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How might we explain  these flexible, seemingly 
effortless judgments? This chapter pre sents an answer 
centered at the notion of physical object repre sen ta-
tions (PORs), a basic system of knowledge that supports 
perceiving, learning, and reasoning about all the 
objects in our environment— their shapes, appear-
ances, affordances, substances, and the way they react 
to forces applied to them. Our goal  here is to outline a 
computational framework for studying the form and 
content of PORs in the mind and brain. PORs can be 
considered an interface between perception and cogni-
tion, linking what we perceive to how we plan our 
actions and talk about the world. Despite their funda-
mental role in perception, many impor tant questions 
about object repre sen ta tions remain open. What kind 
of information formats or data structures underlie 
PORs so as to support the many ways in which  humans 
flexibly and creatively interact with the world? How can 
properties of objects be inferred from sensory inputs, 
and how are they represented in neural cir cuits? How 
can  these repre sen ta tions integrate sense data across 
vision, touch, and audition?

 After introducing the computational ingredients of 
POR theory from a reverse- engineering perspective, we 
review recent work that is beginning to answer some of 
 these questions. We focus on three case studies: (1) how 
PORs can explain  human judgments in intuitive phys-
ics, across a broad range of physical outcome predic-
tion scenarios; (2) how PORs provide a substrate for 
physically mediated object shape perception in scenar-
ios where traditional visual cues fail and a natu ral sub-
strate for multimodal (visual- haptic) perception and 
crossmodal transfer; and (3) how in one domain of 
high- level vision— face perception— PORs might be 
computed by neural cir cuits, and how thinking in terms 
of PORs suggests a new way to interpret multiple stages 
of pro cessing in the primate brain.

Physical Object Repre sen ta tions

How, in engineering terms, can we formalize PORs? 
 There are two main aspects to our proposal. The first is 

abstract Theories of perception typically assume that the 
goal of sensory pro cessing is to output  simple categorical 
labels or low- dimensional quantities, such as the identities 
and locations of objects in a scene. But  humans perceive much 
more in a scene: we perceive rich and detailed three- 
dimensional shapes and surfaces, substance properties of 
objects (such as  whether they are light or heavy, rigid or soft, 
solid or liquid), and relations between objects (such as which 
objects support, contain, or are attached to other objects). 
 These physical targets of perception support flexible and 
complex action as the substrate of planning, reasoning, and 
problem- solving. In this chapter we introduce and argue for 
a theory of how  people perceive, learn, and reason about 
objects in our sensory environment in terms of what we call 
physical object repre sen ta tions (PORs). We review recent work 
showing how this explains many  human judgments in intui-
tive physics, provides a basis for object shape perception when 
traditional visual cues are not available, and, in one domain 
of high- level vision, suggests a new way to interpret multiple 
stages of hierarchical pro cessing in the primate brain.

Consider the scenes in figure 34.1A and B. In each case 
we see a set of apples in a certain geometric arrangement 
(figure 34.1C, D). But we also see so much more: We see 
fine- grained details of their three- dimensional (3- D) 
shapes. We infer their physical properties and relation-
ships: which objects are supporting which  others and how 
heavy or light or hard or soft they would feel if we picked 
them up. We can predict  whether the stack would topple 
if the  middle apple on the bottom row  were removed, 
and we can plan how to pick the designated apple with-
out making the rest unstable. We can also “see” that pick-
ing the apple in figure 34.1B is much easier and can be 
achieved with just one action using just one hand (as 
opposed to the two hands or a more complex sequence of 
actions needed for the stack in figure 34.1A).  These abili-
ties are pre sent even early in childhood (figure 34.1E) 
and are likely shared with other species, particularly non-
human primates (figure  34.1F). They are general pur-
pose and can be used to think about many dif fer ent 
kinds of physical scenarios and judgments: For instance, 
can you arrange a set of objects into a stable tower using 
wooden blocks or Lego bricks (as in figure 34.1E)? What 
about using stones or bricks or cups or even apples?
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including 3- D shape, mass, or support relations, are 
latent variables that need to be inferred given sense 
inputs; they are products of perception. Probabilistic 
modeling provides the mathematical language to rigor-
ously and unambiguously specify the domain and task 
being studied, and to explain how, given sensory inputs, 
latent properties and relations in the under lying physi-
cal scene can be reliably inferred through some form of 
approximate Bayesian inference (see Kersten and Sch-
rater [2002] for an in- depth treatment of this perspec-
tive). The probabilistic models we build to capture 
PORs can be seen as a special case of probabilistic pro-
grams, or generalizations of directed graphical models 
(Bayesian networks) that define random variables and 
conditional probability distributions relating variables 
using more general data structures and algorithms 
than simply graphs and matrix algebra (see Ghahra-
mani [2015] and Goodman and Tenenbaum [2016] for 
an introduction).

