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In  this  paper  we introduce  the  principles  necessary  to synthesize  the  complete  body  of  serial  flexure
system  concepts,  which  satisfy  desired  design  requirements  using  Freedom  and  Constraint  Topolo-
gies  (FACT).  FACT  utilizes  a comprehensive  library  of  geometric  shapes  that represent  regions  were
constraints  may  be placed  for  synthesizing  flexure  systems  that  possess  designer-specified  degrees  of
freedom  (DOFs).  Prior  to  the  theory  of  this  paper,  FACT  was  limited  to  the  synthesis  of  parallel  flexure
systems  only.  The  ability  to  synthesize  serial  flexure  systems  is  important  because  serial  flexure  systems
(i)  may  possess  DOFs  not  accessible  to  parallel  flexure  systems,  (ii)  exhibit  larger  ranges  of  motion,  and
(iii) enable  cancellation  of parasitic  errors.  Geometric  shapes  that  represent  motions  only  accessible  to
crew theory
erial and parallel flexures
nderconstraint
reedom and constraint spaces

serial  flexure  systems  have  been  derived  and  added  to the  existing  body  of  FACT  shapes  initially  intended
for parallel  flexure  synthesis  only.  Systematic  rules  and  guidelines  have  been  created  that  help  designers
use  these  shapes  to generate  every  parallel  and  serial  flexure  concept  that  satisfies  the  desired  functional
requirements.  We  demonstrate  how  to use  these  shapes  to utilize  or  avoid  underconstraint  in serial  flex-
ure  synthesis.  A  serial  flexure  system  is  designed  that  interfaces  the  lead  screw  of  a  lathe  to the  carriage
that  it drives  as  a case  study  to  demonstrate  the theory  of this  paper.
. Introduction

Flexure systems are important precision machine elements
ecause they (i) are capable of performing with sub-nanometer
epeatability and resolution, (ii) may  be designed to possess com-
lex kinematics and dynamics, (iii) are easily miniaturized, (iv) are
elatively easy to fabricate and maintain, and (v) tend to be lower
ost than their competitors. Flexure systems may  be divided into
hree main categories—parallel, serial, and hybrid. Parallel flexure
ystems consist of a single rigid stage that is connected directly to
round by non-conjugated flexible elements. Serial flexure systems
onsist of a consecutive chain of parallel flexure system modules
hat are nested or stacked together. Hybrid flexure systems con-
ist of a combination of parallel and serial flexure systems. Fig. 1
hows an example of a parallel, serial, and hybrid flexure system.
lthough the principles of this paper may  be applied to the syn-

hesis of hybrid flexure systems as well, the focus of this paper is
rimarily on the synthesis of serial flexure systems. For a detailed

escription of how FACT may  be applied to the synthesis of parallel
exure systems see Hopkins [1–3].
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Serial flexure systems are generally more difficult to design than
parallel flexure systems. When designing a parallel flexure system,
it is difficult to keep track of (i) the relative, three-dimensional
orientations of the flexural constraints, (ii) the orientation of
the permitted motions, and (iii) the three-dimensional relation-
ships between each constraint and the permissible motions. When
designing a serial flexure system, however, the preceding becomes
more difficult as extra stages are stacked on top of each other. The
reason for this is that the kinematics, elastomechanics, and dynam-
ics of each stage are influenced by the kinematics, elastomechanics,
and dynamics of the other stages in the serial chain.

The ability to synthesize serial flexure systems is important to
precision engineers because serial flexure systems possess advan-
tages not had by parallel flexure systems. Some of these advantages
include the following:

(1) Serial flexure systems are capable of possessing DOFs that are
not possible for parallel flexure systems to possess. A flexure
system, for instance, that permits only three independent trans-
lations, i.e., x–y–z, is only possible for a serial flexure system.
The reason for this fact is that the moment a single flexible con-

straint is connected directly from a stage to ground, the stage
looses one of its three translations along the constraint’s axis.
Parallel flexure modules must therefore be stacked in series to
achieve three translations.

dx.doi.org/10.1016/j.precisioneng.2011.04.006
http://www.sciencedirect.com/science/journal/01416359
http://www.elsevier.com/locate/precision
mailto:jonathanbhopkins@gmail.com
dx.doi.org/10.1016/j.precisioneng.2011.04.006
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Fig. 1. Example of a parallel (A), s

2) Serial flexure systems may  be designed to possess larger ranges
of motion than same-size parallel flexure systems. Note that the
serial flexure system from Fig. 1B is the same size as the parallel
flexure system from Fig. 1A, but the serial flexure system’s stage
is capable of moving twice the distance as the parallel flexure
system’s stage.

