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A growing body of research—including results from
behavioral psychology, human structural and functional
imaging, single-cell recordings in nonhuman primates,
and computational modeling—suggests that perceptual
learning effects are best understood as a change in the
ability of higher-level integration or association areas to
read out sensory information in the service of particular
decisions. Work in this vein has argued that, depending
on the training experience, the ‘‘rules’’ for this read-out
can either be applicable to new contexts (thus
engendering learning generalization) or can apply only to
the exact training context (thus resulting in learning
specificity). Here we contrast learning tasks designed to
promote either stimulus-specific or stimulus-general
rules. Specifically, we compare learning transfer across
visual orientation following training on three different
tasks: an orientation categorization task (which permits
an orientation-specific learning solution), an orientation
estimation task (which requires an orientation-general
learning solution), and an orientation categorization task
in which the relevant category boundary shifts on every
trial (which lies somewhere between the two tasks
above). While the simple orientation-categorization
training task resulted in orientation-specific learning, the
estimation and moving categorization tasks resulted in
significant orientation learning generalization. The
general framework tested here—that task specificity or
generality can be predicted via an examination of the
optimal learning solution—may be useful in building
future training paradigms with certain desired outcomes.

Introduction

For nearly as long as there has been dedicated study
of human learning, there has been interest in conditions
wherein dedicated practice results in enhanced perfor-
mance only on the trained task (i.e., specificity), and
conditions wherein practice results in benefits not only
on the trained task, but on some number of new
untrained tasks as well (i.e., transfer or generalization
[Thorndike & Woodworth, 1901]). While instances of
both types of outcome have been documented
throughout the field of psychology, for example in
education (Barnett & Ceci, 2002) and cognitive training
(Melby-Lervag & Hulme, 2013), the extent of learning
specificity in the field of perceptual learning is
particularly striking (Sagi, 2011). For instance, subjects
trained to discriminate whether a line segment is tilted
clockwise or counterclockwise around one reference
angle may show substantial improvements in making
this particular decision, but then show no enhancement
in the ability to make the same discrimination around a
new reference angle (Crist, Kapadia, Westheimer, &
Gilbert, 1997). Similarly, participants trained to detect
a texture patch presented in one part of the visual field
may show no transfer of learning when the texture
patch is moved to a new location (Ahissar & Hochstein,
1997). In all, specificity of perceptual learning has been
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noted under some training conditions for myriad low-
level visual features and training characteristics in-
cluding orientation and spatial frequency (Fiorentini &
Berardi, 1980), texture (Karni & Sagi, 1991), retinal
position (Fahle, Edelman, & Poggio, 1995), motion
direction (Ball & Sekuler, 1982), motion speed (Saffell
& Matthews, 2003), and even the trained eye (Fahle,
2004).

However, while there are many examples wherein
perceptual training results in highly specific learning, a
large and growing body of research strongly confirms
that specificity is not a necessary aspect of perceptual
learning. For example, there are now many cases
wherein training on complex tasks—often correspond-
ing to ‘‘real-life’’ activities such as aerobic activity
(Hillman, Erickson, & Kramer, 2008), participation in
sports (Mann, Williams, Ward, & Janelle, 2007),
meditation (Davidson & McEwen, 2012), music train-
ing (Schellenberg, 2004), or playing action video games
(Green & Bavelier, 2012)—result in significant learning
transfer. There are also many instances where signifi-
cant transfer of learning has been observed using more
standard perceptual learning stimuli. For example, in
seminal work by Ahissar and Hochstein (1997),
training on an odd-element detection task resulted in
either orientation-specific or orientation-general learn-
ing, depending on the nature of the training stimuli.
Training with odd elements that differed greatly from
the background elements (e.g., by 908) or where odd
elements could appear only in a restricted set of
locations (e.g., two possible locations) resulted in
significant generalization of learning. Conversely,
training with odd elements that differed less strongly
from the background elements (e.g., by 168) or in a
wider set of positions resulted in much more specific
learning.

Significant transfer has also been observed in a
double training procedure, wherein individuals are
trained on one feature dimension (such as stimulus
contrast) in one location, a second feature dimension
(such as stimulus orientation) in a second location, and
then tested on the initial feature dimension in the
second location. Given this design, behavior typically
reflects full transfer of the learning that occurred in the
initial feature training to the new location (Wang,
Zhang, Klein, Levi, & Yu, 2012, 2014; Xiao et al., 2008;
Zhang, Cong, Song, & Yu, 2013; Zhang, Xiao, Klein,
Levi, & Yu, 2010). Other work in this domain has
outlined, as just a few examples, the role of training
task difficulty (Garcia, Kuai, & Kourtzi, 2013; Liu,
1999), stimulus complexity (McGovern, Webb, &
Peirce, 2012), training time (Jeter, Dosher, Liu, & Lu,
2010), and characteristics of the transfer tasks (Jeter,
Dosher, Petrov, & Lu, 2009) in determining the
specificity or generality of learning. In addition to the
clear theoretical importance of these results, techniques

