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We present and discuss a variance-reduced stochastic particle simulation method for
solving the relaxation-time model of the Boltzmann transport equation. The variance
reduction, achieved by simulating only the deviation from equilibrium, results in a sig-
nificant computational efficiency advantage compared with traditional stochastic particle
methods in the limit of small deviation from equilibrium. More specifically, the proposed
method can efficiently simulate arbitrarily small deviations from equilibrium at a com-
putational cost that is independent of the deviation from equilibrium, which is in sharp
contrast to traditional particle methods. The proposed method is developed and validated
in the context of dilute gases; despite this, it is expected to directly extend to all fields
(carriers) for which the relaxation-time approximation is applicable.
�DOI: 10.1115/1.4002028�
Introduction and Motivation

Particle-mediated energy transport in the transition regime be-
ween the ballistic and diffusive limits has recently received sig-
ificant attention in connection to micro- and nanoscale science
nd technology �1�. Applications can be found in a variety of
iverse fields such as thin semiconductor films �2,3� and superlat-
ices �1�, ultrafast processes �4,5�, convective heat transfer �6,7�,
nd gas-phase damping �8,10�.

For a considerable number of applications, a classical descrip-
ion using the Boltzmann transport equation represents a good
ompromise between fidelity and complexity �1�. However, a nu-
erical solution of the Boltzmann equation remains a formidable

ask due to the complexity associated with the collision operator
nd the high dimensionality of the distribution function. Both
hese features have contributed to the prevalence of particle solu-
ion methods, which are typically able to simulate the collision
perator through simple and physically intuitive stochastic pro-
esses while employing importance sampling, which reduces
omputational cost and memory usage �11�. Another contributing
actor to the wide usage of particle schemes is their natural treat-
ent of the advection operator, which results in a numerical
ethod that can easily handle and accurately capture traveling

iscontinuities in the distribution function �11�. An example of
uch a particle method is direct simulation Monte Carlo �DSMC�
12�, which has become the standard simulation method for dilute
as flow. Methods that are similar in spirit have also been used for
imulating phonon transport in solid state devices �13,14�.

One of the most important disadvantages of particle methods
or solving the Boltzmann equation derives from their reliance on
tatistical averaging for extracting field quantities from particle
ata �13,15�. In simulations of processes close to equilibrium,
hermal noise typically exceeds the available signal. When
oupled with the slow convergence of statistical sampling �statis-
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tical error decreases with the square root of the number of
samples�, this often leads to computationally intractable problems
�15�.

The present paper describes a particle simulation framework
that alleviates the above disadvantages to a considerable extent
while retaining the basic �and desirable� features of particle meth-
ods. This is achieved by simulating only the deviation from equi-
librium, as originally proposed in Ref. �11�. Subsequent work �16�
has shown that deviational methods �particle methods simulating
the deviation from equilibrium� using the original Boltzmann
�hard-sphere� collision operator require particle cancellation to
prevent the number of simulated particles from growing in an
unbounded manner. A stable deviational method �that does not
require particle cancellation� for the hard-sphere gas was first de-
veloped in Refs. �17,18�; in that work, it was shown that the
growth in the number of simulated particles observed in the
collision-dominated regime when using the traditional hard-sphere
collision operator �16� can be overcome using a special �but
equivalent� form of the hard-sphere collision operator first derived
by Hilbert �19�. In this paper, we exploit this observation to de-
velop a deviational method for simulating the Boltzmann equation
in the relaxation-time approximation. The method presented here
considers the deviation from a suitably defined global equilibrium
distribution and appears to be stable �does not require particle
cancellation� for typical deviations from equilibrium.