3) Serial flexure systems may  be designed to reduce parasitic
errors. The parallel flexure system’s stage from Fig. 1A does not
possess a perfect translational DOF. The stage follows an arc-
like path over its range of motion. The stage of the serial flexure
system from Fig. 1B moves along a “straighter” path because
the vertical components of the opposing arc motions of the two
rigid stages cancel.

Others have attempted to tackle the challenges of synthesiz-
ng complex flexure systems. The three most common approaches
or designing flexible mechanisms include constraint-based design
CBD), the pseudo-rigid body model (PRBM), and topological syn-
hesis. Constraint-based designers have developed rules of thumb
or synthesizing flexure systems using well known flexural ele-

ents as building blocks [4–6]. Unfortunately, the principles of
BD are typically acquired after years of apprenticeship and experi-
nce. Constraint-based designers rely on good motion visualization
nd pattern recognition skills. As such, most precision flexure sys-
ems designed using CBD are limited to simple, intuitive designs
hat possess kinematics, which are possible to visualize. Pseudo-
igid body modeling models compliant mechanisms as analogies
o rigid-link mechanisms [7–9]. The rigid analog is then modeled
sing pre-existing rigid mechanism theory and the principle of vir-

ual work to ascertain its kinematic and elastomechanic properties.
he PRB model has been used to design precision elastic mecha-
isms [10,11] and many consumer products. The primary aim of
RBM is to model, rather than synthesize, and so it is not ideally

Fig. 2. Example of a geometric shape (A) from which designers may
B), and hybrid (C) flexure system.

suited to solve the problems that are the target of this paper. Topo-
logical synthesis is based upon computer algorithms that examine
a starting shape for a compliant mechanism and then determine
how to add/subtract material in order to create concepts that satisfy
performance specifications [12,13]. In this method, the computer
makes the design decisions that determine the layout of the rigid
and flexible elements. This approach is effective for rapid synthe-
sis of non-precision compliant mechanisms for robotics, MEMS
and aeronautics. Unfortunately, topology synthesis is not readily
applied to solve most precision flexure design problems. The reason
for this is that the knowledge needed to integrate the specialized
precision design rules with topological synthesis does not currently
exist. Furthermore, many of the concepts generated using topolog-
ical synthesis are difficult to fabricate and implement because the
designer’s common sense has no influence on what the computer
generates. The approach introduced in this paper is, therefore, most
suited for the design of precision flexure systems of any complexity.

In this paper we demonstrate how a specialized set of mathe-
matically based geometric shapes, like the one shown in Fig. 2, may
be used to optimally synthesize serial flexure systems for a given set
of specifications—kinematics, range, load capacity, thermal stabil-
ity, etc. The geometric shapes used to design such systems – called
freedom and constraint spaces – embody the rigorous mathematics
of screw theory and help designers visually identify all the possi-
ble regions where constraints may  be located/oriented in order to
achieve the system’s desired degrees of freedom (DOFs). In this way,
novice or experienced designers may  rapidly consider all the possi-
ble flexure concepts before selecting the concept that best satisfies
the system’s functional requirements.
The process that utilizes these geometric shapes is called Free-
dom and Constraint Topologies (FACT) [1–3,14–16].  For this paper,
design principles and best-practices have been created and inte-
grated into the FACT design process, which enable the synthesis of

 select constraints for synthesizing a serial flexure system (B).
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ig. 3. Twist and wrench types (A), rotation twist (B), translation twist (C), and screw
wist (D).

erial flexure systems. These rules guide designers in identifying
erial concepts that (i) possess symmetry, (ii) are thermally stable,
iii) utilize or avoid over and underconstraint, and (iv) possesses the
esired system kinematic, stiffness, and dynamic characteristics.

This paper applies to small-motion kinematics only. This
ssumption is fitting as we are designing precision flexure sys-
ems that move small amounts compared to their overall size.
espite this assumption, however, this paper does provide design-
rs guidelines for synthesizing serial flexure systems that achieve
heir desired motions over a large/finite range due to symmetry or
arasitic error cancellation.