to induce learning transfer have obvious real-world
relevance in rehabilitation paradigms for cortically
based visual disorders such as amblyopia (Li, Ngo,
Nguyen, & Levi, 2011; Polat, Ma-Naim, & Spierer,
2009; Zhang, Cong, Klein, Levi, & Yu, 2014), cortical
blindness (Das, Tadin, & Huxlin, 2014), or age-related
declines in vision (DeLoss, Watanabe, & Anderson,
2015), and in improving vision in individuals with
normal vision whose jobs or activities involve signifi-
cant visual demands (Deveau, Ozer, & Seitz, 2014;
Schlickum, Hedman, Enochsson, Kjellin, & Fellander-
Tsai, 2009).

In one highly influential framework, perceptual
learning has been thought to reflect changes in
receptive field properties of sensory areas, with the
degree of behavioral learning specificity corresponding
to the receptive field specificity in the neural locus of
learning, which in turn is determined by the signal-to-
noise ratio demanded by the training task (Ahissar &
Hochstein, 2004; Ahissar, Nahum, Nelken, & Hoch-
stein, 2009). However, an alternative framework
suggests that perceptual learning instead reflects
improvements in the ability of higher-level areas to read
out task-relevant sensory information in the service of
given decisions (Bavelier, Green, Pouget, & Schrater,
2012; Bejjanki, Beck, Lu, & Pouget, 2011; Dosher &
Lu, 1998; Kahnt, Grueschow, Speck, & Haynes, 2011;
Law & Gold, 2008; Lu & Dosher, 2009; Zhang, Zhang
et al., 2010). For instance, the results seen in double
training studies are consistent with a model wherein
higher-level decision units learn a set of rules for
weighting inputs from low-level areas. Appropriate
training or experience then allows for functional
connections to be formed that support the application
of these learned rules to untrained contexts (e.g., new
locations).

In our own work, we have contrasted learning
solutions/rules that can be formulated as a mapping
between stimulus attributes and responses (termed
policy learning in the language of machine learning) and
solutions that utilize predictive methods and look
ahead. This distinction between learning simple map-
pings and learning more predictive methods in per-
ception is similar to the division that exists between
model-free and model-based solutions in the rein-
forcement learning literature (Dayan & Daw, 2008;
Glascher, Daw, Dayan, & O’Doherty, 2010). Critically,
the former type of rule will tend to be more task and
stimulus specific than the latter, in that the mapping
that is learned in the former case is necessarily
dependent on the exact stimuli and responses (Bavelier
et al., 2012; Fulvio, Green, & Schrater, 2014). In our
framework, the extent to which one or the other type of
rule is learned depends on the demands of the response
policies impossible to learn (e.g., estimation tasks that
do not allow one to learn a single discriminatory
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feature) or in which learning response policies would
require an inordinate number of trials (e.g., where there
is an extremely large or indeterminate space of
categories), subjects should utilize predictive methods
(Fulvio et al., 2014). Conversely, if the task demands
make learning policies reasonably simple, subjects
should eschew the computational costs of prediction in
favor of exploiting the simple mappings. We have
recently tested this framework in a trajectory extrap-
olation learning task (Fulvio et al., 2014). Throughout
this training, participants were presented either with a
small number of distinct trajectories (N ¼ 4) to
extrapolate or a large number of trajectories (N¼20) to
extrapolate. A small number of distinct trajectories
favors the learning of distinct stimulus–response
mappings in ideal learning agents and, consistent with
this, significant behavioral learning specificity was
observed in the human learners. Conversely, a large
number of distinct mappings makes learning stimulus–
response mappings difficult in ideal learning agents and
thus, a more predictive approach is favored. This
outcome was also mirrored in the behavioral results.

In the work above, we biased the learning solution
by altering stimulus characteristics, but it should also
be possible to see similar results when holding the
stimulus characteristics constant across training
groups, and manipulating the task in such a way to

favor a mapping versus a predictive solution. For
instance, consider an orientation discrimination task
wherein the subject is, on each trial, presented with a
Gabor patch with the orientation drawn from a
uniform distribution (308–608). The subject is instructed
to press left if the Gabor is oriented counterclockwise
from a reference angle (458) and otherwise press right.
The optimal solution for this task is to learn a mapping
that divides the orientation space into two decision
regions (clockwise and counterclockwise). While this
will result in efficient performance on the trained task,
the improvements will be highly orientation specific, as
the learned mapping is of little use if the reference
orientation is changed (see Figure 1A).