2 Background
The Boltzmann transport equation is used to describe �under

appropriate conditions� transport processes in a wide variety of
fields �1�, including dilute gas flow �20�, phonon �21�, electron
�22�, neutron �23�, and photon transport �24�. It may be written as

� f

�t
+ c ·

� f

�r
+ a ·

� f

�c
= �df

dt
�

coll
�1�

where f�r ,c , t� is the single-particle distribution function �20�,
�df /dt�coll�r ,c , t� denotes the collision operator, r= �x ,y ,z� is the
position vector in physical space, c= �cx ,cy ,cz� is the molecular

velocity vector, a= �ax ,ay ,az� is the acceleration due to an exter-
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al field, and t is time. In this paper, we focus on the relaxation-
ime approximation �20,1�

�df

dt
�

coll
= −

1

�
�f − f loc� �2�

here f loc�r ,c , t� is the local equilibrium distribution function and
is the relaxation time.
To focus the discussion, we specialize our treatment to the di-

ute gas case;1 however, we hope that this exposition can serve as
prototype for the development of similar techniques in all fields
here the relaxation-time approximation is applicable. In the in-

erest of simplicity, in the present paper we assume ����c� and
hat no external forces are present. The first assumption can be
asily relaxed, as discussed in Sec. 3.1. External fields also require
nly relatively straightforward modifications to the algorithm pre-
ented below.

A dilute gas in equilibrium is described by a Maxwell–
oltzmann distribution, leading to a local equilibrium distribution

f loc =
nloc

�3/2cloc
3 exp�−

�c − uloc�2

cloc
2 	 �3�

hich is parametrized by the local number density nloc=nloc�r , t�,
he local flow velocity uloc=uloc�r , t�, and the most probable speed

loc�r , t�=
2kBTloc /m based on the local temperature Tloc
Tloc�r , t�. Here, kB is Boltzmann’s constant, and m is the molecu-

ar mass.

Variance Reduction Formulation
In a recent paper �11�, Baker and Hadjiconstantinou showed

hat significant variance reduction can be achieved by simulating
nly the deviation fd�r ,c , t�� f − fe from an arbitrary, but judi-
iously chosen, underlying equilibrium distribution fe�r ,c , t�. By
dopting this approach, it is possible to construct Monte Carlo
imulation methods �11,16,17,25� that can capture arbitrarily
mall deviations from equilibrium at a computational cost that is
mall and independent of the magnitude of this deviation. This is
n sharp contrast to regular Monte Carlo methods, such as DSMC,
hose computational cost for the same signal-to-noise ratio in-

reases sharply �15� as the deviation from equilibrium decreases.
In the work that follows, the underlying equilibrium distribu-

ion �fe� will be identified with absolute equilibrium,

fe � F�c� =
n0

�3/2c0
3exp�−

c2

c0
2� �4�

here n0 is a reference �equilibrium� number density and c0

2kBT0 /m is the most probable molecular speed based on the

eference temperature T0. For small deviations from equilibrium,
he choice of an appropriate reference equilibrium is straightfor-
ard but necessary. If deviations from the reference equilibrium

re large, either due to strong nonlinearity in the problem or an
nappropriate choice of reference equilibrium, the simulation

ethod becomes less efficient than DSMC due to the large num-
er of particles required to simulate the deviation from equilib-
ium.

Particle methods, such as DSMC, typically solve the Boltzmann
quation by applying a splitting scheme,2 in which molecular mo-
ion is simulated as a series of collisionless advection and colli-
ion steps of length �t. In such a scheme, the collisionless advec-
ion step integrates

1Within the rarefied gas dynamics literature, the relaxation-time approximation is
nown as the BGK model �20�.

2Note that a symmetrized algorithm typically provides higher-order accuracy. See

efs. �8,9� and references therein.
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� f

�t
+ c ·

� f

�r
= 0 �5�

by simply advecting particles for a time step �t, while the colli-
sion step integrates

� f

�t
= �df

dt
�

coll
�6�

by changing the distribution by an amount of �df /dt�coll�t. Spatial
discretization is introduced by treating collisions as spatially ho-
mogeneous within �small� computational cells of volume Vcell.

Our approach retains this basic structure although it must be
noted that since computational particles represent the deviation
from equilibrium, they may be positive or negative, depending on
the sign of the deviation from equilibrium at the location in phase
space where they reside. As in other particle schemes �12�, in the
interest of computational efficiency, each computational devia-
tional particle represents an effective number Neff of physical de-
viational particles. Below we discuss the two main steps in more
detail.

3.1 Collision Step. The variance-reduced form of Eq. �6� can
be written as

�df

dt
�

coll
=

1

�
�f loc − F� −

1

�
fd �7�

Within each computational cell, we integrate Eq. �7� using a two-
part process. This integration requires local �cell� values of vari-
ous quantities, denoted here by hats, which are updated every time
step by sampling the instantaneous state of the gas.

