
1 INTRODUCTION 

Medieval vault builders explored three-dimensional 
equilibrium, creating complex forms carefully ba-
lanced in compression. The structural properties of 
these sophisticated forms are still poorly understood 
because of a lack of appropriate analysis methods, 
i.e. methods relating stability and form.  

The safety assessment of masonry structures is 
primarily a problem of geometry and stability, rather 
than of material stresses (Heyman 1995). Structures 
in unreinforced masonry work in compression, and 
the tensile capacity of the stone and mortar can be 
considered as negligible. These considerations then 
demand new tools in order to understand how these 
structures work and why they are able to stand for 
centuries. Linear elastic analysis using finite element 
methods is mainly concerned with stresses, and is 
not appropriate for historic structures in masonry.  

1.1 Lower-bound analysis and the safe theorem 
Heyman (1966) introduced the safe theorem for ma-
sonry structures, also known as the lower bound 
theorem. Put simply, a vault in unreinforced maso-
nry will stand if a network of compression forces in 
equilibrium with the applied loads can be found 
which fits within the section of the structure. This 
solution is a possible lower-bound solution. Al-
though we will never know how exactly the masonry 
vault is standing, this is not necessary. The safe 
theorem guarantees that as long as we can demon-

strate one way that the structure could stand, i.e. 
could be in equilibrium with the external forces, 
then it is safe. This approach initially neglects slid-
ing, which can be checked afterwards to ensure that 
sufficient friction exists. For further reading on low-
er-bound analysis for unreinforced masonry struc-
tures, see Heyman (1995) and Huerta (2001, 2004).  

1.2 Thrust-line analysis and graphic statics 
Thrust-line analysis is a particularly powerful me-
thod for understanding and exploring the range of 
lower-bound equilibrium solutions of compression-
only systems, such as unreinforced masonry struc-
tures. It visualizes the relative stability of these 
structures by showing the paths of the resultant 
compressive forces throughout the structure and, for 
two-dimensional problems, suggests possible col-
lapse mechanisms (Ochsendorf 2002, Block et al. 
2006b). However, it is primarily a two-dimensional 
technique and is therefore most appropriate for the 
analysis of arches, flying buttresses or any structure 
which can be reduced to a sectional analysis.  

Graphic statics can be used to compute thrust 
lines (Fig. 1). The main advantage of using graphical 
analysis is that the funicular polygon visually 
represents the forces in the system.  Examples of 
graphic statics for fully three-dimensional problems 
were performed and demonstrated by Föppl (1892). 
These analyses were difficult to perform and limited 
to statically determinate problems. 

Lower-bound Analysis of Masonry Vaults 

P. Block & J. Ochsendorf 
Building Technology Program, MIT, Cambridge, MA, USA 

 
 

 
 

 
 

 

ABSTRACT: This paper applies Thrust-Network Analysis, a three-dimensional computational method for ob-
taining lower-bound solutions of masonry vaults with complex geometries. The method extends thrust-line 
analysis to three-dimensional problems by finding equilibrium force networks within the vault’s geometry, 
representing possible paths of the compression forces. Through two case studies, this paper demonstrates the 
potential of the method as a powerful tool for understanding, visualizing and exploring the equilibrium of 
compression-only structures. First, an analysis of a series of groin and quadripartite rib vaults investigates the 
interrelationship between different parameters and the range of possible equilibrium solutions of these vaults. 
A second case study analyzes the fan vaults of King’s College Chapel in Cambridge, England. 



2  EQUILIBRIUM ANALYSIS FOR VAULTS IN 
UNREINFORCED MASONRY 

2.1 Pseudo-3D equilibrium analysis methods 
In order to analyze three-dimensional structures 
using the same intuitive methods discussed above, 
the analyst typically must slice the structure, 
reducing it to a combination of two-dimensional 
problems. In this way, structural behavior is reduced 
to a combination of arch actions. This process 
obviously does not capture the full three-
dimensional behavior of the structure and must rely 
heavily on the chosen discretization. These 
limitations have been the main reasons why thrust-
line analysis has not been used extensively for the 
assessment of complex 3D structures. 