Conversely, in an angle estimation task in which the
stimuli are identical as above, the participant must
estimate the angle of the presented stimulus. In contrast
to categorizing the stimuli as clockwise or counter-
clockwise, what needs to be learned in this case is a
regression line mapping stimulus attributes relevant to
orientation to an estimate of the angle (i.e., a function
that translates information available to the visual
system into a motor output). Significant orientation
transfer would be predicted given this learning solution,
as extrapolation to previously unseen orientations is a
natural consequence of the constant relationship

Figure 1. Learning solutions and their effect on transfer. (A) In learning a simple discriminative mapping, there is initial uncertainty

about where the boundary lies (gray region), the extent of which is reduced over time. However, this discriminative mapping is of no

value at an orthogonal orientation. (B) In learning a continuous relationship between perceived orientation and output estimate,

there is initial uncertainty regarding the slope of the relationship (i.e., many possible lines that are consistent with the data, here

represented as many individual black lines within the gray region indicative of overall uncertainty). As data are observed over time,

the degree of uncertainty is reduced (e.g., the space of possible lines is narrowed to include only the true relationship). Finally,

because the relationship is continuous with orientation, the learning is applicable to the orthogonal orientation, represented as an

extrapolation to a new angle in the final panel.
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between input and output across the continuous
circular space of orientations (see Figure 1B).

Here we contrast the degree of orientation learning
specificity that arises from training on three different
tasks: (a) an orientation categorization task, (b) an
orientation estimation task, and (c) a hybrid task,
wherein the participant responses are categorical
(clockwise or counterclockwise), but the critical
boundary is changed on every trial (i.e., the reference
angle changes on every trial). We hypothesized that: (a)
consistent with previous work, significant orientation
learning specificity would be observed in the categori-
zation task; (b) significant, if not complete orientation
learning transfer would be observed in the estimation
task; and (c) that an intermediate degree of orientation
learning transfer would be observed in the moving
discriminant categorization task. We further hypothe-
sized that little transfer from task to task would be
observed. Indeed, the simple mapping that we hy-
pothesize will be learned from a categorization task
obviously provides no benefit in an estimation task.
Similarly, in the estimation task, even if a participant
has learned to estimate the angle of a line, this, in and
of itself, does not provide information relevant to
category membership (i.e., one may be able to match a
presented angle, but not the discriminant line that
determines whether it belongs to category A or
category B).

To test our hypotheses, individuals underwent 3,800
trials of training across 4 days on one of the three tasks
above. In order to ensure that any differences in
transfer could not be attributed to differences in visual
experience, all subjects viewed the exact same stimuli
across training. Finally, after training was completed,
both orientation and task transfer were assessed.

Consistent with our hypotheses, and as has been
repeatedly observed (Sagi, 2011), no significant orien-
tation transfer was observed in the participants trained
on the categorization task. In contrast, significant
orientation transfer was observed in the estimation and
moving categorization trained groups.

Methods

Participants

Twenty healthy young adults (Mage ¼ 19.7) with
normal or corrected-to-normal vision were recruited
for the study. Observers were randomly assigned to
either the categorization training group (n¼ 8; five
female, three male), the estimation training group (n¼
7; four female, three male), or the moving-categoriza-
tion training group (n ¼ 5; three female, two male).

Apparatus and display

The stimuli were generated on a Dell XPS computer
running Windows XP using MATLAB (MathWorks,
Natick, MA) and the Psychophysics Toolbox (Brai-
nard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli,
1997). The stimuli were displayed on a 20-in. Dell LCD
monitor at a resolution of 1680 3 1050 pixels by a
NVIDIA GeFORCE 8800 GTX video card. Subjects
were seated 59 cm from the screen.

Stimuli and task

The stimuli were identical for all three groups (see
Figure 2). The stimulus display consisted of a small
centrally presented ‘‘T’’ and a peripherally presented
full contrast Gabor (presented 108 below the T stimulus
directly along the vertical axis). The central T was
presented either right-side up or upside down, while the
orientation of the Gabor was drawn from a uniform
distribution (i.e., 308–608 during training, or 1208–1508
at some test stages; see below).