In the first part, we remove a random sample of particles by
deleting particles with probability �t / �̂ to satisfy

f̃ d�t + �t� = f̂ d�t� −
�t

�̂
f̂ d�t� �8�

In our implementation, this is achieved through an acceptance-
rejection process, which can also treat the case �̂= �̂�c�.

In the second part, we create a set of positive and negative
particles �using an acceptance-rejection process� to satisfy

f̂ d�t + �t� = f̃ d�t + �t� +
1

�̂
� f̂ loc�t� − F��t �9�

This step can be achieved by the following procedure. Let cc be a

�positive� value such that f̂ loc�c�−F�c� is negligible for �c�1�cc,

where � · �1 is an L1-norm. Furthermore, let �max bound � f̂ loc�c�
−F�c�� from above. Then, repeat Nc times:

1. Generate uniformly distributed, random velocity vectors c
with �c�1�cc.

2. If � f̂ loc�c�−F�c���R�max, create a particle with velocity c at
a randomly chosen position within the cell and sign

sgn� f̂ loc�c�−F�c��. Here, R is a random number uniformly
distributed on �0,1�.

To find Nc, we note that the number of particles �of all veloci-
ties and signs� that should be generated in a cell to obtain the
proper change in the distribution function is

�t

Neff



Vcell



R3

�f loc − F�
�

d3cd3r =
�tVcell

Neff�̂



R3

� f̂ loc − F�d3c �10�

where Vcell is the cell volume. The �expected� total number of

particles ultimately generated by the above algorithm is

Transactions of the ASME

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



B
=

u
t

a
t

c
c
e
d

p
c
c
e
fl

p
L
p
t
n
x
b

w
s
�
t

E

p
r
i

U
b
b
f
p
u
w
t

J

Downl
Nc



R3

� f̂ loc − F�d3c

�max8cc
3 �11�

y equating the above two expressions, we obtain Nc

8�t�maxVcellcc
3 / ��̂Neff�.

3.2 Advection Step. It can be easily verified that when the
nderlying equilibrium distribution is not a function of space or
ime, as is the case here,

� f

�t
+ c ·

� f

�r
=

� fd

�t
+ c ·

� fd

�r
�12�

nd thus the advection step for deviational particles is identical to
hat of physical particles.

Boundary condition implementation, however, is slightly more
omplex because the mass flux to system boundaries includes
ontributions from deviational particles as well as the underlying
quilibrium distribution. Our implementation is discussed in more
etail below.

3.2.1 Boundary Condition Implementation. Here, we extend
revious work on diffuse boundary conditions to the more general
ase of the Maxwell accommodation model with accommodation
oefficient �. According to this model, a fraction � of the mol-
cules impacting the boundary are accommodated �diffusely re-
ected�, while the remaining particles are specularly reflected.
Let ub and cb represent the boundary velocity and the most

robable speed based on the boundary temperature, respectively.
et us assume, without loss of generality, that the boundary is
arallel to the y-z plane and that the gas lies to the right �x�0� of
he wall. For simplicity, let us also assume that the boundary does
ot move in the direction normal to its plane; i.e., the
-component of ub is zero. Under these conditions, the Maxwell
oundary condition can be written �26� as

f�cx,cy,cz� = �1 − ��f�− cx,cy,cz� + �nb�b�cx,cy,cz�, cx � 0

�13�

here in order to simplify the notation we have suppressed the
pace and time dependence of the distribution function. Here,
b�cx ,cy ,cz�= ��cb

