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Efficient simulation of multidimensional phonon transport using energy-based variance-reduced
Monte Carlo formulations
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We present a Monte Carlo method for obtaining solutions of the Boltzmann equation to describe phonon
transport in micro- and nanoscale devices. The proposed method can resolve arbitrarily small signals (e.g.,
temperature differences) at small constant cost and thus represents a considerable improvement compared to
traditional Monte Carlo methods, whose cost increases quadratically with decreasing signal. This is achieved via
a control-variate variance-reduction formulation in which the stochastic particle description solves only for the
deviation from a nearby equilibrium, while the latter is described analytically. We also show that simulation of an
energy-based Boltzmann equation results in an algorithm that lends itself naturally to exact energy conservation,
thereby considerably improving the simulation fidelity. Simulations using the proposed method are used to
investigate the effect of porosity on the effective thermal conductivity of silicon. We also present simulations
of a recently developed thermal conductivity spectroscopy process. The latter simulations demonstrate how the
computational gains introduced by the proposed method enable the simulation of otherwise intractable multiscale
phenomena.
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I. INTRODUCTION

Over the past two decades, the dramatic advances
associated with microelectromechanical systems (MEMS)
and nanoelectromechanical systems (NEMS) have attracted
significant attention to microscale and nanoscale heat transfer
considerations.1 Applications range from thermal manage-
ment of electronic devices2 to the development of thermoelec-
tric materials with higher figures of merit.3 The thermoelectric
figure of merit is proportional to the electrical conductivity
and inversely proportional to the thermal conductivity and
can thus be improved by reducing the latter and/or increasing
the former. One of the most promising approaches toward
reducing the thermal conductivity of thermoelectric materials
is the introduction of nanostructures that interact with the
ballistic motion of phonons at small scales, thus influencing
heat transport.4 Such an approach requires a reliable descrip-
tion of phonon transport at the nanoscale and cannot rely
on Fourier’s law, which is valid for diffuse transport. On
the other hand, first-principles calculations (e.g., molecular
dynamics approaches, classical or quantum mechanical) are
too expensive for treating phonon transport at the device (e.g.,
micrometer) scale. At these scales, a kinetic description based
on the Boltzmann transport equation (BTE) offers a reasonable
balance between fidelity and model complexity and is able to
accurately describe the transition from diffusive to ballistic
transport as characteristic system length scales approach and
ultimately become smaller than the phonon mean free path.

Solution of the BTE is a challenging task, especially in
complex geometries. The high dimensionality of the distri-
bution function coupled with the ability of particle methods
to naturally simulate advection processes without stability
problems5 make particle Monte Carlo methods particularly
appealing. Following the development of the direct Monte
Carlo method by Bird6 for treating dilute gases, Monte
Carlo methods for phonon transport were first introduced
by Peterson7 and subsequently improved by Mazumder and

Majumdar.8 Over the past decade, further important refine-
ments have been introduced: Lacroix et al. introduced a
method to treat frequency-dependent mean free paths;9 Jeng
et al. introduced a method for efficiently treating transmission
and reflection of phonons at material interfaces and used this
method to model the thermal conductivity of nanoparticle
composites;4 Hao et al. developed10 a formulation for periodic
boundary conditions in order to study the thermal conductivity
of periodic nanoporous materials while simulating only one
unit cell (period).

The work presented here introduces a number of improve-
ments which enable efficient and accurate simulation of the
most challenging phonon transport problems, namely, three
dimensional and transient. Accuracy is improved compared to
previous approaches by introducing an energy-based formu-
lation, which simulates energy packets rather than phonons;
this formulation makes energy conservation particularly easy
to implement rigorously, in contrast to previous approaches
which were ad hoc and in many cases ineffective. We also
introduce a variance-reduced formulation for substantially
reducing the statistical uncertainty associated with sampling
solution (temperature and heat flux) fields. This formulation
is based on the concept of control variates, first introduced
in the context of Monte Carlo solutions of the Boltzmann
equation for dilute gases;5 it relies on the fact that signal
strength is intimately linked to deviation from equilibrium,
or, in other words, that the large computational cost associated
with small signals is due to the fact that in these problems
the deviation from equilibrium is small. This observation can
be exploited by utilizing the nearby equilibrium state as a
“control” and using the Monte Carlo method to calculate
the contribution of nonequilibrium therefrom. Because the
deviation from equilibrium is small, only a small quantity
is evaluated stochastically (the fields associated with the
equilibrium component are known analytically), resulting in
small statistical uncertainty; moreover, the latter decreases as
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the deviation from equilibrium decreases, thus enabling the
simulation of arbitrarily small deviations from equilibrium.

In the technique presented here, we use particles to simulate
the deviation from equilibrium, and it is thus referred to
as a deviational method; the origin of this methodology
can be found in the low-variance deviational simulation
Monte Carlo method11–14 recently developed for dilute gases.
The theoretical basis underlying this method as well as the
modifications required for use in phonon transport simulations
are described in Sec. II C. The resulting algorithm is described
in Sec. III and validated in Sec. IV.

The proposed algorithm is used to obtain solutions to two
problems of practical interest. The first application studies the
thermal conductivity of porous silicon containing voids with
different degrees of alignment and is intended to showcase how
ballistic effects influence the “effective” thermal conductivity.
The second application is related to the recently developed ex-
perimental method of “thermal conductivity spectroscopy”15

based on the pump-probe technique known as transient
thermoreflectance, which uses the response of a material to
laser irradiation to infer information about physical properties
of interest16 (e.g., the mean free paths of the dominant heat
carriers).

II. THEORETICAL BASIS

A. Summary of traditional Monte Carlo simulation methods

We consider the Boltzmann transport equation in the
frequency-dependent relaxation-time approximation

∂f

∂t
+ Vg(ω,p)∇f = − f − f loc

τ (ω,p,T )
, (1)

where f = f (t,x,k,p) is the phonon distribution function
in phase space, ω = ω(k,p) the phonon radial frequency, p

the phonon polarization, and T the temperature; similarly to
the nomenclature adopted in Ref. 1, f is defined in reference
to the occupation number. For example, if the system is
perfectly thermalized at temperature T , f is a Bose-Einstein
distribution,

f
eq

T = 1

exp
(

h̄ω(k,p)
kbT

) − 1
, (2)

where kb is Boltzmann’s constant. Also, f loc is an equilib-
rium (Bose-Einstein) distribution parametrized by the local
pseudotemperature defined more precisely in Sec. II A 2.

In this work we consider longitudinal acoustic (LA),
transverse acoustic (TA), longitudinal optical (LO), and
transverse optical (TO) polarizations; acoustic phonons are
known to be the most important contributors to lattice thermal
conductivity.17,18 The phonon radial frequency is given by the
dispersion relation ω = ω(k,p). Phonons travel at the group
velocity Vg = ∇kω.