Wolfe (1921) demonstrated how by slicing up a 
structure a global pseudo-3D analysis can be done 
by combining local thrust lines (Fig. 1). This metho-
dology was entirely manual and quickly becomes te-
dious (Boothby 2001). Block et al. (2006b) proposed 
a method to produce models which contain the 
graphical construction but which are parametric and 
interactive, reducing the tedious iterative nature of 
traditional graphic statics. The models demonstrate 
the range of possible solutions and can be used to 
investigate the effects on the global stability of the 
vault of varying different parameters such as but-
tress thickness, arch thickness, level of fill, etc. 
Smars developed in his PhD thesis (2000) computa-
tional tools to perform such a pseudo-3D analysis in 
an automated fashion, starting from the actual meas-
ured geometry of the vaults.  

2.2 Fully 3D equilibrium analysis methods 
The main problem with three-dimensional equili-
brium analysis for masonry vaults is that they are 
highly indeterminate structures. Antoni Gaudí’s 
physical form-finding process for the church of the 
Colonia Guell can be used to explain this. First, be-
fore starting to construct a hanging string model, 
Gaudi had to decide on a suitable force pattern to-
pology to represent the structural action of the 
vaults. Then, after choosing the structural logic, it is 
still challenging to control or even predict the final 
shape, since the equilibrium of each string influ-
ences the equilibrium of the entire network. It is a 
tedious, iterative process of adjusting and refining.   

New form-finding programs which explore hang-
ing models in the virtual world, based on dynamic 
relaxation, such as Kilian’s CADenary tool have to 
deal with the same issues (Kilian and Ochsendorf 
2005). It is very hard to control and predict how the 
final shape of the compression network will look 
like if local changes are being made or a string mod-
el is being assembled and hung under gravity.  This 

is true for both physical and virtual string models as 
for graphical methods.   

In order to analyze a three-dimensional indeter-
minate system these unknowns need to be unders-
tood and controlled. This can be achieved by de-
scribing the problem as an optimization problem. 
The equilibrium requirements then are formulated as 
a set of constraints which have to be satisfied while 
optimizing a certain objective function.  

O’Dwyer (1999) implemented optimization me-
thods to investigate masonry vaults by finding poss-
ible compression-only force networks which are en-
tirely contained within the boundaries of the vault. 
Recently, the problem of controlling a virtual hang-
ing strings network has been elegantly and efficient-
ly been implemented within a similar optimization 
framework by Andreu et al. (2007). A hanging string 
network is found which fits within the inverted 
geometry of the vault to be analyzed.  

The following section briefly summarizes Thrust-
Network Analysis, a new fully three-dimensional ex-
tension to thrust-line analysis based on projective 
geometry, duality theory and linear optimization 
(Block and Ochsendorf 2007).  Examples in Sec-
tions 4 and 5 will demonstrate its value for the anal-
ysis of vaulted structures in unreinforced masonry.  

3  THRUST NETWORK ANALYSIS 

3.1 Motivation 
Our goal was to develop a three-dimensional version 
of thrust-line analysis similar to previous applica-
tions using interactive graphic statics. This means 
that the following features should be preserved: 

 
 
Figure 1. A pseudo-3D analysis of a gothic rib vault using 
graphic statics (Wolfe 1921). The web of the vault is cut into 
strips which are analyzed as 2D arches. The main ribs bring the 
forces from those arches down to the supports. 
 



- a graphical and intuitive representation of the 
forces in the system; and 

- an interactive exploration of the range of equili-
brium solutions bounded by a minimum and max-
imum thrust. 

In order to cope with the challenges of the high de-
gree of indeterminacy of three-dimensional prob-
lems, as discussed in section 2.2, we want to be able 
to:  
- identify and control the many unknowns (degrees 

of freedom); and 
- negotiate between the unknowns by formulating 

an optimization problem with different objective 
functions. 

Therefore we want to explore the impact of different 
assumptions about the force patterns, internal force 
distributions, boundary conditions or loading condi-
tions. 

