Enhancement of single-photon sources with metamaterials

M. Y. Shalaginov¹, V. V. Vorobyov², S. Bogdanov¹, A. S. Lagutchev¹, A. V. Kildishev¹, A. V. Akimov², A. Boltasseva¹, and V. M. Shalaev¹ ¹School of Electrical & Computer Engineering & Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA; ²Russian Quantum Center, Moscow, Russia

Atom-like centers in diamond

emission spectrum

@ 300 K

Nitrogen-vacancy (NV) centers in diamond are promising crystalline defects for applications in quantum information technologies and sensing [1]

single-photon source

- photostable
- operates at room temperature
- broadband emission spectrum

spin-based quantum memory unit

- long spin coherence time (~ms)
- can be read optically out

Efficiency of the NV center as a quantum system can be substantially improved by enhancing its emission properties: rate and directionality.

Metamaterial fabrication

measured by spectroscopic

ellipsometry

- possible to grow ultrathin epitaxial layers
- CMOS-compatible
- extreme thermal stability

Broadband emission enhancement with hyperbolic metamaterials

Transition probability per unit of time from the state $|i\rangle$ to a set of final states $|f\rangle$ is given by (1st order perturbation)

PDOS~
$$k_{max}^3$$
 $\Gamma_{i\rightarrow f} = \frac{2\pi}{\hbar} \left| \left\langle f \left| H' \right| i \right\rangle \right|^2 \times PDOS$

Metamaterials with hyperbolic dispersion (HMM) can provide large photonic density of states (PDOS) in a broad wavelength range [2] and enhance the emission rate.

uniaxial, extremely anisotropic medium

hyperbolic isofrequency surface

Setup to study emission properties

Observation of single-photon emission enhancement

Determined the single-photon nature of the emitters.

lifetime are 4 and 11.4, respectively.

The average and largest decreases in The average enhancements are 1.8 and 4.7.

Improvement in radiation pattern

Outcoupling of high-k modes on surface defects

Superlattice defects with the size of ~50 nm can scatter into far-field the high-k modes with $k_x/k_0 \sim 20$. In FEM simulations, we showed that due to these defects on HMM the collected emission can be increased further.

Conclusions

- Broadband enhancement of single-photon emission from NV centers in nanodiamonds using CMOS-compatible hyperbolic metamaterial;
- Up to 5 times more emission can be collected compared to coverslip substrate due to improved directionality and plasmons outcoupling by growth defects.

References

[1] Doherty et al., Phys. Rep. 528, 1 (2013); [2] Jacob et al., Appl. Phys. B, 100, 1, (2010) [3] Naik et al., PNAS 111, 21 (2014); [4] Shalaginov et al., LPR 9, 1 (2015)

Acknowledgements