In the following, we always consider the ideal case where
the dispersion relation is isotropic. For convenience, the radial
frequency ω and two polar angles θ and φ are usually preferred
as primary parameters compared to the wave vector. Equation
(1) is simulated using computational particles that represent
phonon bundles, namely, collections of phonons with similar

characteristics (the position vector x, the wave vector k, and the
polarization or propagation mode p), using the approximation

1

8π3
f (t,x,k,p) ≈ Neff

∑
i

δ3(x − xi)δ
3(k − ki)δp,pi

, (3)

where xi , ki , and pi respectively represent the position, the
wave vector, and the polarization of particle i and Neff is
the number of phonons in each phonon bundle. The factor
1/8π3 is necessary for converting the quantity representing the
occupation number, f , into a quantity representing the phonon
density in phase space. Written in polar coordinates, and using
the frequency instead of the wave number, this expression
becomes

D(ω,p)

4π
f (t,x,ω,θ,φ,p) sin(θ )

≈ Neff

∑
i

δ3(x − xi)δ(ω − ωi)δ(θ − θi)δ(φ − φi)δp,pi
,

(4)

where ωi , θi , and φi respectively represent the radial frequency,
the polar angle, and the azimuthal angle of particle i. The
density of states D(ω,p) is made necessary by the use of ω as
a primary parameter and is given by

D(ω,p) = k(ω,p)2

2π2Vg(ω,p)
. (5)

1. Initialization

Systems are typically initialized in an equilibrium state at
temperature T ; the number of phonons in a given volume V is
calculated using the Bose-Einstein statistics

N = V

∫ ωmax

ω=0

∑
p

D(ω,p)f eq

T (ω)dω, (6)

where ωmax is the maximum (cutoff) frequency and f
eq

T is the
occupation number at equilibrium at temperature T .

The number of computational particles (each representing
a phonon bundle) is given by N/Neff . The value of Neff

is determined by balancing computational cost (including
storage) with the need for a sufficiently large number of
particles for statistically meaningful results.

2. Time integration

Once the system is initialized, the simulation proceeds by
applying a splitting algorithm with time step 	t . Integration
for one time step is comprised of three substeps:

(1) The advection substep, during which bundle i moves by
Vg,i	t .

(2) The sampling substep, during which the temperature (T )
and pseudotemperature (Tloc) are locally measured. They are
calculated by inverting the local energy (E) and pseudoenergy
(Ẽ)10 relations,

E = Neff

∑
i

h̄ωi = V

∫ ωmax

ω=0

∑
p

D(ω,p)h̄ω

exp
(

h̄ω
kbT

) − 1
dω (7)
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and

Ẽ = Neff

∑
i

h̄ωi

τ (ωi,pi,T )

= V

∫ ωmax

ω=0

∑
p

D(ω,p)h̄ω

τ (ω,p,T )

1

exp
(

h̄ω
kbTloc

) − 1
dω, (8)

respectively.
(3) The scattering substep, during which each phonon i is

scattered according to its scattering probability given by

Pi = 1 − exp

(
− 	t

τ (ωi,pi,T )

)
. (9)

Scattering proceeds by drawing new frequencies, polariza-
tions, and traveling directions. Because of the frequency-
dependent relaxation times, frequencies must be drawn
from the distribution D(ω,p)f loc/τ (ω,p,T ). Since scattering
events conserve energy, the latter must be conserved during
this substep. However, because the frequencies of the scattered
phonons are drawn randomly, conservation of energy is
enforced by adding or deleting particles until a target energy
is approximately reached.8,9 In addition to being approximate,
this method does not always ensure that energy is conserved,
resulting in random walks in the energy of the simulated
system, which in some cases leads to deterministic error. In
the next section, we present a convenient way for rigorously
conserving energy.

B. Energy-based formulation

While most computational techniques developed so far
conserve energy in only an approximate manner,8,9 here we
show that an energy-based formulation provides a convenient
and rigorous way to conserve energy in the relaxation time
approximation.

Adopting a similar approach as in Ref. 2 to derive the
equation of phonon radiative transfer, we multiply (1) by h̄ω

to obtain

∂e

∂t
+ Vg∇e = eloc − e

τ
, (10)

which we will refer to as the energy-based BTE. Here, e = h̄ωf

and eloc = h̄ωf loc. Equation (10) can be simulated by writing

e ≈ 8π3Eeff

∑
i

δ3(x − xi)δ
3(k − ki)δp,pi

, (11)

where Eeff is defined as the effective energy carried by each
computational particle. Statement (11) defines computational
particles that all represent the same amount of energy. From
the point of view of phonons, comparison of (3) and (11)
shows that the effective number of phonons represented by the
newly defined particles is variable and is linked to the effective
energy by the relation Eeff = Neffh̄ω. By analogy with the
description of Sec. II A, computational particles defined by
(11) obey the same computational rules as in the previous
Monte Carlo approaches. Modifications appear at three levels:

(1) When drawing particle frequencies during initialization,
emission from boundaries, or scattering, the distribution func-
tions that we use must account for the factor h̄ω. For example,
when initializing an equilibrium population of particles at

a temperature T , one has to draw the frequencies from the
distribution

h̄ω
∑

p D(ω,p)

exp
(

h̄ω
kbT

) − 1
. (12)

(2) Calculation of the energy in a cell is straightforward
and simply consists in counting the number of computational
particles. The energy associated with N particles is given by
EeffN .

(3) Since the energy in a cell is proportional to the number
of particles, there is no need for an addition or deletion
process: energy is strictly and automatically conserved by
simply conserving the number of particles.

C. Deviational formulation

In this section we introduce an additional modification
which dramatically decreases the statistical uncertainty as-
sociated with Monte Carlo simulations of (10). Our approach
belongs to a more general class of control-variate variance-
reduction methods for solving kinetic equations,5,11,19 in which
the moments 〈R〉 of a given distribution f are computed by
writing∫

Rf dxdc =
∫

R(f − f eq)dxdc +
∫

Rf eqdxdc, (13)

where the first term of the right-hand side is computed stochas-
tically and the second term is computed deterministically. If
f eq ≈ f , the variance reduction is large because only a small
term is determined stochastically (see Figs. 1 and 2).

In the present context, this methodology provides signif-
icant computational savings when an equilibrium (constant-
temperature) state exists nearby, which is precisely the regime
in which statistical noise becomes problematic (low signals).
The degree of variance reduction achieved by this method is
quantified in Sec. V.

Let

e
eq

Teq
(ω) = h̄ω

exp
(

h̄ω
kbTeq

) − 1
, (14)

where Teq �= Teq(x,t). Then, it is straightforward to show that
ed = e − e

eq

Teq
is governed by

∂ed

∂t
+ Vg∇ed =

(
eloc − e

eq

Teq

) − ed

τ
. (15)

FIG. 1. (Color online) In standard particle methods, the moments
of the distribution are stochastically integrated.
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FIG. 2. (Color online) In a control-variate formulation, the
stochastic part is reduced to the calculation of the deviation from
a known state, which is much smaller.