3.2 Methodology 
Thrust-network analysis extends O’Dwyer’s (1999) 
work on funicular analysis of vaulted masonry struc-
tures by adding the reciprocal relationship between 
the geometry and the in-plane internal forces of net-
works (Williams 1986), which was first described by 
Maxwell (1864). Figure 2 demonstrates this rela-
tionship: the internal force equilibrium of one grid is 
represented by the geometry of the other grid and 
vice versa.  

Thrust-network analysis is developed for loading 
conditions where all forces are parallel to each other, 
such as gravitational loading. Note that this method 
is therefore appropriate for historic structures in un-
reinforced masonry since the dominant loading is 
self-weight. It is important to note that in this case 
the external forces do not appear in the projection of 
the system on the plane perpendicular to the direc-
tion of the forces. This means that a plane force dia-
gram can be produced which represents the equili-
brium in that plane of the system independent of the 
externally applied loads. As a result the force dia-
gram is scale-less since the external forces which 
typically give scale to the force diagram are missing.  

3.3 Overview of the main steps 

The set-up of the program is summarized below. 
Block and Ochsendorf (2007) presents details on the 
problem formulation and solving procedures.   

   (a) Defining a solution envelope:  
The compression-only solutions must lie within giv-
en boundaries defined by an intrados and an extra-
dos (Fig. 3a). These put height constraints on the 
nodes of the solution. These limits are obtained from 

a three-dimensional model of the actual vault.       

   (b) Choosing a force pattern Г: 
In plan, a possible force pattern topology is con-
structed (Fig. 3b). The branches represent possible 
load paths throughout the structure. The loaded 
nodes represent the horizontal projections of centro-
ids (cf. step d). This pattern is the horizontal projec-
tion of the final solution.  

   (c) Generating the reciprocal force diagram Г*: 
The reciprocal force diagram (Fig. 3c) is produced 
from the force pattern such that corresponding 
branches stay parallel and nodal equilibrium in the 
pattern is guaranteed by closed polygons in the reci-
procal diagram (Fig. 2). Note that the applied loads 
do not appear in the force diagram because they re-
duce to a single point in the horizontal projection 
(Fig. 4).  This results in a force diagram with an un-
known scale since the relation between pattern and 
diagram is true regardless of their relative scales.  

   (d) Attributing weights:  
The weights attributed to the loaded nodes come 
from distributing the dead load of the 3-D tributary 
area to those nodes (Fig. 3d). In addition to self 
weight, other loads can be applied, such as the level 
of fill. 

(e) Updating the force diagram:  
In the case of an indeterminate force pattern contain-
ing nodes with more than three bars coming together 
per node, the user can change the internal force dis-
tribution by manipulating the force diagram (Fig. 4). 
This notion becomes interesting when forces want to 
be attracted to certain lines in the structure, such as 
along the ribs.  

(f)  Solving for the equilibrium solution G:  
Using the geometry of the force pattern and diagram, the 
weights applied at the nodes and the boundary condi-
tions, this problem can be solved using a one-step linear 
optimization (LO). 

 
 
Figure 2. The two plane grids have a reciprocal relationship as 
defined by Maxwell. The equilibrium of a node in one of them 
is guaranteed by a closed polygon in the other and vice versa. 
The labeling uses Bow’s notation (Bow 1873). 



The constraint equations have the following form 
(matrix notation):  

( ) 0* =− rpzCHHC TT  (1) 

In this equation, the unknowns are linear combina-
tions of the nodal heights z and the unknown scale of 
the force diagram r. The coefficients in the equations 
are functions of the connectivity matrix C, which 
represents the topology of the networks (Schek 
1974); the branch lengths H and H* of the force pat-
tern Г and diagram Г* respectively; and p, the load-
ing in each node.  

We solve simultaneously for the nodal heights of 
the solution and the scale of the force diagram. The 
horizontal components of the forces in the solution 
G can easily be found by measuring the lengths of 
the branches in the force diagram grid and multiply-
ing them by the actual scale.  