. Fundamental principles

.1. Modeling DOFs and flexible constraints
To understand flexure synthesis, it is necessary to first under-
tand how to model DOFs and the flexible constraints that enable
hem. All small motions may  be modeled as a 6 × 1 vector called a

ig. 4. Example with two rotational DOFs (A) and (B). The system’s freedom space is a d
he  constraint space (E).
 Engineering 35 (2011) 638– 649

twist, T [17–20].  A twist may  be visualized as a line about, or along,
which a stage rotates and/or translates. There are three types of
twists as shown in Fig. 3A—rotations, translations, and screws. In
this paper rotations are represented as red lines, translations are
represented as black arrows, and screws are represented as green
lines. If a flexure possessed a rotational DOF like the one shown
in Fig. 3B, the flexure’s stage could freely rotate about the axis of
the red line. If a flexure possessed a translational DOF like the one
shown in Fig. 3C, the flexure’s stage could freely translate along
the axis of the black arrow. If a flexure possessed a screw DOF like
the one shown in Fig. 3D, the flexure’s stage could freely translate
along the axis of the green screw line as the stage simultaneously
rotates about the same axis according to the pitch of the screw. The
pitch of a screw is defined as the ratio of the stage’s translation to
its rotation.

All flexible constraints may  be modeled using a 6 × 1 vector
called a wrench, W [17–20].  A wrench may  be visualized as a
line along or about which a force and/or moment act. There are
three types of wrenches as shown in Fig. 3A—pure forces, pure
moments, and coupled force and moment wrenches. In this paper
pure forces are represented as blue lines, pure moments are rep-
resented as black lines with circular arrows, and coupled force and
moment wrenches are represented as orange lines. It is important
to note that only pure force wrenches (blue lines) model flexible
constraints. If a flexible constraint is long and slender, like those
shown in Fig. 3D, a single pure force wrench oriented along the
constraint’s axis accurately models the constraint. If the flexible
constraint is a thin blade flexure, like those shown in Fig. 3B and C,
pure force wrenches that lie on the plane of the blade flexure may
accurately model the constraint. At least three pure force wrenches
that (i) lie on the plane of the blade flexure, (ii) are not parallel, and
(iii) do not intersect at a common point are necessary to accurately
model a blade flexure.

2.2. Freedom and constraint spaces

The parallel flexure systems shown in Fig. 3 are single DOF sys-

tems. Consider the 2 DOF parallel flexure system shown in Fig. 4.
This flexure system is capable of guiding two  independent rota-
tional DOFs as shown in Fig. 4A and B. If these two independent
rotations are simultaneously actuated and the relative ratio of their

isk of rotations (C). Freedom and constraint space pair (D). Every constraint lies in
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Fig. 5. Symmetric FACT chart with all twist and wren

otations is controlled, the resulting rotation line may  be any of the
ed lines within the disk or pencil shown in Fig. 4C. This disk is the
ystem’s freedom space [1–3,14–16].  Freedom space is the geomet-
ic shape that visually represents a system’s kinematics, i.e., all the
wists the flexure permits.

All freedom spaces uniquely link to a complementary con-
traint space [1–3,14–16].  Constraint space is the geometric shape
hat visually represents the regions where the flexible constraints
elong for enabling the system’s desired DOFs. The freedom and
onstraint space pair of the 2 DOF parallel flexure system of our
xample is shown in Fig. 4D. The disk-shaped freedom space of
ed rotation lines uniquely links to a constraint space that con-
ists of every pure force wrench that lies on the disk’s plane and
very pure force wrench that intersects the disk’s central point.
hese wrenches are represented by the plane and the sphere of
lue lines shown on the right side of Fig. 4D. Note that the par-
llel flexure system’s eight slender flexible constraints all belong
nside this constraint space as shown in Fig. 4E. The pure force

renches W1, W4, W5, and W8 belong to the sphere and the pure
orce wrenches W2, W3, W6, and W7 belong to the plane of the
onstraint space. Every parallel flexure system that possesses the

 DOFs shown in Fig. 4A and B will be constrained by flexible
onstraints that lie within the constraint space of Fig. 4E. Note,
owever, that not every combination of flexible constraints that lie
ithin this space will produce the desired DOFs. If, for instance, con-

traints were selected only from the sphere of the constraint space,
he stage would possess extra DOFs. To exclusively achieve the
wo desired DOFs, four independent pure force wrenches must be
elected from within the constraint space. Geometric shapes called
ub-constraint spaces have been created for helping designers con-
ider every way independent pure force wrenches may  be selected
rom within a system’s constraint space to assure the desired sys-
em kinematics and to control constraint redundancy. For more
etail on selecting appropriate flexible constraints from within a
articular constraint space see Hopkins [1–3].