Each trial started with the presentation of a central
fixation cross for 750 ms. Following the brief
presentation (130 ms) of the stimulus display, a white
noise mask was presented in the location of the
Gabor for 300 ms. In all versions of the task,
following the presentation of the mask, participants
were first required to indicate the orientation of the
central T (by hitting either the ‘‘w’’ or ‘‘s’’ key for
right-side up and upside down, respectively). Then, in
the categorization task, observers were asked to
indicate whether the orientation of the Gabor was
clockwise or counterclockwise from a constant
reference angle (e.g., 458 during training; an oriented
line was shown during the choice period as a
reference). In the estimation task, observers used the
mouse to orient a line so as to match the orientation
of the Gabor. Finally, the moving categorization task
was identical to the categorization task, but the
orientation of the reference line (i.e., the discrimina-
tory orientation) was drawn from a uniform distri-
bution between 308 and 608 on each trial during
training, again with an oriented line being shown
during the choice period as a reference. In all three
tasks, participants had unlimited time to respond;
consequently, average response times and the total
duration of the experiment were longer in the
estimation group than in the categorization and
moving categorization group. There was a 1500 ms
intertrial interval starting immediately after the
response. Feedback was presented during the inter-
trial interval during training but not during pretest or
posttest in all three tasks (complete feedback showing
both whether the answers were correct or incorrect,
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as indicated by a green or red outline around the
central T square and around the peripheral discrim-
ination circle, and with the actual stimuli that were
presented overlaid on top).

Procedure

The entire experiment consisted of a pretest session,
19 blocks (200 trials each) of training, and a posttest
session, which, together, took place across five separate
days (over a span of no more than nine total days). Day
1 of the experiment included a short block of trials run
at a reduced speed for the participants to familiarize
themselves with the dual-task procedure, a pretest (see
below), and the first block of training. Days 2 through 4
consisted of six blocks of training on the respective
training condition. Day 5 consisted only of the posttest
(see below).

Pre- and posttest assessments

The pretest session consisted of two 200-trial blocks,
one block with the same task as during training but
with the orientations of the Gabor rotated by 908 (e.g.,
in the categorization training group, the Gabor stimuli
were drawn from a uniform distribution from 1208–
1508 and the reference angle was 1358), and one block
with a different task at the same orientation that they
would be trained on (e.g., the categorization training
group performed the estimation task with stimuli
centered on 458). At least one day after the end of the
last training block, all observers underwent three
posttest blocks. The posttest consisted of the same two
tasks as were performed during pretest, plus an
additional block of the same task as was performed
during training. The selected pre- and posttest condi-
tions allowed comparison of the extent of specificity of
perceptual learning (concerning the stimuli and the task
participants were trained on) in either the estimation

Figure 2. Typical trial. In all three conditions participants see the same stimuli. A small ‘‘T’’ presented right-side up or upside down at

fixation and a peripheral Gabor presented 108 directly below fixation. This is followed by a white noise mask at the Gabor location.

Participants in all three conditions are next asked to indicate the orientation of the central T (not pictured). Then, in the

categorization condition (bottom left), participants indicate whether the presented Gabor was tilted clockwise or counterclockwise

from the constant reference angle. In the estimation condition (bottom center), the participants use the mouse to change the

orientation of the central line so as to match the orientation of the presented Gabor. In the moving categorization condition (bottom

right), the participants indicate whether the presented Gabor was tilted clockwise or counterclockwise from the presented reference

angle, which changes on every trial.
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task or the moving categorization task with the
standard categorization task. Comparing the estima-
tion task with the moving categorization tasks was
considered less crucial. The detailed procedures in the
three training groups are shown in Table 1.

Assessment of learning

To assess learning on the trained task, for each
participant, 79% accuracy thresholds were calculated in
two ways, which differed between the two categorization
tasks and the estimation task. For the categorization
tasks, in the first method (block model), thresholds were
calculated by fitting psychometric curves to each block of
response data using the glm() function in R (McCullagh
& Nelder, 1989; Yssaad-Fesselier & Knoblauch, 2006).
Specifically, for each block, we randomly sampled the
200 stimuli and associated participants’ responses with
replacement 500 times. We fit a psychometric curve to
each of these 500 samples, and compared the mean
threshold during the first block to the mean threshold
from the final block. A power function was then fit to the
mean thresholds across blocks.

We also utilized a second fitting method designed to
ameliorate two issues with the block-by-block fitting
described above. The first is that the large number of
blocks (19) entails a substantial number of free
parameters (38 to estimate thresholds within the blocks,
plus an additional set of three parameters to fit to the
block estimates). This, in turn, leads to the concern that
any estimates will be overfit. Furthermore, the block-
by-block fitting implicitly instantiates an assumption
that is almost certainly incorrect, namely that perfor-
mance is static within a block and can only change
between blocks. Thus, in a second method (time
model), we fitted the proportion of clockwise responses,
P(CW), to a dynamic logistic function of orientations
(x) with the slope parameter b1 evolving linearly over
time (t), and a constant bias term b0 (see Equation 1
and Figure 3A). Estimated 79% thresholds (Figure 3B)
were compared between the first and the last trial of the
entire training.