3.4 Applications 
Before able to solve the problem using LO, the ana-
lyst must choose the objective function of the opti-
mization problem. Examples are (1) increasing the 
load factor of an imposed load until no solution can 
be found that fits within the boundaries of the struc-
ture (Fig.5a); (2) finding the one solution which 
maximizes the geometric factor of safety to demon-
strate if a structure is safe or not (Fig.5b); or (3) 
finding the range of thrust, defined by a minimum 
and maximum thrust solution (Fig.5c), to understand 
the capacities of the 3D vault. 

The first option gives an upper-bound solution. 
O’Dwyer (1999) demonstrates this for a barrel vault 
with a point load. Although such an analysis is rele-
vant for bridge structures, such a loading is unlikely 
for vaults inside of a building. The second option is 
used by Andreu et al. (2007). If the optimization 
produces a result, then the safe theorem guarantees 
that the vault is safe and the geometric factor of 
safety gives an indication of the relative stability of 
the vault. The third option is used in this paper. The 
range of possible thrust values gives a useful charac-
terization of the structural behavior of the vault. The 
minimum (or passive) thrust state represents the 
least amount this vault can push horizontally on its 
neighboring elements, as a function of its self-
weight and shape. The maximum (or active) state of 
thrust on the other hand represents the largest hori-
zontal force this vault can provide. So, this value 
demonstrates how much horizontal force this vault 
can safely take from its neighboring elements. For 
the optimization problem this means that we want to 
minimize and maximize the scale of the force dia-
gram, resulting in globally the smallest versus the 
largest horizontal forces in the system or also the 
deepest versus the shallowest solution which fits 

Figure 3. (left image)   The input for the Thrust Network Analysis method: (a) the boundaries, the intrados and extrados of the vault; 
(b) a possible force pattern Г defined on the horizontal plane; (c) the reciprocal force diagram Г* automatically produced from Г; 
and the weight associated per node coming from the vault’s self-weight and other imposed loads. 

Figure 4. (right image)   For a simple, but indeterminate, 4-bar structure, keeping the load P, the force pattern Γ, and the depth of 
the structure the same, this image shows the effect of manipulating the force diagram Γ*, i.e. changing the internal distributions of 
the forces. Stretching the force diagram to double the size in one direction is equal to doubling the forces in that direction and thus 
resulting in a structure half as deep in that direction. 
 

 

 
 

 

Figure 5. Possible objectives for the LO problem: (a) maximiz-
ing the load factor of an applied load; (b) maximizing the 
geometric safety factor; and (c) finding the range of thrust val-
ues, defined by a minimum and maximum thrust value.  



within the boundaries of the structure. 
The viability of the proposed method is demon-

strated through two case studies, highlighting its 
multiple applications. First, an analysis of a series of 
groin and quadripartite rib vaults investigates the in-
terrelationship between different parameters and the 
range of possible equilibrium solutions of these 
vaults. A second case study looks specifically at the 
fan vaults of King’s College Chapel in Cambridge, 
England.  

4 GROIN AND QUADRIPARTITE VAULTS 

Variables influencing the range of vault thrust in-
clude the influence of the web geometry, the boun-
dary conditions, the role and effect of cross-ribs, the 
assumptions for the internal force patterns, the pres-
ence of cracks and other pathologies, and the impact 
of fill above the haunches. 
 The groin vault shown in Figure 6 is found to 
have a range of possible horizontal thrust values at 
the corners which vary from 21% to 32% of the total 
weight of the vault. This results from the choice of a 
pseudo-3D force pattern inspired by Wolfe’s analy-
sis (Fig. 1), where arches are assumed to span be-
tween the ribs, which carry the loads to the supports. 
The presence of Sabouret cracks which run parallel 
to the edges of the vault could justify such a pattern. 

Figure 7 illustrates the relation between the cho-

sen force patterns (i.e. the horizontal projection of 
the thrust network solution), the reciprocal force di-
agrams, and the shape of the 3D equilibrium solu-
tions. The image demonstrates how the force dia-
grams clearly visualize the internal force distribution 
of the different force path assumptions (e.g. how 
much more force goes into the diagonals compared 
to the arches spanning in between them). Not only 
the proportions inside the force diagrams are useful, 
but the global scale allows for a direct comparison 
of the overall magnitude of the forces in the system 
between the different force pattern assumptions.  