2�−3/2 exp�−�c−ub�2 /cb
2�; the quantity nb is de-

ermined by mass conservation at the wall, namely,



cx�0

cxfd3c = − nb

cx�0

cx�
bd3c �14�

quation �13� can be written as

fd�cx,cy,cz� = �1 − ��fd�− cx,cy,cz� + ��nb�b − F��cx,cy,cz�, cx

� 0 �15�

The algorithm used here for evaluating nb considers deviational
articles and the flux of particles due to the underlying equilib-
ium distribution fe�F separately. More specifically, by introduc-
ng nb=nb

e +nb
d in Eq. �15�, we obtain

fd�cx,cy,cz� = �1 − ��fd�− cx,cy,cz� + �nb
d�b�cx,cy,cz�

+ ��nb
e�b�cx,cy,cz� − F�cx,cy,cz��, cx � 0

�16�

sing a probabilistic interpretation, this boundary condition may
e implemented as follows: deviational particles striking the
oundary are specularly reflected with probability �1−�� or dif-
usely reflected with probability �. The fraction of deviational
articles diffusely reflected �corresponding to nb

d� can be treated
sing an algorithm similar to DSMC; i.e., particles striking the
all may be sent back to the computational domain drawn from

b
he appropriate fluxal distribution �here, cx� ,cx�0�. One impor-
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oaded 22 Aug 2010 to 18.80.3.157. Redistribution subject to ASME 
tant difference, however, is that only the net number of deviational
particles is sent back into the domain since pairs of positive and
negative particles correspond to zero net mass flux and can be
cancelled, i.e.,

nb
d


cx�0

cx�
bd3c = −


cx�0

cxfdd3c �17�

Equation �16� reveals a third contribution to the deviational
population, namely, ��nb

e fb−F�. This contribution is associated
with the molecular flux incident upon the wall due to the under-
lying equilibrium distribution; nb

e is determined from

nb
e


cx�0

cx�
bd3c = −


cx�0

cxFd3c �18�

As shown in Refs. �16,18�, this case can be treated by creating
deviational particles from the distribution cx�nb

e�b−F� , cx�0.
The number of particles per unit wall surface area generated in a
time step is

F =
��t

Neff



cx�0

cx�nb
e�b − F�d3c �19�

Let Mmax bound the intergrand in Eq. �19� from above, ca be a
�positive� value such that the integrand is negligible for �c�1�ca,
and A be the surface area of the boundary. The requisite number of
particles is generated by repeating Nb=4AMmaxca

3��t /Neff times:

1. Generate uniformly distributed, random velocity vectors c
such that �c�1�ca and cx�0.

2. If cx�nb
e�b�c�−F�c���RMmax, create a particle with velocity

c and sign sgn�nb
e�b�c�−F�c��. Generated particles are ad-

vected for a random fraction of a time step.

4 Results and Discussion
We have performed extensive validations and performance

evaluations of the proposed method using a variety of test cases.
Here, we present some representative transient and steady-state
results involving heat exchange between two infinite, parallel
walls at different temperatures �T0 and T1=T0+�T where �T
=�T0� and a distance L apart in the x direction. The Knudsen
number is defined as k=c0�0 /L, where �0 is the collision time at
the reference �absolute equilibrium� condition.

We start by discussing the variance reduction achieved by the
present method. Validation is discussed in the following section.

4.1 Relative Statistical Uncertainty. As stated above and as
shown in Refs. �11,16,18�, deviational methods such as the one
presented here exhibit statistical uncertainties that scale with the
local deviation from equilibrium, thus allowing the simulation of
arbitrarily low deviations from equilibrium at a cost that is inde-
pendent of this deviation. Here, we demonstrate this feature by
studying the statistical uncertainty of the temperature in a problem
involving heat transfer.

Figure 1 shows the relative statistical uncertainty in the tem-
perature �	T /�T=	T / ��T0�� as a function of � for steady-state
heat exchange between the two walls �k=1,T0=273 K,�=1�; 	T
is defined as the standard deviation in the temperature measured in
two computational cells in the middle of the computational do-
main, each containing approximately N=950 particles. Our results
are compared with those from a representative nondeviational
method, namely, DSMC. The DSMC performance is calculated
from the theoretical result of Ref. �15� obtained using equilibrium
statistical mechanics �assuming small deviation from equilib-
rium�. We also performed DSMC simulations �of the relaxation-
time model� to verify that this theoretical result remains accurate
for �
0.1. The figure shows that this is indeed the case, provided

that in the equilibrium result �15�,
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	T =
T0


1.5N
�20�

0 is interpreted as the local temperature value.
Figure 1 also shows that for ��0.3 the relative statistical un-

ertainty of the deviational method proposed here remains essen-
ially independent of �, in sharp contrast to “nondeviational”
ethods. Moreover, the variance reduction achieved is such that

ignificant computational savings are expected for ��0.1, par-
icularly when considering that the cost savings scale with the
quare of the relative statistical uncertainty �since statistical noise
ecreases with the square root of the number of samples�.