Therefore, by analogy to the standard particle methods
for solving the Boltzmann equation, we define computational
particles by

ed = e − e
eq

Teq
≈ 8π3Ed

eff

∑
i

s(i)δ3(x − xi)δ
3(k − ki)δp,pi

,

(16)
s(i) = ±1.

We will refer to these newly defined computational particles
as deviational particles. Clearly, deviational particles may be
negative since e − e

eq

Teq
can be a negative quantity. This is

accounted for by the sign term in Eq. (16). In what follows, we
derive evolution rules for deviational particles based on (15).

III. ALGORITHM

The variance-reduced algorithm is very similar to its non-
variance-reduced counterpart and comprises an initialization
step followed by a splitting algorithm for time integration. The
main change lies in the distributions from which deviational
particles are sampled.

A. Initialization

The algorithm proceeds by choosing the equilibrium state
at temperature Teq from which deviations will be simulated.
Although this choice can be quite critical in the efficiency of the
method (the smaller the deviation from the chosen equilibrium
state, the smaller the number of deviational particles required
for a given statistical uncertainty, or, for a fixed number of
deviational particles, the larger the variance reduction), it is
usually a natural and intuitive choice.

In some cases, the equilibrium state is the same as the initial
state. In such a situation, the simulation starts with no particles.
Nevertheless, one still has to choose the deviational effective
energy Ed

eff for subsequent use. In the various examples
discussed below, this parameter was chosen as follows: Based
on a guess of the upper bound on the deviation of temperature
at steady state, the deviational energy of the system can be

estimated using

	E =
∫ ωmax

ω=0

∑
p

h̄ωD(ω,p)

×
∣∣∣∣∣ 1

exp
(

h̄ω
kbT

) − 1
− 1

exp
(

h̄ω
kbTeq

) − 1

∣∣∣∣∣ dω. (17)

This estimate of the deviational energy allows Ed
eff to be

(approximately) determined based on the desired number of
computational particles.

If the initial state f 0 is different from the equilibrium dis-
tribution, particles need to be initialized in the computational
domain. Their frequencies and polarizations are drawn from
the distribution

D(ω,p)ed (ω) = h̄ωD(ω,p)

[
f 0 − 1

exp
(

h̄ω
kbTeq

) − 1

]
.

(18)

Typically, f 0 is an equilibrium distribution at some tempera-
ture T , whereby the above expression reduces to

D(ω,p)ed (ω)

= h̄ωD(ω,p)

[
1

exp
(

h̄ω
kbT

) − 1
− 1

exp
(

h̄ω
kbTeq

) − 1

]
. (19)

This function is positive if T > Teq and negative if T < Teq . As
a result, in the latter case, particles are assigned a negative sign.
Drawing of the frequencies is performed as in Ref. 8, namely,
by subdividing the frequency range into bins (generally, about
1000 bins are considered enough), defining a discretized
and normalized cumulative distribution from (19), uniformly
drawing a random number between 0 and 1, and finding the
bins to which it corresponds in order to match the normalized
cumulative distribution.

B. Advection

Since the left-hand side of (15) is analogous to that of (1),
the advection substep is unchanged. In other words, during the
time step 	t , particles of group velocity Vg(ω,p) are simply
advected by Vg(ω,p)	t .

C. Sampling substep

Sampling of the local temperature and pseudotemperature
requires a few changes from the non-variance-reduced method,
namely:

(1) Let Cj be the set of indices corresponding to the particles
inside cell j of volume Vj at time t . Since each particle
represents the same amount of energy, the deviational energy
is given by

	Ej = Ed
eff

∑
i∈Cj

s(i) = Ed
eff(N+

j − N−
j ), (20)

where N+
j and N−

j are respectively the numbers of positive
and negative particles inside the cell j .
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(2) The corresponding temperature Tj is then calculated by
numerically inverting the expression

	Ej

Vj

=
∫ ωmax

ω=0

∑
p

D(ω,p)h̄ω

×
[

1

exp
(

h̄ω
kbTj

) − 1
− 1

exp
(

h̄ω
kbTeq

) − 1

]
dω. (21)

(3) Similarly, once Tj is known, the deviational pseudoen-
ergy is computed using

	Ẽj = Ed
eff

∑
i∈Cj

s(i)

τ (ωi,pi,Tj )
. (22)

(4) The corresponding pseudotemperature [Tloc]j is calcu-
lated by numerically inverting

	Ẽj

Vj

=
∫ ωmax

ω=0

∑
p

D(ω,p)h̄ω

τ (ω,p,Tj )

×
[

1

exp
(

h̄ω
kb[Tloc]j

) − 1
− 1

exp
(

h̄ω
kbTeq

) − 1

]
dω.

(23)

D. Scattering step

During the scattering step we integrate

ded

dt
=

(
eloc − e

eq

Teq

) − ed

τ (ω,p,Tj )
(24)

for a time step 	t , where

eloc − e
eq

Teq
= h̄ω

[
1

exp
(

h̄ω
kb[Tloc]j

) − 1
− 1

exp
(

h̄ω
kbTeq

) − 1

]
.

(25)

We select the particles to be scattered according to the
scattering probability (specific to each particle’s frequency
and polarization, and depending on the local temperature)

P (ωi,pi,Tj ) = 1 − exp

(
− 	t

τ (ωi,pi,Tj )

)
. (26)

The pool of selected particles represents a certain amount of
deviational energyEd

eff (N+
s,j − N−

s,j ), whereN+
s,j andN−

s,j refer
respectively to the numbers of positive and negative selected
(i.e., scattered) particles in cell j . This pool of selected particles
must be replaced by particles with properties drawn from the
distribution

D(ω,p)
(
eloc − e

eq

Teq

)
τ (ω,p,Tj )

= D(ω,p)h̄ω

τ (ω,p,Tj )

(
1

exp
(

h̄ω
kb[Tloc]j

) − 1
− 1

exp
(

h̄ω
kbTeq

) − 1

)
,

(27)

which is either positive for all frequencies and polarizations or
negative for all frequencies and polarizations. In other words,
scattered particles must be replaced by particles which all

have the same sign as eloc − e
eq

Teq
and which respect the energy

conservation requirement. Therefore, out of the N+
s,j + N−

s,j

selected particles, we redraw properties for |N+
s,j − N−

s,j | of
them according to the distribution (27) and delete the other
selected particles. The |N+

s,j − N−
s,j | particles to be kept are

chosen randomly inside the cell j and are given the sign of
eloc − e

eq

Teq
.

This process tends to reduce the number of particles
in the system and counteracts sources of particle creation
within the algorithm (e.g., see the boundary conditions
discussed in the next section). A bounded number of particles
is essential to the method stability, and the reduction process
just described is a major contributor to the latter.11,12 Hence,
in a typical problem starting from an equilibrium state that is
also chosen as the control, the number of particles will first
increase from zero and, at steady state, reach a constant value
that can be estimated by appropriate choice of Ed

eff as described
in Sec. III A. The constant value will usually be higher than
(but of the same order as) the estimated value: indeed, the rate
of elimination of pairs of particles of opposite signs depends
on the number of particles per cell and therefore on the spatial
discretization chosen (the finer the discretization, the smaller
the number of particles per cell and therefore the smaller the
rate of elimination).