The first force pattern and diagram (Fig. 7a) 
represent the minimum thrust state shown in Figure 
6. The second pattern (Fig. 7b) shows a different as-
sumption on how the forces could travel through the 
structure: all force lines go directly to the corner 

 
 
 
 
 
 
 
 

Figure 6. Possible thrust values at the corners for this groin 
vault range from 21% to 32% of its total weight.  
 

 

 
 
Figure 7. Different possible force patterns for a groin or rib vault: (a) the diagonal ribs bring down the forces to the corner supports, 
arches in the web span in between the ribs; (b) all force lines go directly to the corner supports; and, (c) primary force lines accu-
mulate towards the supports and a continuous 3-D mesh distributes the loads to these force lines. (d) shows the three-dimensional 
thrust network, resulting from the assumptions in (c), which fit within the vault’s geometry.  



supports. The force diagram represents in a clear fa-
shion the equilibrium of the corner nodes and center 
node. A similar force pattern is used in Section 5 to 
analyze the fan vaults. The last pattern (Fig. 7c) 
shows a fully three-dimensional force pattern. An 
important difference with the previous two assump-
tions is that forces no longer only go to the corner 
supports. This network assumes that a part of the 
vault is carried along the edges. As a result the thrust 
at the corner supports will be reduced. The main 
force lines (heavier lines in the force pattern) are 
distinguished from a continuous, regular grid in be-
tween. As can be seen in the force diagram, more 
force is attracted to the main force lines compared to 
the grid lines resulting in primary structural action 
over these lines and three-dimensional vault action 
between them. The location of these force lines can 
for example be inspired by the location of ribs in the 
actual vault. Figure 7d shows a three-dimensional 
compression-only thrust network which fits within 
the groin vault’s geometry. 

5 FAN VAULTS OF KING’S COLLEGE 

The fan vaults of King’s College Chapel in Cam-
bridge, England were constructed between 1512 and 

1515 (Fig. 8a). These double-curvature vaults were 
first analyzed by Heyman (1977) using membrane 
theory. These vaults with complex geometries can 
be analyzed using thrust-network analysis. 

From available documentation (Leedy 1980), a 
detailed three-dimensional model is constructed 
(Fig. 8b, c). This model is used for obtaining precise 
nodal height constraints and good approximations of 
the weights applied at each node.  

Since there are cracks between the transverse 
arches and the conoid fan vaults (Leedy 1980), we 
can assume that no compressive forces can be trans-
ferred between them. The transverse arches and the 
fan vaults work independently of each other. The 
chosen force pattern should reflect this, i.e. no 
branches should cross the interfaces between the fan 
vault and the transverse arch. Figure 8d shows a 
thrust network which fits within the vault’s section 
demonstrating that it is stable. The force pattern fol-
lows the radial rib pattern. 

 The fill adds weight and alters the thrust-network 
but also adds more depth to the section for the 
thrust-network to travel through. This is very clear if 
we look at the equilibrium of the main transverse 
arch (Fig. 9). Without the level of fill, this arch 
would be too thin to stand under its own weight. The 
level of fill causes an increase of thrust, i.e. the hori-

 
 
Figure 8. (a) Inside view of the fan vaults of King’s Chapel in Cambridge, (b,c) A detailed model of the geometry of the vaults and 
(d) a 3D thrust-network solution fitting inside the section of the vaults. 



zontal component, of the main arch by less than 25% 
compared to the case with no fill. On the other hand, 
the vertical component is more than tripled due to 
the added weight of the fill. We can conclude from 
this that the level of fill has a significant stabilizing 
effect on the buttresses which carry the arches and 
the vaults.  