PðCWÞ ¼ 1

1þ eðb0�b1�xÞ
ð1Þ

with b1¼ v þ a � t.
For the estimation task, we also fit a block model

and a time model. In the block model, the absolute
angular errors of each 200-trial block of the training
were fitted by a simple power function and the mean
threshold during the first block was compared to the
mean threshold from the final block. In the time model,
we fit a dynamically normal distribution to the absolute
angular errors (with Merror ¼ 0 and SDerror evolving
with time; see Equation 2) and compared the mean
estimate of first training trial performance with the
mean estimate of final training trial performance.

SDerror ¼ a � eðb�tÞ þ a ð2Þ

Assessment of transfer

Using the block fitting methods (above), perfor-
mance thresholds were calculated for pretest and
posttest blocks. To assess orientation transfer, posttest
performance on the trained task and trained orienta-
tion was compared against posttest performance on the
trained task and untrained orientation. To assess task
transfer, posttest performance on the untrained task
(trained orientation) was compared both to pretest
performance (within an individual) and to the posttest
performance of the group trained on the task (e.g.,
comparing posttest estimation task performance in the
categorization trained group with posttest estimation
task performance in the estimation trained group).

Results

Learning

First, we assess the extent to which perceptual
learning was found over the course of training in all
three groups, using both the block and time-varying

Training group

Stage Block Categorization Estimation Moving categorization

Pretest 1 ET 308–608 ET 1208–1508 CT 308–608

2 CT 1208–1508 CT 308–608 MT 1208–1508

Training 1–19 CT 308–608 ET 308–608 MT 308–608

Posttest 1 ET 308–608 CT 308–608 CT 308–608

2 CT 308–608 ET 308–608 MT 308–608

3 CT 1208–1508 ET 1208–1508 MT 1208–1508

Table 1. Training procedure. Participants performed either the categorization task (CT), the estimation task (ET), or the moving
categorization task (MT) with different ranges of orientations of the stimulus Gabors.
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models discussed above. In the block model, this
involved comparing estimated performance in the first
block of training with estimated performance in the
final block of training. In the time-varying model, this
involved comparing estimated performance on the first
trial of training with estimated performance on the final
trial of training. No meaningful thresholds could be
calculated for one participant in the categorization-
trained group, and the following analyses are based on
the data from the remaining participants only.

Block model

The categorization group demonstrated a significant
decrease in the average discrimination threshold from
11.68 6 26.48 (MD 6 IQR) in block 1 to MD¼ 4.0 6
1.78 in block 19 (see Figure 4), V¼ 28; Z ¼�2.42; p ¼
0.007 (Wilcoxon signed rank test, one-tailed). Similarly,
the estimation group demonstrated a decrease in the
average absolute error from 8.18 6 4.98 in block 1 to
5.18 6 0.58 in block 19 (see Figures 4 and S2), V¼ 28; Z
¼�2.42; p¼ 0.007. Finally, the moving categorization
group also showed significant improvements in median
thresholds across training with 26.68 6 33.58 in block 1
and 9.88 6 3.88 in block 19 (see Figures 4 and S3), V¼
15; Z¼ 1.86; p ¼ 0.03.

Time model

The estimated 79% thresholds resulting from the
time models for the orientation categorizations are
illustrated as red lines in the supplementary Figures
S1 and S3. Bootstrapped confidence intervals indi-
cate that the thresholds decreased reliably over time.
The best fits of the absolute errors in the estimation
task obtained with the dynamic normal distribution
model (with time-evolving SD) are illustrated in
Figure S2, which similarly indicate reliable im-
provements in estimation accuracy. The categoriza-
tion group demonstrated a significant decrease in the
average discrimination threshold from 8.18 (IQR ¼
5.488) on trial 1 to 3.88 (IQR ¼ 1.788) on trial 3800
(block 19) (Figure S1), V ¼ 28; Z ¼�2.42; p ¼ 0.008
(Wilcoxon signed rank test). Similarly, the estima-
tion group demonstrated a decrease in the average
absolute error from 13.08 (IQR ¼ 17.88) on trial 1 to
6.98 (IQR ¼ 1.38) on trial 3,800 (see Figure S2), V ¼
27; Z ¼ �2.15; p ¼ 0.016. Finally, the moving
categorization group showed improvements (though
nonsignificant) in average thresholds across training
with 32.58 (IQR ¼ 116.98) on trial 1 and 7.18 (IQR ¼
1.68) on trial 3,800 (see Figure S3), V ¼ 10; Z ¼
�1.53; p ¼ 0.063.