E. Boundary conditions

In phonon transport problems, various types of boundary
condition appear. Isothermal boundary conditions, similar by
nature to a blackbody, have been used in several studies.8,9 Adi-
abatic boundaries also naturally appear.8,20 Recently, a class
of periodic boundary conditions has also been introduced.10

The deviational formulation adapts remarkably well to these
different classes of boundary conditions.

1. Adiabatic boundaries

Adiabatic boundaries reflect all incident phonons. This
reflection process can be divided into two main categories:
diffuse and specular reflection. In both cases, it is assumed
that the polarization and frequency remain the same when a
phonon is reflected. The only modified parameter during the
process is the traveling direction.

(i) Specular reflection on a boundary ∂n of normal vector
n can be expressed, in terms of the energy distribution, by

e(x,k) = e(x,k′), (28)

where k′ = k − 2(k · n)n and x ∈ ∂n. Since the equilibrium
distribution e

eq

Teq
is isotropic, then substracting it from both

sides simply yields

ed (x,k) = ed (x,k′). (29)

In other words, deviational particles are specularly reflected.
(ii) Diffuse reflection amounts to randomization of the

traveling direction of a phonon incident on the boundary, in
order for the population of phonons leaving the boundary
to be isotropic. Since an equilibrium distribution is already
isotropic, incident deviational particles are treated identically
to real phonons.
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Periodic
flux

FIG. 3. (Color online) Example of a periodic nanostructure.
Each periodic cell comprises two rectangular voids with diffusely
reflecting walls. This nanostructure, and in particular the influence of
the parameter d , is studied further in Sec. VI A.

2. Isothermal boundaries

In the case of an isothermal boundary at temperature Tb,
incident phonons are absorbed, while the boundary itself,
at temperature Tb, emits new phonons from the equilibrium
distribution corresponding to Tb. The emitted heat flux per
unit radial frequency is expressed by

q ′′
ω,b = 1

4

∑
p

D(ω,p)Vg(ω,p)h̄ω

exp
(

h̄ω
kbTb

) − 1
. (30)

Subtracting the heat flux per unit radial frequency corre-
sponding to a boundary at equilibrium temperature, we obtain

q ′′
ω,b = 1

4

∑
p

D(ω,p)Vg(ω,p)h̄ω

×
(

1

exp
(

h̄ω
kbTb

) − 1
− 1

exp
(

h̄ω
kbTeq

) − 1

)
, (31)

which gives the frequency distribution of emitted particles.
Traveling directions must be chosen accordingly, as explained,
for example, in Ref. 8.

3. Periodic unit cell boundary conditions

Heat transfer in periodic nanostructures is a subject of
considerable interest in the context of many applications.
Such nanostructures are considered by Hao et al.,10 by Huang
et al.,21 and by Jeng et al.4 Hao et al. developed periodic
boundary conditions that allow efficient simulation of such
structures by considering only one unit cell (period). In this

section we review the work of Hao et al.10 and explain how
the deviational particle formulation presented here lends itself
naturally to this type of boundary condition. Simulations using
these boundary conditions are presented in Sec. VI A.

We consider the two-dimensional (2D) periodic structure
depicted in Fig. 3, in which square unit cells containing two
rectangular voids are organized in a square lattice. Our interest
focuses on determining the effective thermal conductivity of
such a structure as a function of d, the degree of alignment.

The formulation introduced by Hao et al. amounts to stating
that, at the boundaries, the deviation of the phonon distribution
from the local equilibrium is periodic. Using the notations from
Fig. 3, this condition can be written as

f +
1 − f

eq

T1
= f +

2 − f
eq

T2
,

f −
1 − f

eq

T1
= f −

2 − f
eq

T2
,

(32)

where f
eq

T1
and f

eq

T2
refer to the equilibrium distributions at

temperatures T1 and T2, and the superscript + denotes particles
moving to the right (with respect to Fig. 3) and the superscript
− refers to particles moving to the left. This formulation
enforces at the same time the periodicity of the heat flux
and a temperature gradient. In terms of deviational energy
distributions, this relation becomes

h̄ω
(
f +

1 − f
eq

Teq
− f

eq

T1

) = h̄ω
(
f +

2 − f
eq

Teq
− f

eq

T2

)
,

h̄ω
(
f −

1 − f
eq

Teq
− f

eq

T1

) = h̄ω
(
f −

2 − f
eq

Teq
− f

eq

T2

)
,

(33)

which amounts to

e
d,+
1 − e

eq

T1
= e

d,+
2 − e

eq

T2
,

e
d,−
1 − e

eq

T1
= e

d,−
2 − e

eq

T2
.

(34)

Computationally, this formulation can be implemented by
emitting new particles from both sides while periodically
advecting the existing particles. Without any loss of generality,
let us assume that T1 > T2. Particles emitted from the hot side
originate from the distribution

e
d,+
1 = e

d,+
2 + e

eq

T1
− e

eq

T2
. (35)

Therefore, at a given point on the boundary, denoting by θ

the angle with respect to the normal and by φ the azimuthal
angle, the flux per unit radial frequency locally emitted from
boundary 1 (the “hot” side) in the solid angle d
 = sin θdθdφ

can be expressed as

q ′′
ω,h =

∑
p

e
d,+
1 (ω,θ,φ,p)

D(ω,p)

4π
Vg(ω,p) cos θ sin θdθdφ

=
∑

p

e
d,+
2

D(ω,p)

4π
Vg(ω,p) cos θ sin θdθdφ︸ ︷︷ ︸

crossing boundary 2

+ (
e
eq

T1
− e

eq

T2

)D(ω,p)

4π
Vg(ω,p) cos θ sin θdθdφ︸ ︷︷ ︸

new particles generated

. (36)

Similarly, the flux per unit radial frequency locally emitted from boundary 2 (the “cold” boundary) can be expressed as

q ′′
ω,c =

∑
p

e
d,−
1

D(ω,p)

4π
Vg(ω,p) cos θ sin θdθdφ︸ ︷︷ ︸

crossing boundary 1

− (
e
eq

T1
− e

eq

T2

)D(ω,p)

4π
Vg(ω,p) cos θ sin θdθdφ︸ ︷︷ ︸

new particles generated

. (37)
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Hence the boundary condition can be enforced by the
following:

(i) Moving all particles and applying periodic boundary
conditions to those crossing a periodic boundary: a particle
leaving the system on one side is reinserted on the other side.

(ii) Generating new particles from the distribution

(
e
eq

T1
− e

eq

T2

)D(ω,p)

4π
Vg(ω,p). (38)

The number of new particles is given by integrating (38)
over all frequencies and polarizations and by multiplying
the result by π to account for the integration over the solid
angle

∫ 2π

φ=0

∫ π/2
θ=0 cos θ sin θdθdφ. The traveling direction of

these particles is randomized on the half sphere pointing into
the domain, and in the case of the hot boundary they are sent
traveling to the right with a positive sign. Taking their mirror
image, negative particles with the same properties are emitted
by the cold boundary.

