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We show that by considering only the deviation from equilibrium, significant computational savings
can be obtained in Monte Carlo evaluations of the Boltzmann collision integral for flow problems
in the small Mach numbersMad limit. The benefits of this variance reduction approach include a
significantly reduced statistical uncertainty when the deviation from equilibrium is small, and a
flow-velocity signal-to-noise ratio that remains approximately constant with Ma in the Ma!1 limit.
This results in stochastic Boltzmann solution methods whose computational cost for a given
signal-to-noise ratio is essentially independent of Ma for Ma!1; our numerical implementation
demonstrates this for Mach numbers as low as 10−5. These features are in sharp contrast to current
particle-based simulation techniques in which statistical sampling leads to computational cost that is
proportional to Ma−2, making calculations at small Ma very expensive. ©2005 American Institute
of Physics. fDOI: 10.1063/1.1899210g

Interest in numerical solution of the Boltzmann
equation1,2 has recently been revived in connection with
modeling gaseous flows is small-scale devicessmicroelectro-
mechanical systemsd where the Navier–Stokes description is
no longer valid.3,4 This new regime of interest is typically
characterized by problems exhibiting small deviations from
equilibrium; a typical example, and one which we will use
throughout this Letter as an archetypal problem, is low
speed—i.e., low Mach number—flow. Although these flows
are in general more amenable to Boltzmann equation analy-
sis due to the possibility of linearized approaches, they
present significant challenges to the prevalent Boltzmann
simulation tool, known as the direct simulation Monte Carlo
sDSMCd. DSMC is a stochastic simulation method5,6 for
solving7 the nonlinear Boltzmann equation. Unfortunately,
DSMC is not well suited to the simulation of low Mach
number flows: the slow convergence of the statistical sam-
pling of macroscopic observablessin this case the flow ve-
locityd results in a rapid increase in the number of samples
required as the magnitude of these quantities decreases.8 On
the other hand, DSMC is very attractive due to the simplicity
of its intuitive particle-tracking formulation, which not only
appeals to users, but also endows this method with a signifi-
cant efficiency advantagessee belowd.

The objective of the work presented here is to develop
an approach which addresses the limitations of Monte Carlo
approaches in the case of low-speed flows commonly found
in small scale devices. Our approach has focused on efficient
methods for evaluating the collision integral since, in current
approaches, it is by far the most time-consuming part of the
calculation. In particular, we focused on preserving the in-
gredients we feel make DSMC such a powerful and success-
ful approach, namely, simplicity and the efficiency stemming
from the evaluation of the collision integral by importance
sampling, while improving upon the performance of DSMC
and similar approaches. An example of such a “similar” ap-
proach is theD-e method of Tan and Varghese,9 which ad-

dresses high-speed flows; in this method, the collision inte-
gral is evaluated by a Monte Carlo sampling of
representative collisions in a fashion which closely re-
sembles the collision process in DSMC.

In this Letter we report on significant computational im-
provements obtained by exploiting the fact that for low-
speed flows the deviation from equilibrium is small. More
specifically, we can construct methods that are significantly
more efficient by focusing the computational effort on calcu-
lating the value of the collision integral due to thedeviation
from equilibrium. This approach falls in the broad category
of variance reduction10 techniques.

Solving for the deviation from equilibrium has been con-
sidered by Cheremisin11 in a different context, namely, as a
method for removing the stiffness in explicit time integration
of deterministicdiscrete velocity approximations of the Bolt-
zmann equation in the limit of small mean-free path. Cher-
emisin’s deterministic approach, coupled to his interest in
high-speed flows where little, if any, computational gain is
obtained by this decomposition is, perhaps, the reason that
the potential of considering the deviation from equilibrium
within an importance sampling framework has not been re-
alized before.