The POR framework is closely related to analysis- by- 
synthesis (AwS) accounts of perception: the notion that 
perception is fundamentally about inverting the causal 
pro cess of image formation (Helmholtz & Southall, 
1924; Rock, 1983). In this view, perceptual systems 
model the causal pro cesses by which natu ral scenes are 
constructed, as well as the pro cess by which images are 

a working hypothesis about the contents of PORs. We 
draw on tools developed for video game engines (Greg-
ory, 2014), including graphics (Blender Online Com-
munity, 2015) and physics engines (Coumans, 2010; 
Macklin, Müller, Chentanez, & Kim, 2014) and plan-
ning engines from robotics for grasping and other 
humanoid motions (Miller & Allen, 2004; Todorov, Erez, 
& Tassa, 2012; Toussaint, 2015).  These tools instantiate 
simplified but algorithmically tractable models of real-
ity that capture our basic knowledge of how objects 
work and how our bodies interact with them. In  these 
systems, objects are described by just  those attributes 
needed to simulate natural- looking scenes and motion 
over short timescales (~2 seconds): 3- D geometry, sub-
stance or mechanical material properties (e.g., rigid-
ity), optical material properties (e.g., texture), and 
dynamical properties (e.g., mass). Video game engines 
provide causal models in the sense that the pro cess by 
which the data (i.e., natural- looking scenes) are gener-
ated has some abstract level of resemblance to its cor-
responding real- world pro cess in a form efficient enough 
to support real- time interactive simulation.

Second, we embed  these simulation engines within 
probabilistic generative models. Physical properties of 
an object are not directly observable in the raw signals 
arriving at our sensory organs.  These properties, 

Figure  34.1 A and B, How would you pick up the apples 
indicated while maintaining a stable arrangement of the 
other objects? It is easy to see that you  will likely need to 
touch more objects (and prob ably use two hands) in panel 
(A), while the apple in panel (B) can be removed on its own 
with just one hand. C and D, What is where? Semantic 

segmentation maps showing class labels and locations of 
objects from panels (A and B). E, A child playing with stack-
ing cups. Screenshot from https:// www . youtube . com / watch 
? v �"�dEnDjyWHN4A. F, An orangutan building a tower with 
large Lego- like blocks. Screenshot from https:// www . youtube 
. com / watch ? v �"�MxRJjzSY _ JE&t�"�21s. (See color plate 37.)
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although they require more algorithmic machinery to 
do so.

Intuitive Physical Reasoning

Having overviewed the basic components of PORs, we 
now turn to recent computational and behavioral work 
exploring their application in several domains. We begin 
with intuitive physics, in the context of scene under-
standing. Recall the introductory example displayed in 
figure 34.1. The POR framework was first introduced 
to answer  these kinds of questions, in a form similar to 
how we characterize it  here, by Battaglia, Hamrick, and 
Tenenbaum (2013). They showed that approximate 
probabilistic inferences over simulations in a game- style 
physics engine could be used to perform many dif fer ent 
tasks in blocks- world type scenes. While physics engines 
are designed to be deterministic, Battaglia, Hamrick, 
and Tenenbaum (2013) found that  human judgments 
 were best captured using a probabilistic model that 
combined the deterministic dynamics of the physics 
engine with probability distributions over the uncer-
tain geometry of objects’ initial configurations and/or 
shapes, their physical attributes (e.g., their masses), and 
perhaps the nature of the forces at work (e.g., friction 
or perturbations of the supporting surface).