4.2 Validation. Figure 2 shows a comparison between the
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ig. 1 The relative statistical uncertainty in temperature, �T /�
arallel plates at different temperatures with k=1, �=1, and T0=
re presented and compared with the theoretical prediction †15
ondeviational method. Stars show actual DSMC results verify
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ig. 2 Comparison between the numerical solution of the linea
imulation results „circles… for the heat flux between two paral

ata for k>1 have been transcribed from Ref. †20‡.
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numerical solution of the linearized ���1� relaxation-time model
of the Boltzmann equation �27� and our simulation results for the
heat flux between the two walls, q, for the case �=1. The figure
compares the heat flux normalized by the free-molecular �ballis-
tic� value, �qfm����=��P0c0 / �
��2−���, as a function of k; here,
P0=n0kBT0 is the equilibrium gas pressure. The agreement be-
tween the two results is excellent.

Figure 3 shows a comparison for �=0.826, one of the few cases
for which numerical results for ��1 are readily available �28�.
The agreement is again excellent.

Figure 4 shows a comparison between our simulation results
and an analytical solution �29� of the linearized collisionless Bolt-
zmann equation for oscillatory variation in the boundary tempera-

10
−2

10
−1

ε

as a function of ε for steady-state heat exchange between two
3 K. Simulation results „symbols with error bars on solid line…
or DSMC „dashed line…, which serves as a canonical case of a
that equilibrium theory is reliable up to at least εÉ0.3.
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1/k

ed Boltzmann equation by Bassanini et al. †27‡ „solid line… and
infinite, fully accommodating walls. Some numerical solution
10
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ure, i.e., T1=T0�1+� sin 
t� , ��1, at a frequency 
 that is
arge compared with the inverse acoustic �ballistic� system time
cale �
L /c0�1�. The theoretical solution shows �29� that for
ufficiently large frequencies, the hydrodynamic fields decay
way from the wall proportionally to exp�−�
�w /c0�2/3�, where �w
s the distance from the wall; in other words, “ballistic bounded
ayers” are formed �in contrast to Stokes layers, which are a result
f diffusive transport�. As a result, provided 
 is sufficiently large,
he collisionless description remains valid for systems of arbi-
rarily large size. Figure 4 shows a comparison between the theo-
etical results �29� and the simulation for k=1, �=1, and 
L /c0
40� for the density, flow velocity normal to the wall, tempera-

ure, and heat flux. The analytical solution is based on an
symptotic expansion valid for 
�w /c0�1 �29�; thus, it is not
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valid in small regions close to the wall where the above condition
is not satisfied. Our results show that sufficiently far from the
wall, the agreement between theory and simulation is excellent.

As shown above, although the computational advantage of the
method presented here compared with nondeviational methods in-
creases as the deviation from equilibrium decreases, the amount of
variance reduction achieved is such that considerable computa-
tional savings are obtained even when the deviation from equilib-
rium is not small. Below, we present a comparison between our
results and DSMC simulations of the relaxation-time model in this
latter regime. Specifically, we simulate an impulsive heating prob-
lem where at time t=0 the temperature of the wall at x=−L /2
jumps from T0 to T0+�T; the gas is initially in equilibrium at
temperature T0, and both walls are fully accommodating ��=1�.
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1/k

ed Boltzmann equation by Bassanini et al. †28‡ „solid line… and
infinite walls with �=0.826
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igures 5–7 show a comparison between the two solutions for the
ransient evolution of the temperature field for �=0.1 for k=10,
=1, and k=0.1, respectively. Figure 8 shows a comparison for
=1 and �=0.3. This value of �, which for T0=273 K corre-
ponds to �T=81.9 K, places the deviation from equilibrium into
he early nonlinear regime �previous work �5� shows that weakly
onlinear effects appear at ��0.05�. The agreement between the
wo simulation approaches is excellent in all cases.