The content of this section is fundamental to the FACT synthe-
is process. If a designer (i) were able to identify the freedom space
hat represents a desired set of DOFs and (ii) knew to which comple-

entary constraint space that freedom space uniquely links, he/she
ould be able to use that constraint space to conceptualize every
arallel flexure system that possessed those DOFs.
. FACT chart

Interestingly, there are only 50 freedom and constraint space
airs called types. These types are described in detail and derived
es (A). Practical FACT chart for flexure synthesis (B).

in Hopkins [3,21],  and are shown in Fig. 5. All claims that pertain
to the comprehensive nature of this chart stem from the deriva-
tions found in these references. The chart from this figure contains
a lot of information that the reader is not yet expected to fully
understand at this point in the paper. Notice, however, that all the
types belong to one of seven columns. Each column pertains to the
number of DOFs the type’s freedom space possesses. Within each
column, the freedom and constraint space pairs are labeled with
type numbers. The freedom space of each type is shown to the left
of a small, grey, double-sided arrow in the middle of each column
and the constraint space of the same type is shown to the right of the
same arrow. The freedom and constraint spaces shown in Fig. 5A
include all types of twists and wrenches defined in Fig. 3A. The chart
from Fig. 5A is a visual representation of all screw systems [22–35]
with their complementary spaces. Although much work has been
done to classify and complete screw systems [36–41],  this chart
provides a comprehensive classification of screw systems that is
suited for flexure synthesis. Note that the spaces within the chart
are symmetric about the 3 DOF column. This means that the free-
dom spaces within the n DOF column are identical to the constraint
spaces within the 6 − n DOF column. The proof for this symmetry
is found in Hopkins [3].

Recall from Section 2.1 that flexible constraints may  only be
modeled using pure force wrenches. Thus the chart from Fig. 5 is
only useful to flexure designers if the constraint spaces (i) con-
tain only pure force wrenches (blue lines), and (ii) possess enough
independent, pure force wrenches to produce the correct comple-
mentary freedom space. In other words, if a system’s freedom space
possesses n DOFs, its constraint space must possess 6 − n indepen-
dent pure force wrenches or it is not a useful constraint space.
Thus, the practical FACT chart that contains only these useful con-
straint spaces is shown in Fig. 5B. The thick black line that separates
the types with constraint spaces from the types without constraint
spaces is called the “parallel pyramid”. Parallel flexure systems may
only possess freedom spaces that lie within the parallel pyramid.
All flexure systems that possess freedom spaces that lie outside of
this pyramid may  only be synthesized by stacking parallel flexure
modules in series from constraint spaces within the parallel pyra-
mid. The reason for this fact is that the freedom spaces that lie
outside of the pyramid do not have constraint spaces from which
the designer may select constraints. Note that the freedom and con-
straint space pair shown in Fig. 4D is the first type at the bottom

of the column labeled 2 DOF in Fig. 5B and that the pair lies within
the parallel pyramid. Note also that the freedom space that con-
tains only three pure translations (sphere of black arrows) is the
Type 20 in the column labeled 3 DOF and lies outside of this pyra-
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id. This freedom space is only possible for a serial flexure system
o possess. The completion and presentation of the screw systems
uited for synthesizing parallel and serial flexure systems are major
ontributions of this paper.

. Serial synthesis principles

This section discusses the principles necessary to synthesize
erial flexure systems using geometric shapes as tools. The prin-
iples that govern underconstraint and kinematic equivalence are
lso established.