Here we consider a hard-sphere gas, although our ap-
proach can be easily extended to other interaction models
se.g., variable hard-sphere model5d. Let fsr ,c,td be the ve-
locity distribution function normalized by a reference num-
ber density no and most probable molecular speed,cm

=Î2kTo/m, wherek is Boltzmann’s constant,m is the mo-
lecular mass, andTo is a reference temperature. Herer
=sx,y,zd is the position vector in physical space,c
=scx,cy,czd is the molecular velocity vector, andt is time.
These quantities are nondimensionalized by the mean-free
path l=1/sÎ2pnod

2d, most probable molecular speed, and
the molecular collision timet=Îpl / s2cmd, respectively,
whered is the hard-sphere molecular diameter.5 In the ab-
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sence of external body forces we write the Boltzmann equa-
tion in the following form:
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Îp
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c ·
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wheres=s4Î2pd−1 is the nondimensional differential colli-
sion cross section for hard spheres,f1= fsr ,c1,td, d=d3sv
−cd, d1=d3sv1−cd, d18=d3sv18−cd, d8=d3sv8−cd, v ,v1 are the
precollision velocities,g= uv−v1u is the magnitude of the
relative velocity vector, andv8 ,v18 are the postcollision ve-
locities, related to the precollision velocities through the
scattering angleV. Integration in velocity space extends
from −` to ` unless otherwise stated; similarly, the solid
angle integration is over the surface of the unit sphere. The
formulation given above can be obtained by considering the
weak form of the collision integral2 and choosing the delta
function d3sv−cd as a test function.9

Equations2d and its importance sampling interpretation
motivate a number of Monte Carlo solution schemes9 includ-
ing particle schemesssuch as DSMCd and the method pre-
sented here. Let us write Eq.s2d for the collision integral as

Fdf

dt
G

coll
sr ,c,td = N2

Îp

4
E E E sd18 + d8 − d1 − dd

f f1

N2

3gsd2Vd3v1d
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whereN=efd3v. Noting that f /N is a normalizedprobabil-
ity distribution function, expressions3d lends itself to Monte
Carlo evaluation using importance sampling,10 which is typi-
cally significantly more efficient than the more straightfor-
ward Monte Carlo evaluations. Using importance sampling,
the collision integral can be approximated by

Fdf

dt
G

coll
sr ,c,td =

4pN2

M

Îp

4 o
i=1

M

sd1,i8 + di8 − d1,i − didgisi , s4d

where the precollision velocitiesvi andv1,i are chosen inde-
pendently with probability f /N and f1/N, respectively,
within a finite phase space volumen; here,M is the number
of Monte Carlo samples. Considering only a finite volume of
velocity space is justified2,12 in low-speed flows, provided
this volume is sufficiently large. The scattering angleVi

fwhich does not appear explicitly ins4d, but affects the val-
ues of the collision cross section and the postcollision veloci-
tiesg is chosen with uniform probability on the unit sphere.
The analogy with the collision process in DSMC is apparent.

We now discuss the variance reduction approach pro-
posed here. We begin by considering anarbitrary Maxwell–
Boltzmann distributionfMB and definingfd; f − fMB. Upon
substitution into Eq.s4d, we obtain

Fdf

dt
G

coll
sr ,c,td =

Îp

4
E E E sd18 + d8 − d1 − dds2fMB f1

d

+ fdf1
ddgsd2Vd3v1d

3v, s5d

since the integral involvingfMB f1
MB is identically zerosfMB is

an equilibrium distributiond and interchangingv and v1 has
no effect on the physical situationsi.e., the integrals involv-
ing fMB f1

d and fdf1
MB are equald. Separating terms gives

Fdf

dt
G

coll
sr ,c,td =

Îp

4
E E E sd18 + d8 − d1 − dds2fMB

+ fddf1
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Using the same approach as in the preceding section, we can
approximate integrals6d by the following single sum:

Fdf

dt
G

coll
sr ,c,td =

p3/2

M
N̂o

i=1

M

sdi,18 + di8 − di,1 − did

3sgns2f i
MB + f i

ddsgnsf1,i
d dgisi , s7d

which employs importance sampling by selecting the veloc-
ity v with probability u2fMBsvd+ fdsvdu /eu2fMBsvd+ fdsvdud3v
and v1 with probability ufdsv1du /eufdsvdud3v. Here N̂
;eu2fMBsvd+ fdsvdud3v3eufdsvdud3v and sgnsx_0d= ±1.