Figure 3. Illustrative example of the time-evolving psychometric function (A) and the resulting 79% threshold estimates (B) fitted to

the data of subject 1 (categorization training group).
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Comparison of learning models

When evaluating learning, it is typical in the
literature to first estimate thresholds separately by
block, either by fitting a psychometric curve to data by
block or by using a staircase procedure to estimate
thresholds by block, and then to fit a time varying
function (e.g., an exponential or power function) to
those independently derived block thresholds. Here we
have developed an alternative approach, wherein
behavioral data is fit with a time-varying psychometric
function, where the slope, or b1 component of the
logistic function, changes linearly with time. The
difference in free parameters in these two models is
substantial. The block model is comprised of 19
separate psychometric functions with two free param-
eters each plus a power function with two free
parameters for a total of 40 free parameters. The time-
varying model is comprised of additive and multipli-
cative components of the time varying b1 parameter
plus a constant b0 parameter for a total of three free
parameters. Thus, the extent to which our time-varying
model performs equivalently to the more standard
approach is of significant interest.

The Akaike information criteria for the two different
models are listed in Table 2. The time model, with three
free parameters, reached better fits (relative to model
complexity) than the block model in all participants
that were trained on the categorization or moving
categorization task. For the estimation training,

however, the difference between the block model and
the time model was less obvious. In some observers,
fitting the absolute angular errors block-by-block was
superior to fitting a time-evolving normal-distribution
model across the entire course of training.

Orientation transfer

Next, we assess the extent to which the observed
perceptual learning that occurred in each condition
transferred to a new orthogonal orientation. Our
prediction was that we would see significant orientation
specificity in the categorization task (i.e., that perfor-
mance on the trained orientation at posttest would be
significantly better than performance on the untrained
orientation), but less evidence for specificity in the
estimation and moving categorization tasks (i.e., that
there would be no significant differences between the
trained and untrained orientations at posttest).

The 79% thresholds and absolute angular errors in
the posttests, respectively, are depicted in Figure 5.
Consistent with our predictions, in the categorization-
training group, performance in the posttest block with
the untrained orientation (median threshold¼ 8.68;
IQR¼ 1.08) was significantly worse than in the posttest
block with the trained orientation (MD ¼ 3.48; IQR ¼
0.78), V¼0; Z¼�2.15; p¼0.016 (Wilcoxon signed rank
test, two-tailed), indicating that categorization training
produced perceptual learning that is at least partially

Figure 4. Overall learning curves (by block) across the three training tasks (black lines represent the medians, boxes indicate

interquartile ranges, and whiskers refer to 1.5 interquartile ranges below and above the first and third quartile, respectively).

Significant improvements were observed in all three conditions (left, categorization group; middle, estimation group; right, moving

categorization group).
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specific to the trained stimulus orientations. In addi-
tion, the difference between pretest (MD¼ 8.28; IQR¼
10.48) and posttest thresholds (at 1358) was not
significant, V ¼ 20; Z¼�0.89; p¼ 0.188 (one-tailed),
suggesting that the 3,800-trial categorization training
with a 458 boundary did, in fact, not lead to any
detectable benefit to 1358 orientation discrimination
performance.

In contrast, in the estimation training group, there
was no significant difference in performance between
the trained (median angular error¼5.78 6 1.38) and the
orthogonal orientations (1358) at posttest (median
angular error¼ 5.48 6 0.68), V ¼ 21; Z¼�0.53; p¼
0.297. Furthermore, posttest estimation errors at 1358
were significantly reduced as compared to pretest errors
(MD¼ 13.28; IQR¼ 4.28), V¼ 28; Z¼�2.42; p¼ 0.008
(one-tailed). Together, these results are also consistent
with our hypothesis that estimation training would
engender a significant degree of transfer.

Finally, in the moving categorization training group,
posttest performance with orthogonal orientations was
numerically worse (MD ¼ 8.68; IQR ¼ 0.98) than with
the trained orientations (7.28 6 1.08); however, this
effect did not reach significance, V¼ 1; Z¼�1.15; p¼
0.125. Moreover, the threshold of moving orientation
categorizations (with a 1358 boundary) significantly
decreased from pretest (MD ¼ 36.68; IQR ¼ 21.58) to
posttest, V ¼ 15; Z¼ 1.53; p¼ 0.031 (one-tailed),
indicating that the 458 training did lead to improve-
ments at a different boundary.

To further quantify the degree of specificity of learning
across the three tasks, a specificity score was calculated
by subtracting posttest performance (i.e., either 79%
threshold or absolute error) with the trained orientation
from posttest performance with the orthogonal orienta-
tions, standardized by the improvement from the initial
training block to the posttest (Equation 3).

