of an Intel Q9650
(3.0 GHz Core 2 Quad) processor. For square channels
with Kn = 1 and 10, with a 25 × 25 cell mesh, 1.1 and
0.2 hours of computational time (respectively) were re-

0
0.25

0.5
0

0.25
0.5

0

0.25

0.5

0.75

1

uz

εc0

x/Ly/L

0
0.25

0.5
0

0.25
0.5

0

0.25

0.5

0.75

1

uz

εc0

x/Ly/L

2

FIG. 4. Streamwise velocity for Poiseuille flow through a
square microchannel with Kn = 0.1.

quired, to achieve the same level of relative statistical
uncertainty in ṁP. Given that even in variance-reduced
guise, Monte Carlo approaches will always perform worse
when very low noise is required, this performance is very
encouraging for highly resolved, two-dimensional calcula-
tions.

As an indication of the relative efficiency compared
to DSMC, we compare the simulation time required to
achieve 0.1% statistical uncertainty in the velocity field
for Poiseuille flow through a square channel. Assum-
ing a Mach number of Ma ' 0.02, DSMC simulations
would require approximately 500, 100, and 100 hours for
Kn = 0.1, 1, 10, respectively, compared to 30, 4, and 2
hours for the LVDSMC simulations. For this problem
(Poiseuille flow), DSMC simulates the pressure force as
an equivalent gravitation force, which is a valid approach
for small deviations from equilibrium. However, there is
no obvious way to use DSMC to simulate thermal creep
without resorting to very expensive three-dimensional
simulations.

B. Lid-driven flow of argon gas

Next, we simulate a two-dimensional lid-driven flow
of argon (ω = 0.81) gas in a square enclosure with
side length L. The boundary conditions are diffusely
reflecting walls, all of which are stationary except the
top (y = L) which is moving in the x-direction with ve-
locity εc0, where ε � 1. We performed simulations for
Kn = λ/L = 0.1, 1, and 10; 100×100 cells were used for
Kn = 0.1, while 50×50 cells were used for Kn = 1, 10.
Here, the mean free path is given by the VHS value:
λ−1 =

√
2π(ρ0/m)d2

ref(Tref/T0)ω−1/2. Each simulation
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FIG. 5. Lid-driven flow of argon gas atKn = 0.1. The contour
lines show the density ε−1(ρ/ρ0 − 1), while the velocity field
ε−1u/c0 is shown as a vector plot.
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FIG. 6. Lid-driven flow of argon gas at Kn = 1. The contour
lines show the density ε−1(ρ/ρ0 − 1), while the velocity field
ε−1u/c0 is shown as a vector plot.

was repeated with a doubling of the number of cells in
each coordinate direction (to 200×200 and 100×100, re-
spectively), which showed less than 1% difference in ρ,
ux, and uy; this was taken as evidence of convergence.
Shown in Figs. 5–7 are the velocity and density fields
corresponding to the finer-meshed solutions.
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FIG. 7. Lid-driven flow of argon gas at Kn = 10. The contour
lines show the density ε−1(ρ/ρ0 − 1), while the velocity field
ε−1u/c0 is shown as a vector plot.

C. Response of a gas to a spatially-varying boundary
temperature

Finally, we simulate the response of argon gas to a
boundary temperature with a sinusoidal spatial varia-
tion. Here, the lower boundary (y = 0) is diffusely-
reflecting with a temperature given by TB = T0(1 −
ε cos 2πx/L); an identical boundary is located at y = L,
and the Knudsen number based on the separation be-
tween the two boundaries (L) is Kn = 1. Due to the
underlying symmetries in the x and y directions, the
simulation domain is chosen as 0 ≤ x, y ≤ L/2. Un-
like the previous examples, here we show results for sev-
eral choices of ε. Shown in Fig. 8 are the temperature
and velocity fields for the limit of small departure from
equilibrium ε � 1. In Figs. 9–10, the isotherms for the
LVDSMC and DSMC methods are compared for ε = 0.05
and 0.5 respectively. For ε = 0.05, there is no noticeable
difference between the LVDSMC and DSMC tempera-
ture fields, even though the temperature field is notice-
ably perturbed from the ε → 0 solution. For ε = 0.5,
which is no longer a near-equilibrium case, there is only
a slight discrepancy between the temperature fields ob-
tained from LVDSMC and DSMC. This particular con-
figuration demonstrates that the linearized collision op-
erator used in the method presented here is suitable for
a wide range of conditions.