As will be seen below, the variance reduction in cases
where fd! fMB is considerable to the extent that at Ma
<Os0.1d this approach provides considerable computational
savings compared to direct methods which uses4d. This is to
be expected, since this approach allows one to avoid consid-
ering a large number of physically occurring collisionssthe
vast majority forfd! fMBd with no net effect. Also note that
the above relations hold forany Maxwell–Boltzmann distri-
bution. In other words,fMB may be chosen to vary as a
function of space and time so as to maximize computational
efficiency by minimizingf − fMB. Applying this approach to a
flow where fd!” fMB se.g., shock waved or choosing the
“wrong” Maxwell–Boltzmann distribution shouldnot affect
the accuracy of the solution, only degrade its efficiency.

One particularly desirable feature of this approach is that
the degree of variance reduction is larger for distributions
that are closer to the equilibrium distributionsi.e., whenfd is
smaller in magnituded, leading to a method that can practi-
cally capture very small deviations from equilibrium. This is
in contrast to current methodsssuch as DSMCd where asfd

→0, fMB dominates the integrand landscape and thus leads
to a statistical noise which is independent offd and a signal-
to-noise ratio that decreases linearly8 with decreasing Mach
numbersMa=Î2/gU whereg is the ratio of specific heats
and U is the nondimensional local velocityd. On the other
hand, in the method presented here, the integrand landscape
and consequently the statistical error10 scale withfd; conse-
quently, asfd→0, the statistical error decreases linearly with
the signal leading to a constant signal-to-noise ratio.

We now proceed with some numerical examples and a
brief description of our numerical implementation; a compre-
hensive discussion of numerical implementation details will
be given in a future communication. In the interest of sim-
plicity, Eq. s7d is evaluated by choosing precollision veloci-
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ties to lie on computational nodes; this constraint can be
relaxed by using a suitable interpolationsaccounting for dis-
continuities in velocity spaced. Thed functions in Eq.s7d are
approximated by

dsvd < fsvd ; H1/h3 if ivi` ø h/2,

0 otherwise.
J s8d

We see that if we takeh equal to the nodal spacing, this
will result in each “collision event” contributing to the value
of the collision integral at four nodes, namely the nodes that
are closest to each of the two precollision and postcollision
velocities. In other words, the collision integral at each node
is taken to be the average of the collision integral for veloci-
ties near that node; this can be seen more clearly by consid-
ering the weak form of the collision integral withf as a test
function. This approach can also be interpreted as a method
akin to kernel density estimation, a technique for nonpara-
metric probability distribution estimation.13,14 Higher accu-
racy can be obtained by makingh smaller; for all results
discussed in this Letter, we use the approximations8d with h
equal to the nodal spacing. Although the fine spacing used
here results in a sufficient degree of conservation, it is im-
portant to note that the above approximation will, in general,
lead to a nonconservative scheme. This is a common issue
associated with Boltzmann solution methods15 and a number
of approaches to remedy this have been proposed; some of
the more notable ones include a recent approach11 in which
nodal contributions are distributed according to weights
which ensure conservation of mass, momentum, and energy.
Schemes which address lack of conservation by applying
corrections to the newly updated distribution function have
also been proposed.15,16 This topic is not a central point of
this work, so we will use the simpler method proposed
above.

Equation s1d is solved by splitting the time evolution
into a “homogeneous” collision and a collisionless advection
step.15 The advection step is treated by a first-order finite-
volume discretization17 ssubject to a Courant stability condi-
tiond; within the collision step the distribution function is
updated by a first-order Euler step. Fluxal boundary condi-
tions follow from specifying the distribution function for ve-
locities satisfyingn ·c.0, wheren is the wall normal point-
ing into the gassi.e., corresponding to particles leaving the
walld, subject to the constraint of zero net mass flux to the
wall.12 A diffuse Maxwell reflection was assumed.