In one version of this model (figure  34.2), input 
images comprised one or more static 2- D views of a 
tower of blocks in 3- D that might fall over  under grav-
ity, and the task was to make vari ous judgments about 
what would or could happen in the near  future. Object 
shapes and physical properties  were assumed to be 
known, but the model had to estimate the 3- D scene 
configuration for the blocks. This inference step used 
AwS with a top- down stochastic search- based (MCMC) 
procedure: Block positions in 3- D are iteratively and 
randomly adjusted  until the rendered (synthesized) 
2- D images approximately match the input images; 
multiple runs of this procedure yield slightly dif fer ent 
outputs, representing samples from an approximate 
Bayesian posterior distribution on scenes given images. 
Once  these physical object repre sen ta tions are estab-
lished, they support a wide range of dynamical infer-
ences that go well beyond the purely static content in 
the perceptual input. How likely is the tower to fall? If 
it falls, how much of the tower  will fall? In which direc-
tion  will the blocks fall? How far  will they fall? If the 
 table supporting the tower  were bumped, how many or 
which of the blocks would fall off the  table? If the tower 
is unstable, what kind of applied force or other action 
could hold it stable?

To see how  these judgments are computed, consider 
answering the questions: How likely is the tower to fall? 

formed from scenes; this is a mechanism for the hy po-
thet i cal “synthesis” of natu ral images, in the style of 
computer graphics, by using a graphics engine. Percep-
tion (or “analy sis”) is then the search for or inference to 
the best explanation (or plausible explanations) of an 
observed image in terms of this synthesis, which in the 
POR framework can be implemented using Bayesian 
inference.

Most mechanisms for approximating Bayesian infer-
ence that have traditionally been proposed in analy sis 
by synthesis (e.g., Markov chain Monte Carlo, or 
MCMC) seem implausible when considered as an algo-
rithmic account of perception: they are inherently iter-
ative and almost always far too slow relative to the 
dynamics of perception in the mind or brain. We draw 
on recent advances in machine learning and probabi-
listic programming (including deep neural networks, 
particle filters or sequential importance samplers, 
data- driven MCMC, approximate Bayesian computa-
tion, and hybrids of  these methods) to construct effi-
cient and neurally plausible approximate algorithms 
for the physical inference tasks specified with our prob-
abilistic models.

While our focus in this chapter is perception, the 
domain of the POR framework is more general. With a 
causal model of the world (including its state- space 
structure— i.e., object dynamics and interactions in a 
physics engine) and a planner based on a body model, 
the POR framework transforms the physical environ-
ment around us into something computable, naturally 
supporting many aspects of cognition, including rea-
soning, imagery, and planning for locomotion and 
object manipulation via simulation- based inference 
and control algorithms. In this sense, PORs express 
functionality somewhat analogous to the “emulators” 
of emulation theory (Grush, 2004), an  earlier proposal 
for an integrated account of perception, imagery, and 
motor planning that also fits broadly within a Bayesian 
approach to inference and control. A key difference is 
the language of repre sen ta tion for state, dynamics, and 
observation. Emulation theory was formulated using 
classical ideas from estimation and control, such as the 
Kalman filter: body and environment state are repre-
sented as vectors, dynamics are linear, and observa-
tions are linear functions of the state with Gaussian 
added noise. The computations supported are simpler 
but much less expressive than in the POR framework, 
where state is represented with structured object and 
scene descriptions, dynamics using physics engines, 
and observation models using graphics engines. PORs 
can thus explain how cognitive and perceptual pro-
cesses operate over a much wider range of physical 
scenarios, varying greatly in complexity and content, 
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magnetism from examining how objects move and col-
lide in planar motion (Ullman, Stuhlmuller, Good-
man, & Tenenbaum, 2018; see also the seminal  earlier 
work on probabilistic inference in collisions by San-
born, Mansinghka, and Griffiths [2013]); and predic-
tions about the be hav ior of liquids such as  water and 
honey (Bates, Yildirim, Battaglia, & Tenenbaum, 2015; 
Kubricht et al., 2016), and granular materials such as 
sand (Kubricht et al., 2017), falling  under gravity. Taken 
together,  these studies show how the POR framework 
provides a broadly applicable, quantitatively testable, 
and functionally power ful computational substrate for 
everyday intuitive physical scene understanding.

