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Abstract 

We cannot see others’ mental states, so we infer them by 
watching how people behave. Bayesian inference in a model of 
rational action – called inverse planning – captures how 
humans infer desires from observable actions. These models 
represent desires as simple associations between agents and 
world states. In this paper we show that by representing desires 
as probabilistic programs, an inverse planning model can infer 
complex desires underlying complex behaviors—desires with 
temporal and logical structure, which can be fulfilled in 
different ways. Our model, which combines basic desires via 
logical primitives, is inspired by recent probabilistic grammar-
based models of concept learning. Through an experiment 
where we vary behaviors parametrically, we show that our 
model predicts with high accuracy how people infer complex 
desires. Our work sheds light on the representations underlying 
mental states, and paves the way towards algorithms that can 
reason about others’ minds as we do. 
 

Keywords: social cognition; theory of mind; computational 
modeling; Bayesian inference. 

Introduction 

 

As social creatures, humans routinely have to make sense 

of what other people are doing, and we do so by appealing to 

mental states such as beliefs, desires, and intentions. Because 

we cannot see these internal mental states we need to infer 

them by watching how people act. 

Research into this capacity, called a Theory of Mind 

(Gopnik & Meltzoff, 1997; Dennett, 1989), suggests that 

mental state inferences are driven by the assumption that 

agents act efficiently, subject to constraints imposed by their 

environment (Gergely & Csibra, 2003). If, for instance, an 

agent takes a straight path towards a cookie jar, we can guess 

that her goal is to get a cookie, even before she has reached 

it. By contrast, if she gets there after wandering around for a 

while, we may infer that she found it without having 

deliberately searched. 

In such scenarios, it makes sense to equate goals with 

desires. But in more complex scenarios it is important to 

distinguish between the two: a one-to-one correspondence 

between desires and goals is rare. Consider, for instance, if 

Bob wants to have breakfast. He can do this in several 

different ways that each require a different plan: he can stay 

home and prepare breakfast; he could go to the local café near 

his house; or he could go to a coffee shop that is out of the 

way. If he chooses to eat at the local café, he can show up and 

request food. By contrast, if he chooses to cook, he may have 

to go to the grocery store first and then go to his kitchen, in 

that order. While Bob is at the grocery store, he may need to 

buy coffee and milk, but the order in which he buys them does 

not matter. Finally, before Bob has had breakfast, many states 

of the world are rewarding (eating at the café or having a 

scone at home, for example), but once he eats something, all 

rewards associated with breakfast disappear. 

These examples reveal three key properties of desires. 

First, desires can often be fulfilled in more than one way. So 

from an observer’s standpoint, goals cannot be equated with 

desires. Second, desires can have logical and temporal 

structure: they can be fulfilled in different ways (get tea or 

coffee), they can break into subgoals (get coffee and milk), 

and they can have temporal structure (go to the café and then 

buy a scone). Finally, the logical and temporal structure of 

desires interacts with the underlying rewards. If Bob is 

thirsty, then both soda and water are rewarding. But once he’s 

had one of them, the other loses its immediate appeal. If Bob 

wants to exercise and then bathe before work, he has to do 

them in that specific order; doing them in the wrong order 

does not suffice. In other cases, the order does not matter, but 

the reward is only achieved once all the necessary 

prerequisites are fulfilled. If Bob likes his coffee with milk, 

then having coffee and milk together is rewarding, but having 

only one of them is not. 

Computational models of mental-state attribution that 

successfully explain human mental-state inferences assume a 

relatively simplistic representation of desires: each desire can 

only be fulfilled in one way, and it is fulfilled by reaching one 

and only one physical state of the world (e.g. Baker et al., 

2017; Baker et al., 2012). This assumption implicitly blurs 

together desires, intentions, goals, and physical states of the 

world. As our examples show, this is overly limiting; people 

may require conjunctions (A and B) or disjunctions of goals 

(A or B), with temporal properties (A then B). 