Furthermore, the level of fill appeared to be of 
crucial importance in order to find an acceptable 
thrust-network, which is shown in Figure 8d. In fact, 
the thrust-lines in the long direction of the vaults on-
ly fit within the section due to the fill. Another ex-
ample illustrating the careful choice of the geometry 
of the vaults and fill is the added height and weight 
over the transverse ridges between two adjacent fan 
vaults (Fig. 8c) which causes a kink in the thrust 
lines in the short direction of the vaults such that 
they fit in the very steep section. From this prelimi-
nary analysis it seems that each stone, and even the 
level of fill, has been sculpted carefully to maintain 
the stability of this thin vault.  

The importance of the level of fill could be inves-
tigated even further. For a given vault geometry, 
what would be the optimal level of fill? What load-
ing would cause the thrust-network to lie as close to 
the middle surface of the vault as possible? We can 
solve this by using equation (1) differently. For a 
given choice of force network and force distribution, 
we now want to find the funicular loading which re-
sults in a given shape (Williams 1990).  This means 
that in Equation (1) now C, H, H* and z are known 
and that p and r are the unknowns. So, the optimiza-
tion process now defines the optimal level of fill 
which would cause the thrust-network to lie as close 
to the middle surface of the vault as possible. 

 

 
 

6 DISCUSSION 

The methodology uses existing 3D drawing software 
as input and output resulting in an interactive tool 
with a visual representation of results and force dis-
tributions. Analysis proceeds from an accurate 3D 
model of the vault without the need for abstraction 
or simplification. The computation is done in Mat-
LAB. The number of elements that the implementa-
tion can handle is limited to approximately 500 due 
to computational speed but this could easily be im-
proved. 

For the thrust-network analysis of masonry vaults, 
various parameters can be changed. (a) Different 
force patterns can be chosen to compare assumptions 
on how forces may be traveling through the struc-
ture. A distinction can be made between primary 
force lines and secondary force lines. (b) The force 
diagrams can be manipulated in order to redistribute 
the internal force distributions. (c) The solution en-
velopes can be chosen in order to constrain the solu-
tions to the middle third zone of the vault or to ex-
clude the thickness of ribs. (d) Different boundary 
conditions can be chosen. The vault can have a con-
tinuous edge support or only corner supports. This 
decision can be influenced by the curvatures of the 
vaults or by the existence of cracks. (e) Level of fill 
or other imposed loads can easily be integrated by 
adding load to affected nodes.  

In addition, the loading cases do not have to be 
constrained to only gravity loads. An initial measure 
of the stability of a vault under lateral acceleration 
can be assessed by applying an equivalent static ho-
rizontal force. As shown in Block et al. (2006a) us-
ing interactive graphic statics for 2D, this can be si-
mulated by tilting the model. 

  Future work includes the development of a more 
sophisticated optimization set-up which takes into 
account all possible force patterns and diagrams and 
searches for the absolute minimum and maximum 
thrust values for the masonry vaults.     

7 CONCLUSION 

This paper applied Thrust-Network Analysis, a fully 
three-dimensional computational method, to obtain 
lower-bound solutions for masonry vaults with com-
plex geometries.  

Key elements in the proposed process are (1) 
force networks, representing possible force paths 
through the structure; (2) interactive reciprocal dia-
grams, visualizing the proportional relationship of 
all forces in the force network and providing a high 
level of control for the user to understand and mani-
pulate the force distributions within the system; (3) 
the use of envelopes defining the solution space; and 

Figure 9. (a) The line of thrust exits the section of the trans-
verse arch if the level of fill is left out. (b) shows the stable sit-
uation with fill.  
 



(4) linear optimization, resulting in fast computation 
and visualization of results.   

For the input of the vault geometry and the load-
ing conditions and for the output of the three-
dimensional results, implementations are written in 
existing architectural software. This allows for clear 
visualizations of the results, and the smooth integra-
tion of the form-finding process in the analysis 
process.  

Through several examples, this paper demon-
strated the potential of thrust-network analysis as a 
powerful tool for understanding, visualizing and ex-
ploring the equilibrium of compression-only struc-
tures such as historic vaults in unreinforced maso-
nry. 
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