How might PORs and their associated computations 
be implemented in neural hardware? As a first step 
 toward addressing this question, a recent functional 
magnetic resonance imaging (fMRI) study in  humans 
aimed to localize cortical regions involved in many of 
the intuitive physics judgments discussed above (Fischer, 
Mikhael, Tenenbaum, & Kanwisher, 2016). Fischer 
et al. (2016) found a network of parietal and premotor 
regions that was differentially activated for physical 
reasoning tasks in contrast to difficulty- matched non-
physical tasks (such as color judgments, or social pre-
dictions) with the same or highly similar stimuli.  These 
regions  were consistent across multiple experiments 
controlling for dif fer ent task demands and across dif-
fer ent visual scenarios. A recent fMRI study in macaques 
found a similar brain network differentially recruited 
for analogous physical versus nonphysical stimulus con-
trasts, in a passive- viewing paradigm (Sliwa & Freiwald, 
2017).  These networks closely overlap with networks for 
action planning and tool use in  humans (see Gallivan 
and Culham [2015] for a review) and the mirror neu-
ron system in monkeys that is thought to be involved in 
action understanding (Rizzolatti & Craighero, 2004), 
consistent with the proposal that PORs provide a bridge 
between perception and cognitive functions of action 

How much of this tower is likely to fall? One way to 
make  these judgments is to run a small number of for-
ward simulations using a physics engine (implemented, 
e.g., using Bullet & Coumans, 2010), starting from the 
sample of configurations returned by the probabilistic 
3- D scene inference procedure.  These simulations run 
 until all objects stop moving, or some short time limit 
has elapsed. The distribution of their outcomes repre-
sents a sample of the Bayesian posterior predictive dis-
tribution on  future states, conditioned on the input 
image and the model’s repre sen ta tion of physics. Pre-
dictive judgments such as  those above can then be cal-
culated by simply querying each sample and 
aggregating: for example, the model’s judgment of 
“How likely is the tower to fall?” is calculated as the 
average number of simulations in which the tower fell 
(relative to the total number of simulations ran); “How 
much of the tower is likely to fall?” is calculated by aver-
aging the proportion of blocks that fell in each 
simulation.

Strikingly, Battaglia, Hamrick, and Tenenbaum 
(2013) found that only a few such posterior samples 
(they estimated typically three to seven samples per 
participant, per trial), generated from the highly 
approximate simulations of video game physics engines 
 under perceptual uncertainty,  were sufficient to account 
for  human judgments across a wide range of tasks with 
high quantitative accuracy. In the last several years, a 
growing number of behavioral and computational 
studies have developed approximate probabilistic simu-
lation models of the PORs under lying our everyday 
physical reasoning abilities. Studies have examined 
intuitive judgments of mass from how towers do or 
 don’t fall (Hamrick, Battaglia, Griffiths, & Tenenbaum, 
2016); predictions about  future motions (Smith, Batta-
glia, & Vul, 2013b; Smith, Dechter, Tenenbaum, & Vul, 
2013a); judgments of multiple physical properties (e.g., 
friction as well as mass) and latent forces such as 

Figure 34.2 A schematic of the POR framework applied to 
intuitive physical reasoning with a tower of wooden blocks. 
Left to right, The input image; inference to recover the 3- D 
scene and physical properties of objects; physics engine 

simulation to predict near- future states given the inferred 
initial configuration; and questions that can be answered and 
tasks that can be performed based on such simulations.
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image. Consider seeing an object that is heavi ly or even 
entirely occluded, as when draped by a cloth (fig-
ures 34.2B and 34.3A). It is likely you  haven’t seen air-
planes or bicycles occluded  under a cloth before, but it 
is still relatively easy to pair an unoccluded object with 
its randomly rotated and occluded counterpart. Of 
course, shading cues allow you to see the contours of 
the cloth as an occluding surface. Yet  these cues alone 
do not explain how you perceive the shape of the under-
lying occluded object, which together with the physical 
properties of the cloth is the real cause of the shading 
patterns observed.