IV. DISCUSSION

We have presented a low-variance stochastic particle
method which is capable of efficiently simulating kinetic
flows in the linear regime. This method simulates the
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FIG. 8. Response of argon gas to spatially-varying boundary
temperature with Kn = 1 and ε � 1. The contour lines are
isotherms (dimensionless temperature: ε−1(T/T0 − 1)), while
the velocity field ε−1u/c0 is shown as a vector plot.

VHS collision operator, which is a more general and re-
alistic model than the hard sphere collision operator cov-
ered by previous methods. By incorporating mass con-
servation into the LVDSMC methodology, the number of
simulation particles per cell required to produce accu-
rate results was reduced to approximately 10, which is
comparable to that required for the DSMC method.

Future research directions include further analysis and
extension of this methodology. In particular, the nonlin-
ear version of this algorithm26 is currently being extended
to include mass conservation. Likewise, additional flow
simulations and validations are needed, as well as a rig-
orous convergence study to investigate convergence be-
havior in ∆x, ∆t, and Ξ (as has been done for DSMC32).

The present formulation provides variance reduction
by simulating the deviation from a (constant) global
equilibrium. A formulation using a spatially variable
(cell based) equilibrium distribution can be achieved
using a number of implementations;13,21,23 the imple-
mentation complementing the algorithm presented here
has been outlined previously.23 As shown in previ-
ous publications,13,21 variable equilibrium formulations
provide superior variance reduction, especially in the
collision-dominated limit where the local equilibrium as-
sumption becomes very reasonable. In fact, because as
Kn → 0 the distribution function is increasingly bet-
ter approximated by a local equilbrium distribution,20

such formulations can capture arbitrarily small values of
Kn without becoming prohibitively expensive (e.g. see
Ref. 36). In other words, such methods alleviate the
stiffness associated with recovering the continuum limit
with molecular simulations and offer promising avenues
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FIG. 9. Response of argon gas to spatially-varying boundary
temperature with Kn = 1 and ε = 0.05. Contour plot of the
dimensionless temperature (ε−1(T/T0 − 1)) as obtained by
LVDSMC (dashed) and DSMC (solid); the ε→ 0 limit (dash-
dot) as obtained by LVDSMC is also shown for comparison.
The velocity field ε−1u/c0 is the LVDSMC solution for ε =
0.05.

for developing multiscale methods that can seamlessly
connect the continuum and molecular descriptions. De-
spite this potential, a spatially variable equilibrium dis-
tribution was not used here because it requires particle
generation at cell interfaces (where the equilibrium distri-
bution changes discontinuously,13,21) making the method
cumbersome in high number of dimensions. Perhaps a
continuously varying equilibrium distribution (requiring
volumetric particle generation) will reduce the complex-
ity associated with this approach.

The multiscale implications of decomposing the dis-
tribution were noticed by Cheremisin37 who proposed
simulating the deviation from equilibrium (using a dis-
crete velocity method) as a means of removing the
stiffness associated with time-integration in the Navier-
Stokes limit (Kn → 0). Also, motivated by their inter-
est in using particle methods for approaching the fluid-
dynamic limit for high Mach-number flows, Caflisch and
Pareschi38 proposed a convex decomposition of the distri-
bution function into a time-dependent Maxwellian and a
non-equilibrium distribution; unfortunately, the require-
ment that the equilibrium distribution is time-dependent
and the non-equilibrium distribution is represented by
positive particles only, results in a complex algorithm
which requires that the equilibrium distribution be re-
constructed (from its samples) every timestep.
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FIG. 10. Response of argon gas to spatially-varying bound-
ary temperature with Kn = 1 and ε = 0.5. Contour plot of
the dimensionless temperature (ε−1(T/T0 − 1)) as obtained
by LVDSMC (dashed) and DSMC (solid). The velocity field
ε−1u/c0 is the LVDSMC solution for ε = 0.5.
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17H. C. Öttinger, Stochastic processes in polymeric fluids
(Springer-Verlag, New York, 1995).
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