IV. VALIDATION

A. A ballistic problem

In order to validate the proposed formulation, we first
consider a one-dimensional system bounded by two isothermal
(Sec. III E 2) boundaries that are sufficiently close—their
distance apart, L, is much smaller than all phonon mean free
paths—that transport can be modeled as ballistic. The system
is initially at a uniform equilibrium temperature T0, when at
t = 0+ the temperature of the isothermal walls impulsively
changes to T0 ± 	T .

Appendix B presents an analytical solution for the resulting
transient evolution of the temperature field that is used here
for comparison with our simulations. A particularly interesting
case is the Debye model which, when coupled with small
temperature amplitudes, allows a linearization of the general
relation (B4) to provide a fairly simple closed-form solution
(B5). Figure 4 shows a comparison between this solution and

   : t=65ps 

   : t=162.5ps 

   : t=13ns 

FIG. 4. (Color online) Transient temperature profile in a one-
dimensional ballistic system whose boundary temperatures undergo
an impulsive change at t = 0. Initially, the system is in equilibrium
at temperature T0 = 300 K. At t = 0+, the wall temperatures become
T0 ± 	T ; here, 	T = 3 K.

the variance-reduced Monte Carlo result. The simulation was
run with Teq = T0 and the phonon velocity was taken to be
12 360 m s−1.10 Excellent agreement is observed.

B. Heat flux and thermal conductivity in a thin slab

In this section we continue to validate our formulation
by calculating the thermal conductivity of a thin silicon slab
bounded by two diffusely reflecting walls a distance d apart in
the z direction (see Fig. 5). The slab is infinite in the x and y

directions.
This problem is considered here because the solution can be

expressed analytically. We introduce the local deviation func-
tion f d = f − f loc and, denoting the temperature gradient by
dT /dy, rewrite the BTE at steady state as

Vg

df loc

dT

dT

dy
cos(θ ) + Vg∇f d = −f d

τ
. (39)

This equation can be solved to yield, in the coordinate
system introduced in Fig. 5,

f d (z,ω,p,θ,0 < φ < π )

= −�(ω,p,T0) cos(θ )
df loc(ω,T0)

dT

dT

dy

{
1 − exp

[
− z

�(ω,p,T0) sin(θ ) sin(φ)

]}
, (40)

f d (z,ω,p,θ, − π < φ < 0)

= −�(ω,p,T0) cos(θ )
df loc(ω,T0)

dT

dT

dy

{
1 − exp

[
− z − d

�(ω,p,T0) sin(θ ) sin(φ)

]}
, (41)

where �(ω,p,T0) is the average mean free path at frequency
ω, polarization p, and temperature T0, given by

�(ω,p,T0) = Vg(ω,p)τ (ω,p,T0). (42)

Moments of this solution can be numerically integrated to
yield values for the heat flux and the thermal conductivity of
the slab.

In the simulation, we calculate the thermal conductivity
by measuring the steady state heat flux in response to a

temperature gradient along the y axis (see Fig. 6). Due to
the translational symmetry of the system, we impose the
temperature gradient using the periodic unit cell formulation
presented in Sec. III E 3, which allows us to use a finite
system size in the y direction, taken to be L = 100 nm. In
order to measure the thermal conductivity at T0, a temperature
gradient is imposed by setting a target temperature of T0 + 	T

for the hotter of the two boundaries and T0 − 	T for the
colder boundary, and we proceed as explained in Sec. III E 3.
The deviational method allows the solution of this problem
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Diffuse wall

d

FIG. 5. (Color online) Heat conduction in a silicon slab due to
an imposed temperature gradient in the y direction. Slab is infinite in
the x and y directions.

for 	T � T0 (here, 	T = 0.05 K), in contrast to non-
variance-reduced methods that would require 	T ∼ T0 to
achieve statistically significant results. The best choice for
the equilibrium (control) temperature is clearly Teq = T0 =
300 K. Initialization of the simulation at equilibrium at T0 is
also convenient, because no particles need to be generated for
the initial configuration.

Figure 7 compares the heat flux in the y direction inside
a slab of silicon (see Appendix A for material parameters) of
thickness d = 100 nm, as computed by the deviational method,
to the analytical solution. Figure 8 compares the thermal
conductivity of the slab at T0 = 300 K as a function of d

computed from the deviational method and from the analytical
expression. Very good agreement is observed in all cases.

V. COMPUTATIONAL EFFICIENCY

The variance-reduced method developed here allows sub-
stantial improvement in the relative statistical uncertainty
σ/	T compared to non-variance-reduced simulations. Here,
σ is the standard deviation in the temperature measurement
and 	T is the characteristic temperature difference (as, for
example, in the validation case studied in Sec. IV B).

d

Diffuse wall

Periodic
condi�ons

L=100 nm

FIG. 6. (Color online) Simulation geometry. Boundaries at z = 0
and z = d are diffusely reflecting. Infinite domain in the y direction
is terminated by use of periodic boundaries L = 100 nm apart.

FIG. 7. (Color online) Spatial variation of the axial (in the y

direction) heat flux in a thin film with a thickness d = 100 nm,
computed theoretically and compared to the result of the deviational
simulation.

Figure 9 compares the relative statistical uncertainty of the
variance-reduced with the standard method. The reported data
were obtained by simulating equilibrium at some temperature
T1 and defining 	T = T1 − T0 as the characteristic signal that
needs to be resolved. By choosing Teq = T0 in the deviational
method, we ensure that finite deviation from equilibrium is
considered and thus the statistical uncertainty is nonzero.
Simulation of an equilibrium state is a matter of convenience,
because in nonequilibrium problems the number of particles
and thus the local statistical uncertainty vary as a function
of space in the deviational simulation and are thus difficult
to quantify precisely; simulations of simple problems (e.g.,
Couette-type problems) in the past5,12,13 have yielded very
similar results. We also note that, even though this Figure
compares relative statistical uncertainties, this information can

FIG. 8. (Color online) Theoretical values of the thin film thermal
conductivity at T0 = 300 K, computed by numerical integration of the
theoretical expressions (40) and (41), and compared with the values
obtained from the deviational simulation.
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FIG. 9. (Color online) Comparison of relative statistical uncer-
tainties for equilibrium systems at temperature T1 with 	T = T1 − T0

and T0 = 300 K.

be used to infer the computational speedup, because the cost of
the deviational simulation per timestep is very similar to that
of the standard Monte Carlo method. Specifically, the speedup
provided by the deviational method is given by the square of
the ratio of the relative statistical uncertainties.