In this paper we develop a richer representation of desires, 

and clarify the multiple computational levels that transform 

desires into actions. To solve the representational challenges, 

we draw on advances in concept learning that support 

concepts of unbounded complexity (Piantadosi et al., 2012; 

Goodman et al., 2008, 2014). To solve the inferential 

challenges that arise with more sophisticated representations, 

we draw on advances in mental-state attribution beyond goal 

inference (Lucas et al., 2014; Jara-Ettinger et al., 2016, under 

review). In the remainder of the paper, we sketch out the 

computational framework and we present an experiment 

testing quantitative predictions of our model. 

 



 
 

Figure 1. (a) schematic of the generative model. (b) 

example of how an expression combines primitives and 

objects to determine how to satisfy a desire. This 

expression corresponds to an agent who first wants either 

coffee and milk, or just tea, and then a scone afterwards. 

The tree below shows the space of possible intentions that 

can fulfill the desire. 

Computational model 

 

We take as a starting point the idea that social cognition is 

supported by a probabilistic generative model that determines 

how mental states lead to actions (Baker, et al., 2017). We 

expand on this approach by building a more powerful 

representation of desires, and how they relate to behavior. 

Figure 1a shows the overall schematic of our model. We 

argued that a realistic model of commonsense psychology 

should distinguish between desires, goals, intentions, and 

actions, and our model attempts to do so. 

At the top level we place desires, which combine logical 

(and/or) and temporal (then) primitives with simple goals 

(such as arriving to certain physical locations). This approach 

enables us to represent desires that directly map onto a single 

goal (e.g. “go to get coffee”) as well as desires that can be 

fulfilled in different ways (e.g. “eat breakfast first, and then 

either get coffee and milk, or alternatively get tea”). This 

representation is inspired and based on computational models 

that combine logical primitives with unitary concepts to 

explain the productivity and compositionality of conceptual 

knowledge (Piantadosi et al., 2012; Goodman et al., 2008, 

2014). 

Following Goodman et al. (2008), we model the space of 

desires with a probabilistic grammar, which builds arbitrarily 

complex desires by composing simple ones. The grammar 

implements production rules that recursively conjoin 

primitives and units to yield desire expressions. We endow 

the grammar with several primitives – And, Or, and Then – 

but the framework is general. These primitives are motivated 

by common-sense intuitions, but our primary goal is to 

develop a framework for compositional desires, not to 

identify the exact primitives that underlie goal-directed 

behavior. 

To connect desires to actions, we rely on an intermediate 

representation of intentions (see Jara-Ettinger et al., under 

review). Given a composite desire, our model derives the 

space of intentions as the set of all ordered sequences of sub-

goals that satisfy it. For instance, if an agent desires to get 

either coffee and milk, or just tea, and then a scone afterwards 

(Fig 1b), her space of intentions is {get tea and then a scone; 

get milk, coffee, and then a scone; and get coffee, milk, and 

then a scone}. 

To model how the agent selects an intention and transforms 

it into an action plan, we rely on advances in commonsense 

psychology that suggest that we interpret other people’s 

behavior through the assumption that they act to maximize 

their subjective utilities – the difference between the rewards 

they obtain and the costs they incur (Jara-Ettinger et al., 2016, 

under review; Lucas et al., 2014). This assumption operates 

at two levels: given a space of intentions, the agent will 

choose the one that maximizes her subjective utilities, and 

given an intention, the agent will attempt to complete it as 

efficiently as possible (for an agent to maximize utilities, they 

must also minimize costs). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Examples of the experimental stimuli. (a-b) 

examples of stimuli that consist of a single event. (c) 

example of stimuli that consists of two events. 