.1. Parallel and serial constraint fundamentals

According to constraint-based design, flexures connected in
arallel retain the DOFs that the individual constraints share in
ommon, whereas flexures connected in series will possess the
OFs of the individual constraints combined [4].  Each constraint

hown in the left and center images of Fig. 6A permits the two-
imensional stage to possess a rotational DOF and a translational
OF that is perpendicular to the axis of the constraint. If these con-

traints are combined in parallel, the stage retains only the common
otational DOF shown on the right side of Fig. 6A. If the transla-
ional DOF parallel flexure module shown in Fig. 6B is stacked in
eries with itself, not only does the final stage inherit each mod-
le’s translational DOF, but it also inherits every combination of
hose translational DOFs. The stage shown in Fig. 6B may, there-
ore, move with any translation in the plane of the flexure as
epresented by the disk of arrows. In other words, when a par-
llel flexure system that possesses the Type 3 freedom space from
he 1 DOF column of Fig. 5B is stacked in series with another paral-
el flexure system that possesses the same freedom space oriented
n a different direction, the resulting serial flexure system’s stage
ossesses the Type 10 freedom space from the 2 DOF column of
ig. 5B.

Identifying which freedom space results by combining the free-
om spaces of various parallel flexure systems stacked in series can

e difficult. Consider the serial flexure system shown in Fig. 7. This
ystem consists of two parallel flexure systems stacked in series.
f the rigid stage labeled 3 were grounded, the freedom space of
he rigid stage labeled 2 would be the Type 2 freedom space from

Fig. 7. The freedom spaces (A) and (B) of each parallel flexure module co
allel (A) and in series (B).

the 2 DOF column of Fig. 5B. This freedom space, shown in Fig. 7A,
consists of a plane of parallel red rotation lines and a perpendicu-
lar translation depicted as a black arrow. If stage 3 were grounded,
therefore, the flexible constraints of the first parallel flexure system
would permit stage 2 to rotate about any line on the plane shown in
Fig. 7A and translate in the direction normal to this plane. If, how-
ever, the rigid stage labeled 2 were grounded, the freedom space
of the rigid stage labeled 1 would be the same freedom space as
before but rotated 90 degrees as shown in Fig. 7B. In other words, if
stage 2 were grounded, the flexible constraints of the second par-
allel flexure system would permit stage 1 to rotate about any line
on the plane shown in Fig. 7B and translate in the direction normal
to this plane. Suppose we now grounded the rigid stage labeled 3
but left the rigid stages labeled 2 and 1 free to move. If we  wished
to find the new freedom space of stage 1, we would expect a free-
dom space that inherits the rotation lines and translation arrows
from both freedom spaces shown in Fig. 7A and B as well as all
the motions that would result from combining these two freedom
spaces just as the two  translation arrows combined to form the disk
of arrows from Fig. 6B. This new freedom space, shown in Fig. 7C,
contains every red rotation line that lies in an infinite stack of disks
or pencils that lie on planes that are parallel to the face of the flex-
ure (only two  of these red disks are shown in the figure). The central
point of each disk may be intersected by a single dashed line that is
normal to the planes of the disks. A disk of translational arrows that
point in directions perpendicular to this dashed line also exists in
the freedom space and is shown in Fig. 7C. This freedom space is the
Type 8 freedom space from the 4 DOF column of Fig. 5B. Note from
the right side of this freedom space in Fig. 5B that green screw lines
would also exist, which are collinear with the red rotation lines in
the disks. These screw lines were not shown in Fig. 7C to avoid visual
clutter. They result from the fact that the stage may  rotate around
the axes of each red rotation line while simultaneously translating
along their axes in the direction of the black arrows. If it is diffi-
cult to visualize how the freedom space shown in Fig. 7C results
from the combination of the freedom spaces shown in Fig. 7A and
B, a mathematical approach can be used to generate the space. The
freedom space of Fig. 7C results from the linear combination of the
independent twists that describe the freedom spaces of Fig. 7A and
B. We  will discuss these principles in greater detail in later sections

and will demonstrate how these principles apply to serial flexure
system synthesis.

mbine to form the freedom space (C) of the serial flexure system.
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Fig. 9. 3 DOF Type 1 freedom and constraint spaces (A). Spaces imposed on the 3
ig. 8. 3 DOF parallel flexure system (A). 5 DOF stacked serial flexure system (B).