A very interesting feature of variance-reduced methods is
that the standard deviation of the results is proportional to the
amplitude 	T of the signal, as shown in Fig. 9 (see also
Refs. 5, 22, and 23). As a consequence, variance-reduced
methods are able to provide the desired relative statistical
uncertainty (noise-to-signal ratio) for arbitrarily low signals
without requiring more computational effort. In contrast, in
the case of the non-variance-reduced methods, it is more
computationally expensive to obtain the desired level of
relative statistical uncertainty for small than for large variations

in temperature. In these methods, for 	T � T0, the statistical
uncertainty is approximately constant (set by equilibrium
fluctuations) and thus σ/	T ∼ 1/	T . As a result, the speedup
offered by the variance-reduced methods scales as 1/(	T )2.
For example, at 	T/T0 ≈ 10−2 (i.e., 	T ≈ 3 K at room
temperature) the speedup is approximately four orders of
magnitude (see Fig. 9); at 	T/T0 ≈ 10−3, the speedup is
approximately six orders of magnitude.

VI. APPLICATIONS

In this section we present some applications of the devi-
ational method to problems of current engineering interest.
Modeling work in these areas is still ongoing; the objective of
this discussion is mainly to showcase the capabilities of the
proposed method.

A. Thermal conductivity of nanoporous silicon:
Influence of nanopore alignment

Decreasing the thermal conductivity as a means of im-
proving the thermoelectric effect has received considerable
attention, and nanostructures are a novel approach toward this
goal. Similarly to Huang et al.21 and Jeng et al.,4 we assess
here the thermal conductivity of nanostructured materials. The
nanostructure considered here is made of rectangular pores
as shown in Fig. 3. We model it as a 2D problem (possible
if the material boundaries in the directions normal to the
plane shown in the figure can be approximated as specularly
reflecting). Figure 10 shows the periodic cell considered and
defines the parameter d that we use to describe the spatial
distribution of the pores. The thermal conductivity in the y

direction is measured by imposing periodic unit cell boundary
conditions as explained in Sec. III E 3, with a temperature
difference of 0.1 K across the unit cell. Using the data of
Appendix A, the contributions of the different mean free
paths to the bulk thermal conductivity can be calculated.

d 

FIG. 10. (Color online) (a) Temperature field in a unit cell of a periodic nanoporous material. (b) Thermal conductivity as a function of
parameter d .
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PÉRAUD AND HADJICONSTANTINOU PHYSICAL REVIEW B 84, 205331 (2011)

FIG. 11. (Color online) (a) Thermal conductivity accumulation as a function of the mean free path. The bulk conductivity was computed by
numerical integration of the thermal conductivity per unit frequency, τv2Cω/3 (Refs. 15, 24, and 1); here, Cω is the heat capacity per frequency
unit. (b) Normalized thermal conductivity accumulation, highlighting the influence of ballistic effects on the thermal conductivity.

A plot of the effective thermal conductivity, as computed
with the deviational variance-reduced method, is displayed
in Fig. 10. The thermal conductivity is reduced by almost a
factor of 2 because of this geometrical effect. This highlights
the importance of ballistic effects.

The importance of ballistic effects is further highlighted
by Fig. 11, which shows that at T0 = 300 K, mean free paths
from 50 nm to 10 μm contribute significantly to the thermal
conductivity of the bulk material; the presence of voids with
period of 100 nm affects the contribution of all mean free
paths, but completely suppresses the contribution of all mean
free paths greater than about 1 μm. Tuning of the alignment
parameter decreases further the contribution of the mean free
paths between 50 nm and 1 μm.

B. Simulation of thermal conductivity spectroscopy

Figure 12 depicts an experimental setup developed in the
MIT Nanoengineering Laboratory25 as a prototype “thermal
conductivity spectroscopy” system. This experiment is based
on pump-probe transient thermoreflectance, in which a pump
pulse is used to change the physical properties of a sample
and a probe pulse is used to measure the change. In this
experiment, a thin film of aluminum (thickness between 50
and 100 nm) is deposited on a silicon wafer and is initially
at uniform temperature, say 300 K. At t = 0, localized laser
irradiation creates a hot spot, shown in Fig. 12 as centered on
the origin (r = 0,z = 0) of the coordinate system. A reliable
description of the subsequent evolution of the temperature field
is central to interpreting the experimental results and creating
a means for inferring phonon mean free paths (the goal of this
experiment) from experimental measurements (e.g., of surface
temperature).

Given the scale of the aluminum slab, the impulsive nature
of the heating, and the short duration of the phenomenon,
phonon ballistic behavior needs to be accounted for, necessi-
tating a Boltzmann treatment. However, this problem is very
difficult (if not impossible) to simulate using standard Monte
Carlo methods: the initial perturbation to the temperature field

is small in amplitude (see below), which makes resolution
of transient results very costly. Moreover, the need to sim-
ulate early as well as late times and avoid artifacts from
artificial domain termination makes the simulation of a large
computational domain necessary, even though the original
hot spot is very small. In traditional Monte Carlo methods,
this large computational domain would need to be filled with
particles.

The method proposed makes this calculation possible. Sim-
ulation of the deviation from equilibrium allows the calculation
to proceed using zero particles in regions not yet affected by the
heating pulse. Thus, in addition to variance reduction, which
removes the limitations associated with statistical uncertainty,
simulation of the deviation from equilibrium simultaneously
considerably reduces the computational cost resulting from

Laser 
pulse

Al

Si

50-100nm

FIG. 12. (Color online) System composed of a slab of aluminum
on a semi-infinite silicon wafer, used for transient thermoreflectance
experiments. At t = 0, a laser pulse induces a temperature field
T (r,z,t). The temperature field evolution after the pulse is computed
by assuming that the aluminum surface is adiabatic.
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the multiscale nature of this problem. We also note that, by
taking the equilibrium distribution at 300 K, the simulation
only has positive particles. Hence there will be no cancellation
of particles, and the entire simulation will run with a fixed
amount of particles.

In practice, one can exploit the cylindrical symmetry in
order to reduce the problem dimensionality: the resulting
temperature field is expected to depend only on the depth z and
on the distance from the center of the pulse, r . Therefore, we
can use toroidal cells to sample the temperature and process
the scattering. The only drawback is that cells near the center,
at small radius, will have a smaller volume and will sample the
temperature over a smaller number of particles, thus yielding
noisier results in these regions.

1. Initial condition

As stated above, since the material is originally at equi-
librium at T0 = 300 K, it is most convenient, but also com-
putationally efficient, to choose Teq = T0. Laser irradiation
introduces a heating effect in a thin layer close to the irradiated
surface, which has been parametrized15 using the expression

	T (r,z) = T − T0 = A exp

(
−2r2

R2
0

− βz

)
(43)

with A = 1 K, R0 = 15 μm, and β−1 = 7 nm. This expression
is used here as an initial condition for the material temperature.
Regions for which 	T < 0.005 K were taken to be at
equilibrium at T0 = Teq (no particles).

2. Interface modeling

The top surface of the aluminum material (z = 0) is
modeled as a diffusely reflecting wall.