Most con temporary approaches to visual object per-
ception emphasize learning to “untangle” or become 
invariant to sources of variation in the image (DiCarlo 
& Cox, 2007; Serre, Oliva, & Poggio, 2007). On this 
account, a pro cessing hierarchy (such as a deep neural 
network) progressively transforms sensory inputs  until 

planning, reasoning, and prob lem solving.  Future 
experimental work using physiological recordings, 
informed by some of the more neurally grounded mod-
els discussed  later in this chapter, can now target neural 
populations in  these brain networks in order to eluci-
date the neural cir cuits under lying intuitive physics.

Physics- Mediated Object Shape Perception

We now turn to the role of PORs in a more purely per-
ceptual task: perceiving object shape. Vision scientists 
traditionally study many cues as routes to 3- D shape, 
such as contours, shading, stereo disparity, or motion. 
But physics can also be an essential route to shape, 
especially when  these traditional cues are unavailable 
or insufficient; such cues may be necessary for the cor-
rect recovery of a target shape but fail to capture all of 
the causal pro cesses under lying the appearance of an 

Figure  34.3 A, Example pairs of unoccluded objects and 
cloth- occluded matches in dif fer ent poses. B, An example 
trial from Yildirim, Siegel, and Tenenbaum (2016), where the 
task is to match the unoccluded object to one of the two 
occluded objects. C, A schematic of the POR framework 
applied to the object- under- cloth task. Left to right, The input 
image; inference to recover the 3- D shape of the unoccluded 
object and imagining a cloth positioned above it; physics 

engine simulation to the predict dropping of the cloth on the 
object shown at two dif fer ent  angles; and graphics to predict 
what the resulting scene would look like. D, A multisensory 
causal model combining a graphics engine with a grasp- 
planning engine. E, Example novel objects from Yildirim 
and Jacobs (2013), rendered visually and photographed  after 
3- D printing using plastic.
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or haptic rendering engine, based on a kinematic grasp 
planner, that generates the way a shape feels in the 
hand given a certain grasp trajectory. Bayesian infer-
ence then allows the model to estimate a 3- D shape that 
explains inputs from  either visual or haptic channels, 
or both, as well as to automatically and without further 
training transfer that shape from objects first encoun-
tered in one modality (e.g., visually) to recognize how 
they would be perceived in another modality (e.g., hap-
tically). Yildirim and Jacobs (2013) found that this 
model accounted for the per for mance of  human par-
ticipants in a visual- haptic crossmodal categorization 
task (example stimuli are shown in figure 34.3E).  These 
results  were extended to a visual- haptic shape similarity 
judgment task (Erdogan, Yildirim, & Jacobs, 2015).

The idea that shared neural repre sen ta tions support 
object perception across multiple sensory modalities is 
consistent with a number of fMRI studies (e.g., Amedi, 
Jacobson, Hendler, Malach, & Zohary, 2002; James 
et  al., 2002; Lacey, Tal, Amedi, & Sathian, 2009; Lee 
Masson, Bulthé, Op de Beeck, & Wallraven, 2016; Tal & 
Amedi, 2009). The POR framework provides explicit 
hypotheses as to what the format of such multisensory 
neural repre sen ta tions might be. Erdogan, Chen, Gar-
cea, Mahon, and Jacobs (2016) used fMRI to test one 
such hypothesis introduced in their  earlier computa-
tional work (Erdogan, Yildirim, & Jacobs, 2015). In 
addition to finding that visual and haptic exploration 
of novel objects gave rise to similar patterns of neural 
activity in the lateral occipital cortex (LOC), they also 
found that this activity could be crossmodally decoded 
to the part- based 3- D object structure mentioned above 
(Erdogan, Yildirim, & Jacobs, 2015). This activity may 
be a result of visual imagery as opposed to haptic pro-
cessing; however, other work suggests that imagery only 
minimally activates LOC (Amedi, Malach, Hendler, 
Peled, & Zohary, 2001; James et  al., 2002). Further 
experimental work along  these lines, aiming to quanti-
tatively test specific POR models and ideally extending 
into physiological recordings from neural populations, 
could lead to a more precise understanding of the neu-
rocomputational basis of multisensory perception and 
crossmodal transfer.