.2. Underconstraint

Consider the 3 DOF parallel flexure system constrained by the
exure blade shown in Fig. 8A. The system’s stage is permitted to
ove with a translation and two rotations as depicted by the three

wists that are shown in the figure. If this parallel flexure module
ere stacked on top of itself as shown in Fig. 8B, one might expect

he new stage to possess 6 DOFs—3 from each module. Although the
tage inherits the DOFs of both parallel modules as shown in Fig. 8B,
he stage only possesses 5 DOFs because the rotations labeled T3
nd T6 are redundant meaning that both parallel modules possess
he same DOF. When a serial flexure system possesses one or more
edundant DOFs, the system will possess intermediate stages that
re underconstrained. Such intermediate stages still possess the
edundant DOFs even when the ground and stage of the serial flex-
re system are held fixed. Consider, for example, holding the stage
nd ground of the serial flexure system from Fig. 8B fixed. The inter-
ediate stage labeled in the figure would remain free to rotate

bout the axis of the redundant rotation labeled T3 and T6. We  will
ater show how geometric shapes may  be used in conjunction with
he principles of this section to avoid or utilize underconstraint in
he design of serial flexure systems.

Advantages and challenges are associated with flexure systems
hat possess underconstrained elements. Parallel modules stacked
n series like those shown in Figs. 1B and 8B achieve a greater range
f motion than the individual parallel modules alone because each
odule contributes to the full stroke of the final stage. A properly

nderconstrained system may, therefore, markedly increase a flex-
re’s stroke to size ratio. Unfortunately, underconstrained flexure
ystems generally have poor dynamic characteristics. Reducing the
ass of the intermediate stages and stiffening the flexible elements

hat connect them together helps mitigate this problem.

.3. Intermediate spaces

Consider the planar constraint space of the parallel flexure mod-
le from Fig. 8A. This constraint space is shown with a different
rientation in Fig. 9A. Note that the constraint lines (i.e., pure force
rench lines) of the flexure blade shown in Fig. 9B lay on the plane

f the system’s constraint space. The constraint space belongs to
he first type in the 3 DOF column of Fig. 5B. The constraint space’s
omplementary freedom space, shown in Fig. 9A, consists of all
otational lines that lie on the plane of the constraint space as well
s a translation perpendicular to this plane. Notice from Fig. 9B that
he three DOF twists shown in Fig. 8A belong to the freedom space
f the system. If the parallel flexure module is stacked in series with
tself as shown in Fig. 9C, the resulting freedom space of the serial

tage not only possesses twists from the planar freedom spaces of
ach individual parallel flexure module, but it also possesses the
wists that result from the combination of these motions accord-
ng to the principles discussed in Section 4.1.  The freedom space
DOF  parallel flexure module (B). Intermediate freedom spaces (C) sum together to
produce the 5 DOF freedom space of the serial flexure system (D).

of the serial flexure system’s stage, therefore, contains (i) every
rotational line that lies on the planes that intersect the dotted line
shown in Fig. 9D and (ii) every translation that is perpendicular to
the same line. Note that the two planar freedom spaces of the seri-
ally stacked parallel flexure modules lie within this freedom space.
These two  freedom spaces that combine to form the serial flexure
system’s freedom space are called intermediate freedom spaces.
These spaces each contain three independent twists that are labeled
in Fig. 9C. If the three independent twists from one of these planar
freedom spaces were simultaneously actuated with different mag-
nitudes, their combined effect would behave as other twists that
lie within the same planar freedom space. If, however, the three
independent twists from each of the two  planar freedom spaces,
labeled in Fig. 9C as T1 through T6, were combined and simulta-
neously actuated with different magnitudes, they would behave as
other twists that lie within the full freedom space of Fig. 9D. If Gaus-
sian elimination were performed with these six twists, only five of
them would be shown to be independent. It is not surprising there-
fore, that the combined freedom space shown in Fig. 9D belongs to
the first type in the 5 DOF column of the chart from Fig. 5B because
the system possesses only five DOFs.

The intermediate freedom spaces from Fig. 9C reveal why  this
serial flexure system possesses an underconstrained element. The
reason is that each intermediate freedom space individually pos-
sesses three DOFs, whereas the combined freedom space of the
system only possesses five DOFs leaving one DOF  to be redundant.
If, therefore, the sum of the number of DOFs of each intermediate
freedom space is more than the number of DOFs of the system’s
freedom space, the serial flexure system will possess undercon-
strained elements.