Modeling of the interface between the two materials
accurately is still an active area of research. Here, we chose
to use a recently developed model15,26 which relates the
transmissivity to the interface conductance G through the
expression

〈P1→2C1Vg,1〉 = 2
1

〈C1Vg,1〉 + 1
〈C2Vg,2〉 + 1

2G

. (44)

Here, Pi→j denotes the probability for a phonon to pass
through the interface from material i to j ; the angular brackets
denote integration over frequency and sums over polarization,
while C1 and C2 denote the volume heat capacity per unit
frequency in media 1 and 2, respectively. In this model, we
assume that the interface is totally diffuse: the direction of
an incident particle is reset regardless of the transmission or
reflection of the particle, while its frequency and polarization
are retained.27 For the interface conductance G, we use the
experimental value G = 1.1 × 108 W m−2 K−1.26

We also utilize the expression27

D1(ω,p)V1,g(ω,p)f eq

T0
P1→2(ω,p)

= D2(ω,p)V2,g(ω,p)f eq

T0
P2→1(ω,p), (45)

which relates the probability for a phonon with radial fre-
quency ω and polarization p to pass through the interface
from 1 to 2 to the probability to pass from 2 to 1.

We can easily verify that relation (45) applies when
the deviational energy ed is used instead of the phonon
distribution. Additionally, expression (44) which relies on,
among other things, (45),15,26 also remains unchanged when
applied to deviational particles.

Following Refs. 15 and 26, we let P1→2 be a constant [which
makes it easy to calculate from (44)] and deduce P2→1 from
(45). In our case we chose to set PAl→ Si constant, except for
the high-frequency transverse acoustic modes; since the cutoff
frequency of the TA branch in Si is lower than the TA cutoff
frequency in Al, phonons with such frequencies must undergo
total reflection.15 Similarly, LA phonons in Si whose frequency
is above the aluminum LA branch cutoff frequency are totally
reflected.

3. Domain termination

At long times, phonons may travel far from the hot
spot. In order to avoid discretizing an infinite domain with
computational cells (for calculating the temperature), we
restrict our discretization to a finite (but large) “nominal”
domain. In order to simulate the actual system accurately and
consistently, we keep track of the particles even after they have
left the nominal part of the domain.

Particles that leave this domain are not sampled (for
calculating the temperature and pseudotemperature), but are
still scattered by assuming a local temperature of 300 K as
an input parameter for the relaxation time. This amounts to
a linearization of the collision operator at T = 300 K and is
based on the reasonable assumption that, sufficiently far from
the heating source, the temperature is very close to 300 K.
Particles that leave the nominal part of the domain may reenter
it, hence ensuring a rigorous treatment of the semi-infinite
region.

Particular care is taken to ensure that the frequency
and polarization of a particle is drawn from the correct
distribution, because energy conservation—built into the
simulation method—requires that the number of particles is
conserved by the scattering process and is inconsistent with
approximations which do not conserve energy. For example,
setting Tloc = 300 K is inconsistent with energy conservation
because eloc(Tloc = 300 K) − eeq = 0, which implies no par-
ticle generation, which in the presence of particle deletion due
to the term −ed/τ leads to net particle and thus energy loss.
This situation can be rectified by allowing the temperature at
the particle position to be different from Teq ; specifically, we
write T = Teq + ε and expand

D(ω,p)
(
eloc − e

eq

Teq

)
τ (ω,p,Teq)

≈ D(ω,p)

τ (ω,p,Teq)

∂e
eq

Teq

∂T
ε. (46)

Frequencies and polarizations are thus drawn from

D(ω,p)

τ (ω,p,Teq)

∂e
eq

Teq

∂T
, (47)

since (46), once normalized, does not depend on the local ε. As
before, energy conservation is ensured by simply conserving
the particles.

In addition to providing a method for terminating simula-
tions, this approach represents a promising avenue for treating
the entire simulation domain in the limit that linearization of
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FIG. 13. (Color online) Variance-reduced temperature field in an aluminum slab and supporting silicon wafer after initial heating by a laser
pulse. The picture shows the aluminum slab (100 nm thickness) and a portion of the silicon wafer (100 nm thickness).

the collision operator is appropriate. The advantage of this
formulation is a significant reduction in computational cost

FIG. 14. (Color online) Surface temperature at the hot spot
(averaged over the region 0 � r � 2 μm, 0 � z � 5 nm) as a
function of time after initial heating by laser pulse. The difference
from the solution based on the Fourier model is a result of ballistic
effects.

because evaluation of the local temperature and pseudotem-
perature is not required at every time step. Further details will
be given in a future publication.

4. Simulation results

Figures 13 and 14 show that the variance-reduced method
developed here can calculate the temperature field with small
statistical uncertainty. This is remarkable given the minute
temperature differences [O(0.01) K] present in this problem,
especially at late times. For such temperatures, according
to Fig. 9, the speedup compared to a standard Monte Carlo
method is on the order of 109.

Figure 14 compares our simulation results with a numerical
solution of the heat conduction equation (Fourier’s law).
The differences between the two predictions are a result of
nondiffusive (ballistic or transitional) effects. The detailed
information available in simulations of this phenomenon can
assist in the development of methodologies for characterizing
carrier mean free paths from comparisons such as the one
shown in Fig. 14. Here, we note that the present calcula-
tion does not account for thermal transport by electrons in
aluminum. This was neglected in the interest of simplicity
and because the primary focus of this experiment is transport
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through the silicon substrate.15 Thermal transport by electrons
in aluminum will be considered and evaluated in a future
publication.

VII. DISCUSSION

We have shown that efficient and accurate algorithms
for solving the BTE with significantly reduced statistical
uncertainty can be developed by focusing on the deviation from
a nearby equilibrium within an energy-based formulation. The
energy-based formulation facilitates exact energy conserva-
tion, thus improving the simulation fidelity, while the variance
reduction is made possible by the deterministic information
inherent in the Bose-Einstein distribution which describes the
nearby equilibrium. The proposed method was validated using
analytical solutions of the Boltzmann transport equation. Very
good agreement with the analytical results was found.

The proposed algorithm was used to study the effect
of porosity on the effective thermal conductivity of pure
silicon. Our results show that the staggering of periodically
arranged voids at small scales exploits ballistic shading to
effect reduction in the effective thermal conductivity. A
more systematic investigation of the effects of porosity on
the effective conductivity of silicon—including anisotropic
effects—will be the subject of future work.

We also presented simulations of a recently developed
experimental technique known as thermal conductivity spec-
troscopy, in which the transient response of a thin aluminum
slab over a silicon wafer to a localized heating induced by a
laser pulse is used to infer properties of heat carriers. These
simulations required the development of a domain termination
algorithm for rigorously treating deviational particles as they
travel to regions far from the heating source, without having
to sample these particles everywhere in this semi-infinite
region. This latter algorithm corresponds to a linearization
of the collision operator and may, in fact, form the basis of a
significantly more efficient simulation approach valid in cases
where linearization is appropriate.