Reverse- Engineering Ventral Visual Stream 
Computations Using Physical Object 
Repre sen ta tions

We now turn to discussing how the POR framework can 
illuminate aspects of the neural cir cuits under lying 
perception. Even though traditional AwS methods can 
recover PORs from sense inputs,  these algorithms 
(based on top- down, iterated stochastic search) do not 

reaching an encoding that is diagnostic for a par tic u lar 
object shape or identity and invariant to other  factors 
(Riesenhuber & Poggio, 1999).  These approaches can 
perform very well when trained to ignore a given class 
of variations, but to achieve optimal per for mance, they 
must be trained anew (or at least “fine- tuned”) in de-
pen dently for  every new kind of invariance. They do 
not show instantaneous (zero- shot) invariance for new 
ways an object might appear, such as  those arising from 
an occluding cloth.

The POR framework provides a dif fer ent approach in 
which the goal is not learning invariances but explain-
ing variation in the image with re spect to the causal 
pro cess generating images from 3- D physical scenes 
(e.g., Mumford, 1997; Yuille & Kersten, 2006). For the 
object- under- cloth task, this pro cess can be captured 
by composing (1) a physics engine simulating how cloth 
drapes over 3- D rigid shapes, (2) a graphics engine 
simulating how images look from the resulting scenes 
(occluded or unoccluded), and (3) a probabilistic infer-
ence engine. The inference engine inverts the graphics 
pro cess to recover 3- D shapes from unoccluded images 
and then imagines likely images  under dif fer ent ways 
 these shapes could be rotated and draped  under cloth 
(figure 34.3C). Yildirim, Siegel, and Tenenbaum (2016) 
presented preliminary evidence that such a mechanism 
fits  human judgments in a match- to- sample task, akin 
to figure 34.3B, across four difficulty levels. In contrast, 
a deep neural network trained for invariant object rec-
ognition, but not specifically for scenes involving cloth- 
based occlusion, could fit the easiest  human judgments 
but failed to generalize above chance for the harder 
judgments.  These results illustrate a key advantage of 
the POR framework: the ability to generalize to novel 
settings not by requiring further training but by com-
bining or composing existing causal models.

The POR framework supports combining causal 
models not only across multiple visual cues but also 
across sensory modalities. This is  because the contents 
of PORs are not specific to vision or any single modality 
but instead capture the physical properties of objects 
that are the root  causes of sense data in  every modality, 
via appropriate modality- specific “rendering” engines 
(such as a graphics engine in vision). Embedded in a 
framework for probabilistic inference to invert  these 
renderers, PORs provide a basis for perceiving shape 
from any form of sense data, as well as for multisensory 
integration and cross- modal perception. Consider the 
POR- based model shown in figure 34.3D: Starting from 
a probabilistic generative model over part- based body 
shapes in 3- D, the multisensory causal model combines 
a visual graphics engine that generates the 2- D appear-
ance of each shape viewed in a given pose with a touch 
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answer the challenge: How do our brains compute rich 
descriptions of scenes, with detailed 3- D shapes and 
surface appearances, in much less than a second?

A new class of computational models aim to combine 
the best aspects of  these two approaches by using CNNs 
or recurrent networks to map images to their under-
lying scene descriptions, thereby accomplishing other-
wise computationally costly inference in one or a few 
bottom-up passes on the image (Eslami et  al., 2018; 
George et  al., 2017; Kulkarni, Kohli, Tenenbaum, & 
Mansinghka, 2015; Yildirim, Kulkarni, Freiwald, & 

readily map onto neural computation. Many authors 
have thus preferred feedforward network models, most 
recently deep convolutional neural networks (CNNs), 
which are both more directly relatable to neural circuit- 
level mechanisms and more consistent with the fast 
bottom-up pro cessing observed in perception. How-
ever, CNNs, typically trained for invariant object recog-
nition or “untangling,” do not explic itly address the 
question of how vision recovers the causal structure of 
scene and image formation. Therefore, neither tradi-
tional approaches to AwS nor modern CNNs  really 