Specificity ¼ Post120�1508 � Post30�608

Initial30�608 � Post30�608

ð3Þ

In the categorization training group, the average
specificity score (MD ¼ 0.56; IQR ¼ 0.41) differed
significantly from zero, V¼ 28; Z¼ 2.15; p¼ 0.016. In
contrast, the average specificity score in the estimation
training group (MD¼�0.06; IQR¼ 0.04) did not differ
significantly from zero, V¼ 7; Z¼�0.53; p¼ 0.297. In
the moving categorization training group, the degree of
specificity lay in between the other two groups (MD ¼
0.10; IQR¼ 0.06), and it was not significantly different
from zero, V¼ 14; Z¼�1.15; p¼ 0.125, implying that
this type of training produced some amount of transfer.
Specificity scores differed significantly between the
categorization training and estimation training groups,
W¼ 44; p¼ 0.011, as well as between the categorization
training and moving categorization training groups, W
¼ 35; p , 0.003. The degree of specificity (or its
absence) differed also between the estimation training
and the moving categorization groups,W¼5; p , 0.05.

Task transfer

Finally, we examined the extent to which training on
one task resulted in benefits on a different task (around
the trained orientations; see Figure 6). This is of
interest because many models of perceptual learning
have, at their core, the idea that perceptual learning is
supported by a change in the quality of sensory
representations. If this were true, one would expect to
see improvements on different tasks that utilize the
same sensory stimuli. Conversely, our hypothesis, that
perceptual learning is supported by a change in the
ability to translate sensory stimuli into relevant actions
or decisions, would predict limited to no task transfer.
To test these alternatives, we compared performance on
the untrained task at pretest with performance on the
untrained task at posttest.

As predicted, the categorization training did not lead
to a reduction of the absolute angular errors from pre-
to posttest in the estimation task, V¼ 16; Z¼�0.24; p¼
0.406 (MDpre¼ 9.48; IQRpre¼ 4.18; MDpost¼ 9.18;

Training group

Categorization Moving categorization Estimation

Subject AICBlock AICTime AICBlock AICTime AICBlock AICTime

1 132.97 104.34 157.90 124.78 116.47 118.30

2 178.38 153.22 120.03 145.04

3 140.74 103.88 172.55 138.83 78.59 91.54

4 146.61 136.40 163.00 129.82 258.04 228.03

5 91.80 61.48 179.06 156.83 104.41 105.36

6 184.00 148.93 102.85 124.07

7 124.41 98.70 102.25 95.49

8 110.98 80.88

Table 2. Akaike information criteria (AIC) for the block model and the time model in the three training groups.
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IQRpost¼ 2.78), consistent with no task transfer. It was
also the case that subjects in the categorization training
group were significantly worse in the posttest estimation
task (458) than subjects in the estimation training group
(MD¼ 5.68; IQR¼ 1.28), W¼ 49; Z¼�3.25; p , 0.001.
Likewise, in the estimation-training group, there were no
significant improvements from pre- to posttest in
orientation categorization thresholds, V¼ 15; Z¼�0.78;
p¼ 0.226 (MDpre¼ 23.08; IQRpre¼ 29.28;MDpost¼ 10.08;
IQRpost¼ 41.9) and posttest categorization thresholds
(458) differed significantly between the categorization-
training (MD¼ 3.48; IQR¼ 0.78) and the estimation
training groups,W¼1; Z¼�3.04; p¼0.001. Finally, the
moving categorization training did produce significant
transfer to a nonmoving categorization task, V¼ 15; Z¼
�1.86; p¼ 0.031 (MDpre¼ 30.38; IQRpre¼ 24.58; MDpost

¼ 5.18; IQRpost¼ 0.98). The difference in posttest
categorization threshold between the moving categori-
zation training and the categorization training (MD¼
3.48; IQR¼ 0.78) groups, however, was not significant,
W¼ 23; Z¼�0.57; p¼ 0.28.

Discussion

As has been repeatedly observed throughout the
perceptual learning literature, observers trained on a
simple orientation categorization task showed evidence
of significant orientation specificity when tested on the
orthogonal orientation. Conversely, observers trained
on either an orientation estimation task or a categori-
zation task with a moving reference angle showed
significant transfer to the orthogonal orientation.
Critically, because the exact same stimuli were utilized
for all three training groups (with the only difference
being related to the way the sensory information had to
be translated into a decision), the results cannot be
explained by low-level stimulus attributes. Instead, this
pattern of results is consistent with the emerging view
that perceptual learning is mediated by rules that
govern how higher-level integration areas read out
sensory information in order to make particular
decisions with the degree of learning transfer depending

Figure 5. Orientation transfer. Posttest performance with trained and orthogonal orientations, trained task only. (A) Significant

orientation specificity was observed in the categorization trained group, with posttest performance at the trained orientation (458)

significantly exceeding posttest performance at the untrained orientation (1358). (B) No significant orientation specificity was

observed in the estimation trained group, with posttest performance on both the trained and untrained orientations being similar. (C)

While participants in the moving categorization trained group were numerically slightly worse at the untrained orientation (by

approximately 18), this did not reach statistical significance.
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on the extent to which those rules are applicable to new
stimuli, tasks, or contexts (Bavelier et al., 2012;
Bejjanki et al., 2011; Dosher & Lu, 1998; Kahnt et al.,
2011; Law & Gold, 2008; Lu & Dosher, 2009; Zhang,
Zhang et al., 2010).