A number of higher order schemes for integrating the
advection equation are available, including a fourth-order ac-
curate finite difference scheme9 and a number of implicit
schemes;17 an extensive discussion of this topic can be found
in the latter reference. Second-order-accuratesin timed split-
ting schemes are also possible by appropriate
symmetrization.18 As will be seen below, the first-order
schemes used here provide adequate accuracy for the valida-
tion purposes of this work. An iterative method for steady-
state problems,15 based on the same spatial discretization,
and suitable for the present collision-integral evaluation
method has also been developed and will be presented in a
future communication. This method was used to solve the

pressure driven flow problem discussed below.
The approach for evaluating the collision integral pro-

posed here can be applied to higher spatial dimensions di-
rectly since it in no way depends on the dimensionality of the
advection operator. Depending on the method used, however,
discretization of the advection operator may require more
care since discontinuities in the distribution function propa-
gate into the gas in the case of convex boundaries.19

Figure 1 shows a comparison between the method pro-
posed here and DSMC for a time-dependent Couette flow. In
this test case, the gas is at equilibrium with zero velocity at
time t=0 when the walls atx= ±5 are impulsively acceler-
ated to a velocity of ±0.1. Velocity profiles are shown fort
=1,3,6 and at steady state. This figure shows an excellent
level of agreement with the velocity profiles calculated using
DSMC. Our results also show that higher moments of the
distribution function are also accurately captured; these re-
sults will be presented in a future communication.

FIG. 2. Pressure-driven flow at Kn=0.8/Îp ssolid lined and Kn=4/Îp
sdotted lined. Comparison between our results and the numerical solutions
sRef. 12d of the linearized Boltzmann equationscirclesd. u* is the nondi-
mensional flow velocity normalized by the nondimensional logarithmic
pressure gradients−1/PdsdP/dxdL.

FIG. 1. Normalized velocity profile att=1,3,6 and steady-state for unsteady
Couette flow with wall velocity ofuwall= ±0.1. Comparison between the
method proposed here and DSMC. The gas is initially at equilibrium.
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Figure 2 shows our results for pressure driven flow in a
two-dimensional channel of transverse dimensionL. This
problem was formulated in one physical dimension by using
Cercignani’s20 linearization proceduressmall pressure gradi-
entd; although immaterial for this problem, we retained our
full nonlinear formulation for the collision integral. Our re-
sults are compared to numerical solutions of the linearized
Boltzmann equation12 for two transition-regime Knudsen
numberssKn=l /Ld. The agreement is very good. Note that
the pressure gradient in our calculations was such that the
nondimensional flow speed was of the order of 10−5. Essen-
tially noise-free calculations such as shown in Fig. 2 at flow
speeds of this order would have been impossible to perform
using DSMC with our current computational resources.

As explained above, the most desirable feature of the
method proposed here is the removal of the statistical uncer-
tainty associated with the equilibrium part of the distribution
function. This endows the method with the following desir-
able properties: first, a significant reduction of relative statis-
tical error compared to other direct simulation methods at
Mach numbers as high asOs0.1d; second, a statistical uncer-
tainty which scales with the deviation from equilibrium lead-
ing to a relative statistical errorsdefined as the one standard
deviation in uncertainty divided by the characteristic
velocity8d which remains essentially constant with Mach
number. This is illustrated in Fig. 3. Note that the level of
stochastic error depends on the number of samples used in
evaluating sums7d; two sampling levels are shown in this
figure. In contrast, in DSMC the relative statistical error in
velocity due to statistical noise scales as Ma−1 for small
Mach numbers;8 this implies that the number of samples re-
quired to obtain a given level of relative statistical error
scales as Ma−2. Typical DSMC scaling performance is shown
for comparison on the same figure. Note that the crossover
point is implementation dependent and difficult to determine,
especially if complicating factors such as sample correlations
are taken into account.

Our approach eliminates the most important disadvan-

tage associated with the use of current Monte Carlo ap-
proaches for microscale flows, namely, the poor noise to sig-
nal scaling with decreasing Mach number. More specifically,
the approach proposed here exhibits an approximately con-
stant relative uncertainty as the Mach number decreases, im-
plying that calculations at arbitrarily small Mach numbers
are possible at no extra cost. Computational savings com-
pared to other direct solution methods can be expected when
the deviation from equilibrium is smallersin the sense that
the function variance10 is smallerd than the full distribution
function, a condition which is satisfied by a wide variety of
flows. As a direct outcome of the present research, we envi-
sion a modified DSMC-like procedure which simulates only
the deviation from equilibrium.
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