 

To compute each intention’s utility, we rely on planning 

algorithms developed in the robotics literature (Puterman, 

2014) that have been successfully applied to model mental-

state attribution (Baker et al., 2009; 2017): Markov Decision 

Processes (MDPs). Given a set of states, a set of actions, and 

an underlying reward function, MDPs allow us to determine 

the sequence of actions that an agent should take to fulfill her 

goal as efficiently as possible. By using MDPs, we can 

compute the expected cost of achieving each goal, and  

define an intention’s utility as the reward gained by fulfilling 

the desire minus the sum of the costs for achieving each goal 

in the intention. Given each intention’s utility, we assume that 

agents probabilistically select an intention: 

 

 

 𝑝(𝐼) ∝ exp(
𝑈(𝐼)

𝜏
) 

(1) 



where 𝜏 is a parameter that captures expectations about the 

agent’s rationality. When 𝜏 is low, the agent invariably  

selects the intention with the highest utility; as 𝜏 increases, 

the agent is more likely to choose a suboptimal intention. 

Finally, once the agent has selected an intention, we define 

the action plan as the ordered sequence of goals along with 

the motor programs that complete each goal (computed 

through MDPs). 

Inference in the generative model 

We have specified a generative model for compositional 

desires, intentions, and action plans. To recover a desire 

given some observed actions, we use Bayesian inference to 

invert the generative model. Given an observable set of 

actions A, the posterior belief for each underlying desire D is 

given by: 

 

 𝑝(𝐷|𝐴) ∝ 𝑙(𝐴|𝐷)𝑝(𝐷) (2) 

 

where the prior p(D) is set to favor simpler explanations using 

a simple penalization for the length of the expression (as in 

Goodman et al., 2008). 

To compute the likelihood, l(A|D), we integrate over the 

space of all possible intentions the agent could have: 

 
Figure 3: Detailed results from the experiment. Each plot represents one trial from the experiment. The x-axis shows the 

model’s top three hypotheses and the y-axis shows the z-scored prediction with participant judgments. Blue lines and dots 

show model predictions and red lines and dots show participant judgments. Vertical bars show 95% confidence intervals. In 

each plot, the schematic represents the paths the agent took in the event (see Figure 2 for examples of the actual stimuli).  

 



 𝑙(𝐴|𝐷) = ∑ 𝑝(𝐴|𝐼)𝑝(𝐼|𝐷)

𝐼∈𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠

 
(3) 

 

Both the probability of the intention given the desire (p(I|D)), 

and the probability of the action, given the intention (p(A|I)) 

are computed through the assumption that agents act to 

maximize their utilities—the difference between the 

subjective reward for fulfilling their desires minus the cost 

for fulfilling it. This expectation implies that agents are more 

likely to act efficiently given their intention, but that they are 

also more likely to select the intention that can fulfill the 

desires with the overall lowest cost. We enumerate a set of 

desires using breadth-first-search over the grammar, and then 

approximate the posterior over that space using Bayesian 

inference. 

Simplicity prior alternative model 

To better understand our model, we developed a simple 

alternative that uses a deterministic likelihood function, 

where the probability of a desire generating an action 

(p(A|D)) is 1 if the action satisfies the desire and 0 otherwise. 

This model continues to have much of the power of the full 

model: it has access to rich representations of desires and the 

prior over hypotheses creates a preference for simpler 

explanations. Unlike the main model, this model is 

insensitive to the intermediate representations of intentions, 

as it does not account for how the agent chooses the intention 

that will fulfill their desires. 

Experiment 

Design 

To evaluate our model, we designed a simple task where 

participants watched an agent’s behavior across one or two 

days and were asked to determine their belief that the agent 

had certain desires (see Figure 2).     

Methods 

Participants 33 participants, mean age (SD) = 32.13 years 

(9.38 years), range = 20-61 years from the US (as determined 

by their IP address) were recruited using Amazon’s 

Mechanical Turk Framework. 

 

Stimuli 
Figure 2 shows an example of the stimuli. Stimuli consisted 

of 19 two-dimensional images of an agent traveling to one or 

more of three potential static locations. Eight of these trials 

consisted of a single event and the remaining 11 consisted of 

two events. The one event trials were built by designing all 

possible efficient paths agents could take to reach between 1 

and 3 of the locations and removing equivalent paths (i.e. 

identical under a rotation or reflection of the map). 