Although computational performance is always implementation
ependent, an indication of the speedup achieved by the proposed
ethod can be obtained by considering the following CPU times

or calculations achieving a relative statistical uncertainty of 5%
n the heat flux for �=0.01: A transient variance-reduced calcula-
ion to time t=2�0 at k=0.1 requires approximately 600 s on one
ore of a 3.0 GHz Intel Core 2 Quad processor; a calculation to
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t=0.2�0 at k=10 requires approximately 40 s. In contrast, with all
discretization parameters the same �and thus similar memory us-
age�, DSMC requires approximately 150,000 s to reach the same
final time �t=2�0� at k=0.1 and 65,000 s for k=10�t=0.2�0�. The
CPU times for other values of � can be estimated by noting that
for small �, these times are independent of � for the proposed
method, while for DSMC they scale approximately as �−2. In
steady-state problems—where continuous sampling after steady
state is reached can be performed—the speedup will in general be
smaller because in the low-variance calculations the time to reach
steady state becomes an appreciable part of the total simulation
time.

4.3 A Comment on Linear Conditions. The algorithm de-
scribed in this paper imposes no restrictions on the magnitude of
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fd, although as discussed above, the deviational approach becomes
ignificantly more efficient than traditional approaches when fd is
mall. If fd is sufficiently small for linearization to be appropriate,
nder some conditions, significant gains in computational effi-
iency can be achieved by considering the following. Under linear
onditions, we can write

f loc − F = F�� + 2
ĉ · uloc

c0
+ �ĉ2 −

3

2
	�� �21�

here �=nloc /n0−1, ĉ=c /c0, and �=Tloc /T0−1. This representa-
ion can be very useful for improving the computational efficiency
f update �Eq. �9��. For example, for isothermal constant density
ows, particles may be generated from a combination of a normal
istribution and analytic inversion of the cumulative distribution
unction, which is significantly more efficient than acceptance-
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ig. 7 Impulsive heating problem for ε=0.1 and k=0.1 at t=4�
tars denote DSMC results.
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rejection. Alternatively, Eq. �21� provides a means of obtaining
bounds for �f loc−F�, i.e., �max, and thus reducing the number of
rejections if the acceptance-rejection route is followed.

5 Conclusions
We have presented an efficient variance-reduced particle

method for solving the Boltzmann equation in the relaxation-time
approximation. The method combines simplicity with a number of
desirable properties associated with particle methods, such as ro-
bust capture of traveling discontinuities in the distribution func-
tion and efficient collision operator evaluation using importance
sampling �11�, without the high relative statistical uncertainty as-
sociated with traditional particle methods in low-signal problems.
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2�0, and 40�0. The solid line denotes the present method, and
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n particular, as shown above, the method presented here can cap-
ure arbitrarily small deviations from equilibrium at a cost that is
ndependent of the deviation from equilibrium.

Future work will concentrate on further improving the effi-
iency of deviational methods. Recent work �30� shows that the
atio-of-uniforms method �31� can yield significant efficiency im-
rovements in sampling distributions, while simulating the devia-
ion from a spatially variable equilibrium distribution reduces the
umber of particles required to achieve the same statistical uncer-
ainty.
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omenclature
A � surface area of the boundary
a � acceleration due to an external field
c � molecular velocity vector
f � single-particle distribution function

F � absolute equilibrium distribution
k � Knudsen number �=c0�0 /L�

kB � Boltzmann’s constant
L � plate separation
m � molecular mass

Mmax � upper bound on the difference between fluxal
distributions

n � number density
N � number of particles

Neff � effective number of physical deviational par-
ticles per computational particle

N � number of trial particles
P � pressure
q � heat flux
r � position vector in physical space

R � random number uniformly distributed on �0,1�
t � time

T � temperature
u � flow velocity vector

Vcell � cell volume

reek
� � accommodation coefficient

�w � distance from the wall
�max � upper bound on the difference between

distributions
� � dimensionless temperature difference �=�T /T0�
� � dimensionless temperature �=Tloc /T0−1�
� � relaxation time
	 � standard deviation
� � probability distribution function

 � oscillation frequency
� � dimensionless density �=nloc /n0−1�

ubscripts and Superscripts
b � boundary
c � collision
d � deviational
e � equilibrium

fm � free molecular
loc � local
0 � absolute equilibrium
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