Specifically, we have laid out a framework by which
the type of rule that will be learned—and thus, the
extent of learning generalization that will be ob-
served—can be predicted a priori. In our model, the
extent to which one or the other type of rule is learned
depends on the optimal solution to the trained task.
The optimal solution to a categorization task is a
discriminant that separates the sensory space into two
decision regions. However, such a discriminant has
limited to no applicability to new categorization
problems in which the boundaries are different. Thus,
tasks with discriminants as optimal solutions should
produce stimulus-specific learning. The optimal solu-
tion to an estimation task corresponds to a regression
line that continuously maps stimulus orientation to a
motor response. Because the relationship between
stimulus orientation and motor responses holds over
the range of orientations, such a regression line can be
extrapolated to previously unseen orientations. Thus,

tasks with continuous regression-type mappings should
produce significant transfer along that dimension.

An optimal-solution framework may also be able to
account for the observation that perceptual learning on
a target task (e.g., orientation discrimination) can be
enhanced by an interleaved training on two tasks (e.g.,
blocks of spatial frequency and orientation discrimi-
nations), as compared to training on only the target
task. Specifically, the interleaved training requires
observers to not only learn a single orientation
discriminant, but to map both orientation and spatial-
frequency information to certain motor responses
(Szpiro, Wright, & Carrasco, 2014). It may also
account for the finding that specificity increases with
longer training durations, in that longer training
durations provide the additional needed samples that
bias an optimal agent toward a mapping solution
(Fulvio et al., 2014; Jeter et al., 2010). We believe that
the more general framework (i.e., that the degree of
transfer observed as a result of a learning experience
can be predicted a priori given an understanding of the
optimal solution to both the training and transfer
tasks) can be extended to other important results in the
field, for example, work showing that specificity is

Figure 6. Task transfer. (A) No transfer from categorization training to the estimation task was observed. Participants in the

categorization training group did not improve on the estimation task from pretest to posttest. (B) While numerically the estimation

group did improve on the categorization task from pretest to posttest, this did not reach statistical significance. (C) Significant

improvements on the categorization task from pretest to posttest were observed in the moving categorization task group. This was

the expected effect, given that the categorization task is a subset of the moving categorization task.

Journal of Vision (2015) 15(10):5, 1–14 Green et al. 11

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/934263/ on 09/15/2015



dependent on the precision of the training and transfer
tasks (Jeter et al., 2009; Hung & Seitz, 2014). However,
it will be for future research to test this explicitly.

Interestingly, there was no task transfer from
categorization training to the estimation task or
estimation training to the categorization task. This is
further evidence that the mechanism or mechanisms
underlying improved performance via perceptual
training include elements other than changes in sensory
representations, as enhanced sensory representations
should result in better performance across any tasks
that utilize the same stimuli. This is of particular
relevance in the case of the estimation training, which
led to significant within-task, across-orientation trans-
fer, but no across-task, within-orientation transfer. The
only evidence for cross-task transfer was seen in the
moving categorization trained group, which showed
significant enhancements on the static categorization
trained task following training. However, because the
static categorization task is itself a subset of the moving
categorization task, it is unlikely that this can truly be
considered task transfer.

Outside of the empirical results, we also present a
novel method of analyzing behavioral perceptual
learning data. Specifically, we compared the fits derived
from the standard approach to data analysis (fitting
thresholds to blocks of trials and then fitting a time-
varying function to the thresholds) with the fits given
by a time-varying psychometric function. We found
that our much simpler time-varying model (three free
parameters compared to 40 free parameters in the
block model) provided a better fit to the learning data
when accounting for the difference in free parameters.
In addition to providing a better fit to the data, the
time-varying model has the additional benefit that it
provides a continuous estimate of performance, thus
implicitly recognizing that Trial 1 performance should
be poorer than Trial 200 performance despite both
being in the same block. Indeed, one failing of the block
approach is that it implicitly assumes that performance
is static within blocks, which is clearly false.

In all, our results add to a growing body of
behavioral research suggestive of a higher-level neural
locus for perceptual learning. This framework is also
consistent with recent neurophysiological data—both
in single-cell recordings in nonhuman primates, as well
as in structural and functional neuroimaging in
humans—wherein perceptual learning effects have been
associated primarily with changes in higher-level
association or integration areas, rather than lower-level
sensory areas (Kahnt et al., 2011; Law & Gold, 2008;
Li, Mayhew, & Kourtzi, 2009; Sathian, Deshpande, &
Stilla, 2013).

Keywords: perceptual learning, categorization, esti-
mation, orientation discrimination, transfer
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