Trials with two events were built by first creating a set 

including possible efficient paths between 1 and 2 of the 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison between our model (simplicity & 

efficiency) and the alternative model (prior only). Each dot 

represents a judgment of a hypothesis for a given trial. The 

x-axis shows the model’s prediction and the y-axis shows 

participant judgments. 

 

locations, omitting paths between 3 locations to prevent the 

stimuli set from growing too large. In contrast to the single 

event set, we keep the equivalent paths, as they become 

necessary to construct the most primitive desires occurring 

over two events e.g. (A or B). This creates a base set of 9 

paths. To generate the trials with two events, we first split the 

9 paths into two classes, one for paths that go to only one 

location (3 paths) and another for paths that go to two 

locations (6 paths). For each class we compute the cartesian 

product of itself, and after removing duplicate pairs of stimuli 

in each class, (e.g. A,B = B,A), this provided a set of 27 two 

event trials. From that set, events that violated the principle 

of rational action were removed (10 trials). Additionally, if a 

trial with repeated events was the reflection or rotation of 

another trial with two events, it was removed (5 trials); e.g. 

between (A,A) and (C,C), we kept (A,A). Last, trials with two 

events were removed if only one possible hypothesis could 

explain the trials (2 trials), these trials trials impact our ability 

to get graded responses on alternative plausible hypotheses 

(an ideal trial would have more than one plausible 

explanation, to determine if the model captures the same 

graded measure humans have for alternatives). For example, 

if the agent only goes to the farthest location on event 1 and 

2, it's clear the only compatible hypothesis is that the agent 

wants to go that location. As an exception, we included one 

of these cases in the final set, just to show that the model was 

capable of inferring the only plausible hypothesis. After 

filtering the original 27 two event stimuli, 11 remained. These 

11 plus the 8 one event trials result in the 19 stimuli used in 

the experiment.  

 

Procedure  
Participants first read a tutorial that explained the logic of the 

task. Participants then completed a short survey that ensured 

they had read the instructions, and the test phase followed 

immediately after. 

During the test phase, participants completed 19 trials. In 

each trial participants saw the stimuli on the left side, and 

they were asked to rate their belief that the agent had each of 

three different desires. Each desire was rated on a scale from 

0-10 for each, with 0 indicating “Definitely not”; 5 “Maybe”; 



and 10 “Definitely.” The three desires were obtained by 

selecting the three hypotheses with the highest posterior 

distribution according to the model. In order to present these 

hypotheses to participants, we translated the description from 

the model into descriptions in English. To ensure their 

accuracy, two coders blind to the original hypotheses back-

translated the descriptions into the model’s original 

representations. The two coders showed 100% agreement and 

recovered the correct model hypothesis in all trials. 

Results 

Figure 3 shows the results from the experiment. 

Qualitatively, our model fit participant judgments well. Our 

model predictions showed a correlation of r=0.92 with 

participant judgments (95% CI: 0.86-0.95). See Figure 4. By 

contrast, the alternative model (prior only) showed a weaker 

correlation (r=0.80; 95% CI: 0.69 -0.88). A bootstrap over the 

correlation difference showed that the full model performed 

reliably better than the alternative model (correlation 

difference = 0.11; 95% CI: 0.009-0.18). 

Figure 5 shows the detailed results of a single trial that 

illustrates how the alternative model with a deterministic 

likelihood function fails to capture participant judgments. In 

this trial the agent begins by going to the top left location 

(which is one of the closest ones, together with the bottom 

right location), and then travels diagonally to the bottom right 

location. Our full model gives a high probability to the desire 

that the agent wanted to visit those two locations in that 

specific order (A then C), an average probability to the desire 

that she could have wanted to visit the locations in any order 

(A and C), and a low probability to the desire that the agent 

wanted to visit either A or B first, then C ((A or B) then C). 