Figure 34.4 A, Samples from a modern 3- D graphics model 
of a  human face, yielding near photorealistic images (Credit: 
NVIDIA and University of Southern California Institute for 
Creative Technologies). Across the three images of this face, 
in addition to knowing that identity is preserved, we can also 
appreciate the details of the face’s 3- D shape and texture, the 
subtleties of expression, that vary or remain constant across 
images. B, Despite their unfamiliarity, most observers can 
match the identity of the naturalistic face on the left to one 
of the textureless  faces (“sculptures”), which must rely on a 
sense of 3- D shape. C, Schematic of the efficient AwS 
approach, including a probabilistic generative model of face 

image formation (panel i) and the recognition network (panel 
ii). Layers f1 through f6 indicate the dif fer ent components of 
the recognition network. Trapezoids show single or multiple 
layers of transformations where a layer can consist of convolu-
tion, normalization, and a nonlinear activation function. 
Yildirim et  al. (2019) found that transformations across the 
model layers f3, f4, and f5 closely captured the transforma-
tions observed in the neural data from ML/MF ( middle lat-
eral and  middle fundus areas) to AL (anterior lateral area) to 
AM (anterior medial area; Freiwald & Tsao, 2010). (See color 
plate 38.)
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(IT) cortex from  middle lateral and  middle fundus 
areas (ML/MF) to anterior lateral area (AL) to ante-
rior medial area (AM)— the three sites in the monkey 
face patch system— with re spect to the similarity struc-
ture of the population- level activity in each stage 
(Freiwald & Tsao, 2010). Both in the neural data and in 
the model,  these similarity structures progressed from 
view- based to mirror- symmetric to view- invariant repre-
sen ta tions. Alternative models, including a number 
implementing the untangling hypothesis, did not cap-
ture  these transformations. The efficient A w S model 
also accurately matched  human error patterns in psy-
chophysical experiments, including experiments 
designed to determine how flexibly  humans can attend 
to  either the shape or texture components of a face 
stimulus (figure 34.4B). Fi nally, the recognition model 
suggested an interpretable account of some intermedi-
ate repre sen ta tions in this hierarchy: in par tic u lar, 
population- level similarity structure of  middle face 
patches (ML/MF) can be well accounted for by the 
similarity structure arising from intermediate surface 
repre sen ta tions, such as intrinsic images (normal maps 
or depth maps for surface geometry and albedos for 
surface color) or a 2.5- D sketch.

The efficient AwS approach thus offers a potential 
resolution to the issue of interpretability in systems 
neuroscience (Yamins & DiCarlo, 2016). In addition to 
assessing accounts of the brain in terms of how much 
variance in neural firing rates they explain, the effi-
cient AwS approach suggests that computational neuro-
scientists could aim for “semi- interpretable” models of 
perception where the recognition network as a  whole 
can be understood as inverting a causal generative 
model, and subpopulations of neurons in par tic u lar 
stages of the recognition network (such as ML/MF and 
AM) can be understood as inverting distinct, identifi-
able stages in the generative model, explic itly repre-
senting hypotheses about the corresponding aspects of 
scene structure encoded in  those generative model 
stages. Other populations of neurons (such as AL) 
might be better explained as implementing valuable 
hidden- layer nonlinear transforms between more inter-
pretable parts of the system.