In addition to illustrating the benefits of variance reduction,
simulations of the thermal conductivity spectroscopy problem
also showcase the value of the proposed simulation approach as
a multiscale method: in contrast to typical multiscale methods
which focus on spatial decomposition of the domain into the
particle and continuum subdomains, the present algorithm
achieves a seamless transition from one description to the
other by instead algebraically decomposing the distribution
function into a part described by particles and a part de-
scribed deterministically.28 Although here the simplest such
implementation has been presented [a deterministic descrip-
tion in equilibrium at temperature T0 �= T0(x,t)], deviational
algorithms featuring a deterministic description that varies as a
function of space [eeq = eeq (x)] have been developed12,13 and
shown to achieve improved variance reduction as Kn → 0,13

albeit at the cost of a moderately more complex algorithm.
In the problem considered here, the continuum behavior at
large distances from the heat source is in fact equilibrium at T0

and thus the present algorithm is sufficient. However, in other
problems where a local equilibrium is present in large parts
of the domain, algebraic decomposition using eeq = eeq(x)
will be able to provide considerable computational savings by

considerably reducing the number of particles required for its
simulation.
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APPENDIX A: NUMERICAL DATA FOR
SCATTERING RATES

In the simulations presented here we use data for the
dispersion relations and for the relaxation times of phonons in
Al and Si. Dispersion relations are adapted from experimental
measurements in the [100] direction (from Ref. 29 for Al, and
from Refs. 30 and 15 for Si).

For Al, as in Refs. 26 and 15 we assume a constant
relaxation time chosen to match the desired lattice thermal
conductivity. We therefore take

τAl = 10−11 s (A1)

For Si, we use the expressions from Refs. 15,31, with
constants from Ref. 15. Relaxation times for acoustic modes
are as follows:

Phonon-phonon scattering, LA

τ−1
L = ALω2T 1.49 exp

(−θ

T

)

Le�
W

all

Right W
all

Phonons in this
angular sector

have been present
in the system since

t=0

Phonons in this
angular sector

were emi�ed by 
the le� wall at

temperature Tl, at
a �me t>0

FIG. 15. (Color online) At a given point in space, the solid angle
can be divided into three distinct regions in which the distribution of
phonons is known; here, θl is given by cos(θl) = x/[Vg(ω,p)t], while
θr is given by cos(θr ) = (L − x)/[Vg(ω,p)t].
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Phonon-phonon scattering, TA

τ−1
T = AT ω2T 1.65 exp

(−θ

T

)
Impurity scattering τ−1

I = AIω
4

Boundary scattering τ−1
B = wb

where the constants take the following values:

Parameter AL AT θ AI wb

Value (in SI units) 2 × 10−19 1.2 × 10−19 80 3 × 10−45 1.2 × 106

The total relaxation time for a given polarization is obtained
using the Matthiessen rule

τ−1 =
∑

i

τ−1
i . (A2)

Optical phonons in Si are considered immobile (Einstein
model). Einstein’s model states that the contribution of optical
phonons to the vibrational energy per unit volume in a crystal
is given by1

U = NpN ′h̄ωE

V [exp(h̄ωE/kbT ) − 1]
, (A3)

where Np = 3 is the number of polarizations, N ′ = 1 is the
number of optical states per lattice point, ωE is the Einstein

radial frequency [ωE = 9.1 × 1013 s−1 (Refs. 30 and 15)], and
V is the volume of a lattice point (with a lattice constant a =
5.43 Å, V = a3/4 = 4 × 10−29 m3).

For the relaxation time of optical phonons, we use the
value32

τO = 3 × 10−12 s. (A4)

APPENDIX B: DERIVATION OF THE TRANSIENT
BALLISTIC 1D SOLUTION

Following the impulsive change of temperature at the walls
from T0 to Tl = T0 + 	T and Tr = T0 − 	T , thermalized
phonons at temperature Tr and Tl are emitted from the “right”
and “left” walls, respectively (see Fig. 15). For some arbitrary
location x, for a given frequency, polarization, and time,
the angular space can be divided into three distinct domains
characterized by two angles θr (x,ω,p,t) and θl(x,ω,p,t), as
depicted in Fig. 15. Phonons described by 0 < θ < θl were
emitted by the left wall at a time t > 0. Phonons described by
θl < θ < π − θr have been present in the system since t = 0.
Phonons described by π − θr < θ < π were emitted by the
right wall at a time t > 0.

The energy can therefore be written as

EV (x,t) = 1

2

∑
p

{∫
ω

∫ θl (x,ω,p,t)

θ=0
e
eq

Tl
(ω)D(ω,p) sin(θ )dθdω

+
∫

ω

∫ π−θr (x,ω,p,t)

θ=θl (x,ω,p,t)
e
eq

T0
(ω)D(ω,p) sin(θ )dθdω

+
∫

ω

∫ π

θ=π−θr (x,ω,p,t)
e
eq

Tr
(ω)D(ω,p) sin(θ )dθdω

}
. (B1)

From geometrical considerations,

cos [θr (x,ω,p,t)] = min

(
1,

L − x

Vg(ω,p)t

)
= 1 −

(
1 − L − x

Vg(ω,p)t

)
H

(
1 − L − x

Vg(ω,p)t

)
, (B2)

cos [θl(x,ω,p,t)] = min

(
1,

x

Vg(ω,p)t

)
= 1 −

(
1 − x

Vg(ω,p)t

)
H

(
1 − x

Vg(ω,p)t

)
, (B3)

where H is the Heaviside function. Proceeding to the integration in θ , the energy density is given by

EV (x,t) = 1

2

∑
p

{∫
ω

(
1 − x

Vg(ω,p)t

)
H

(
1 − x

Vg(ω,p)t

)
e
eq

Tl
(ω)D(ω,p)dω

+
∫

ω

(
1 − L − x

Vg(ω,p)t

)
H

(
1 − L − x

Vg(ω,p)t

)
e
eq

Tr
(ω)D(ω,p)dω

+
∫

ω

[
1 −

(
1 − x

Vg(ω,p)t

)
H

(
1 − x

Vg(ω,p)t

)]
e
eq

T0
(ω)D(ω,p)dω

+
∫

ω

[
1 −

(
1 − L − x

Vg(ω,p)t

)
H

(
1 − L − x

Vg(ω,p)t

)]
e
eq

T0
(ω)D(ω,p)dω

}
. (B4)
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The temperature T = T (x,t) is obtained by numerically
finding the Bose-Einstein distribution corresponding to this
energy density.

Using the Debye model and considering small temperature
changes (|Tr − T0| � T0 and |Tl − T0| � T0), we can express
the resulting temperature field in a simpler form. The first
assumption allows the removal of the frequency and polar-
ization dependence on the group velocity, while the second
assumption allows the linearization of the Bose-Einstein terms

in the integrals. Several simplifications can then be carried out
to yield the following expression for the temperature field:

	T (x,t) = 1

2

(
1 − x

Vgt

)
H

(
1 − x

Vgt

)
	Tl

+ 1

2

(
1 − L − x

Vgt

)
H

(
1 − L − x

Vgt

)
	Tr.
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