Although all hypotheses explain the actions, our model is 

sensitive to the probability that each desire would generate 

the observed actions relative to competing ways to fulfill the 

same desire (driving the difference between the first and 

second hypotheses) and to the baseline complexity of the 

desires (driving the difference between the second and third 

hypotheses). That is, our model recognizes that there are two 

equally good intentions that fulfill the desire “A and C” (A 

and then C, or C and then A), but only one that fulfills the 

ordered desire “A then C” (A and then C). This makes our 

model favor the ordered explanation, as participants do (see 

Figure 5). This is not captured in the prior only model, as it 

is only sensitive to expression complexity. These results 

show how people are both sensitive to the likelihood that a 

desire would generate the observed actions, and to the 

complexity of the ascribed desire. Figure 6 shows how this 

failure becomes even stronger in the case where participants 

watch the agent behave identically across two events. 

Discussion 

 

Here we presented a formal model of action understanding 

that represents desires as composite entities sampled from a 

probabilistic context free grammar. Desires get transformed 

into intentions and then into action plans by the assumption 

that agents act to maximize their utilities. By performing 

Bayesian inference over this generative model, we showed 

how we can capture desires that have rich logical and 

temporal structure, as well as enabling us to represent desires 

that can be fulfilled in more than one way. We tested our 

model by comparing its inferences with those made by human 

participants, finding that it closely mirrors their judgments, 

and that an alternative model is less successful. 

Our model shows that combinations of primitives and 

objects using a probabilistic context free grammar supports 

rich representations of desires in Theory of Mind. The 

primitives, composing over objects, generate structured 

desires that capture temporal and logical structure. 

Our goal was to develop a more nuanced representation of 

desires, and the framework we propose works for any 

arbitrary set of primitives and objects. To test our model, we 

focused on three specific primitives: And, Or, and Then. Our 

results do not imply that these are the only primitives people 

use when they reason about others’ desires, or even that they 

are central in action-understanding. Other primitives such as 

If, Any, and Not, are likely also at play when we reason about 

other people’s behavior. More research is needed to 

characterize the primitives we use in action-understanding, 

and their developmental origins. 

To characterize desire complexity, we used a simple prior 

 

 
 

Figure 5. Detailed results one of the trials. The top left plot 

shows the schematic of the stimuli we used. The top right 

plot shows participant judgments (z-scored); the bottom 

two plots show the predictions of the full model and the 

alternative model (z-scored). This example illustrates how, 

by removing the probabilistic nature of the likelihood 

function, the model loses sensitivity to variability in 

participant judgments. 



that penalized the length of the expression (based on 

Goodman et al., 2008). Although this is a useful 

approximation, different primitives may have different priors 

which capture both their conceptual complexity and the 

extent to which they are useful in explaining behavior. Future 

work may attempt to uncover primitive-specific priors and 

the forces that shape these priors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Results from the trial where participants watch two 

repeated events. While the prior only model continues to 

make the same predictions, both participants and our model 

have a stronger belief that the order mattered, in comparison 

to the trial with a single event (Figure 5) 

 

In our current work, we focused specifically on desires and 

we assumed that the agents had full knowledge about the 

environment. In more realistic cases, agents can be uncertain, 

ignorant, or wrong about the world, and people’s reasoning 

about others is sensitive to this fact (Baker et al., 2017; 

Kovács, Téglás, & Endress, 2010). Our grammatical 

approach to desires may also support more structured 

representations about beliefs. Intuitively, people’s beliefs are 

often structured logically (e.g. my laptop is in my backpack 

or at home; she thinks he is hungry and tired). In future work 

we will investigate the power and limitations of applying this 

approach to the representations of beliefs, and to the 

interaction of beliefs and desires. 

Although in our work we focused on these representations 

as applying to desires, these desires often inherit their 

structure from how the world works. If Bob wants to shoot a 

water gun, he needs to pour water into the tank first, then 

pump air into valve, and then press the trigger, in that order. 

The fact that Bob’s desire takes this structure is a reflection 

of how water guns work. This opens the possibility that, 

through the ability to reason about other people’s desires, we 

may simultaneously learn procedural knowledge about how 

to make changes to the world. As such, our model may shed 

light on how we learn about the world by watching more 

competent agents (see also Jara-Ettinger, Baker & 

Tenenbaum, 2012). 
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