Conclusion and  Future Directions

We believe that  there is promising, if preliminary, evi-
dence for the centrality of PORs in the mind and brain. 
The strongest aspect of this proposal so far is theoreti-
cal: PORs offer a solution to prob lems both old (e.g., 
multimodal perception) and new (e.g., the cloth- 
draping task presented above), perceptual phenomena 
that are difficult to explain with alternative accounts in 

Tenenbaum, 2015). Yildirim, Belledonne, Freiwald, 
and Tenenbaum (2019) developed one such approach 
using the POR framework and tested it as a computa-
tional theory of multiple stages of pro cessing in the 
ventral visual stream, a hierarchy of pro cessing stages 
in the visual brain (Conway, 2018). This model consists 
of two parts: a generative model based on a multistage 
3- D graphics program for image synthesis (fig-
ure 34.4C) and a recognition model based on a CNN 
that approximately inverts the generative model, stage 
by stage (figure 34.4C). The recognition network is dif-
fer ent from conventional CNNs for vision in two ways. 
First, it is trained to produce the inputs to a graphics 
engine, the latent or unobservable variables of the 
probabilistic model, instead of predicting class labels 
such as face identities. And second, it is trained in a 
self- supervised fashion, with inputs and targets inter-
nally synthesized by the probabilistic graphics compo-
nent; no externally generated labels are needed. This 
approach differs from other recent efficient AwS 
approaches (Eslami et al., 2018; Kulkarni et al., 2015) 
and their  earlier counter parts (Dayan, Hinton, Neal, & 
Zemel, 1995) in that it is based on a probabilistic graph-
ics engine (instead of learning an unstructured genera-
tive model via a generic function approximator) and 
therefore more closely captures the causal structure of 
how 3- D scenes give rise to images.

Yildirim, Belledonne, Freiwald, and Tenenbaum 
(2019) tested their approach in one domain of high- 
level perception, the perception of  faces.  Faces give rise 
to a rich sense of 3- D shape in addition to percepts of a 
discrete individual’s identity (see figure 34.4A, B), and 
face perception has been extensively studied in both 
psy chol ogy and neurophysiology, thus providing a rich 
source of data and constraints for modeling. The sense 
of a face’s 3- D shape also crosses between visual and 
haptic modes of perception (Dopjans, Wallraven, & 
Bulthoff, 2009), as in the examples discussed above.

Yildirim, Belledonne, Freiwald, and Tenenbaum 
(2019) compared two broad classes of hypotheses for 
how we perceive the 3- D shape of a face and how  these 
computations are implemented in the primate ventral 
stream: (1) the efficient AwS hypothesis implemented 
in their recognition network, which posits that the tar-
gets of ventral stream pro cessing are latent variables in 
a probabilistic causal model of image formation, and 
(2) the untangling hypothesis implemented in stan-
dard deep CNNs for face recognition, which posits that 
the target of ventral stream pro cessing is an embed-
ding space optimized for discriminating among facial 
identities. Their recognition network implementing 
the AwS hypothesis recapitulated transformations 
across multiple stages of pro cessing in inferio temporal 



Yildirim, Siegel, and Tenenbaum: Physical Object Representations  407

traditional graphics engines, their per for mance in nar-
row domains can be surprisingly impressive and contin-
ues to improve. In intuitive physics, hybrids of discrete 
symbolic and distributed repre sen ta tions, such as neu-
ral physics engines (Chang, Ullman, Torralba, & 
Tenenbaum, 2016), interaction networks (Battaglia, 
Pascanu, Lai, & Rezende, 2016) and other graph net-
works (Battaglia et al., 2018), and hierarchical relation 
networks (Mrowca et  al., 2018), have received much 
attention lately.  These systems assume discrete sym-
bolic repre sen ta tions for each object and its relation to 
other objects and vector repre sen ta tions for the rules of 
physical interactions between objects; this allows the 
dynamics of object motion and interaction (e.g., colli-
sions) to be learned efficiently end- to- end from simu-
lated data. Artificial neural networks such as  these can 
be considered partial hypotheses for how graphics and 
physics might be implemented in biological neural cir-
cuits; they are almost surely wrong or at best incom-
plete, but they suggest a way forward. Further work is 
needed to test  these models empirically and to develop 
their capacities; currently, they are very  limited in the 
scope of physics they can learn (e.g., a  limited class of 
rigid body interactions, such as billiard balls colliding 
on a  table). Nevertheless, with  these advances and 
building on the example of the efficient AwS approach 
and other research linking artificial neural networks to 
neural repre sen ta tions in the brain, we see promise in 
linking the POR framework to neural computation in 
perception and well beyond.
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