4.4. Kinematic equivalence
The freedom and constraint spaces of the serial flexure chain
from Fig. 9D are shown as Type 1 in the 5 DOF column of the chart
from Fig. 5B and again in Fig. 10A. Note that the freedom space
not only contains rotation lines and translation arrows, but it also
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ig. 10. 5 DOF Type 1 freedom and constraint space (A). Spaces imposed on the 5 DOF
ire flexure (B). Wire flexure and serial flexure chain are kinematically equivalent

C). Two kinematically equivalent flexure systems (D).

ontains screws. The shapes that describe the locations and orien-
ations of these screws are described in detail in Hopkins [21]. The
onstraint space of the system is a pure force wrench line that is
ollinear with the line of intersection of the planes of rotations from
he freedom space. Note that a single wire flexure also possesses
he same freedom and constraint spaces as shown in Fig. 10B. A
ire flexure is a long, slender flexible constraint. The wire flexure

nd the serial flexure chain from Fig. 10C are said to be kinemat-
cally equivalent because they possess the same freedom space.
he parallel and hybrid flexure systems shown in Fig. 10D are also
inematically equivalent because the wire flexures of the paral-
el flexure system were replaced with the kinematically equivalent
exure chains of the hybrid flexure system. Although kinematically
quivalent flexure elements may  be substituted without changing a
ystem’s DOFs, the system’s elastomechanics, dynamics, and manu-
acturability may  be altered to satisfy desired design requirements.

. FACT design process

This section describes the 6 steps of the FACT design process
hown in Fig. 11 that is used to synthesize parallel and serial pre-
ision flexure systems. A lead screw serial flexure system will be
esigned using FACT.

Step (1): identify desired motions: The designer must first recog-
ize which DOFs the system should possess and which directions
hould be constrained.

Step (2): identify freedom space: The designer must then identify
he freedom space that embodies the DOFs that were specified in
tep (1). This freedom space will belong to the column from Fig. 5B
hat pertains to the number of DOFs the system should possess.
Step (3): parallel or serial: The designer must then decide
hether to synthesize a parallel or a serial flexure system. If the

reedom space identified in Step (2) does not belong inside the
arallel pyramid from Fig. 5B, then the designer must synthesize
Fig. 11. Steps of the FACT design process for parallel and serial flexure systems.

a serial flexure system to achieve the desired DOFs. If, however,
the freedom space does belong inside the parallel pyramid, then
parallel or serial concepts exist that achieve the desired DOFs.

Step (4): choose intermediate freedom spaces:  If the designer
chooses to synthesize a serial flexure system, intermediate freedom
spaces must be selected. The intermediate freedom spaces must
exist in the chart of Fig. 5B to the left of the column that contains the
selected freedom space because the intermediate freedom spaces
must exist within the freedom space. The intermediate freedom
spaces must also belong within the parallel pyramid. Designers may
select any number of viable intermediate freedom spaces as long
as the total number of independent twists from all of the selected
intermediate freedom spaces combined equals the number of DOFs
within the freedom space selected in Step (2). An intermediate
freedom space may  be selected multiple times. The number of
intermediate freedom spaces determines the number of rigid stages
or parallel flexure modules the flexure system will possess. The
fewer the stages, the less complex the design, the easier to fabricate
and assemble, and the better will be the dynamic characteristics.
Serial flexure systems require a minimum of two intermediate free-
dom spaces. Intermediate spaces that possess orthogonal features
generally produce designs that are easily fabricated. Appendix A
provides a complete list of every freedom space’s intermediate
freedom spaces.

Step (5): design ground and stage(s): The ground and rigid stages
must then be designed. If the designer chose to synthesize a parallel
flexure system, only one stage should be designed. If the designer
chose to synthesize a serial flexure system, the number of stages
should equal the number of intermediate freedom spaces that were
selected from the previous step. The rigid stages should be far
enough away from each other that they do not collide as they move.

Step (6): select constraints from constraint space(s): If the designer
is synthesizing a parallel flexure system, he/she must select con-
straints from the constraint space of the system’s freedom space.
These constraints must connect the ground to the rigid stage. If the
designer is synthesizing a serial flexure system, constraints from
the constraint space of the first intermediate freedom space must
be selected such that they connect the ground to the first interme-
diate rigid stage. Then constraints from the constraint space of the
second intermediate freedom space must be selected such that they
connect the first intermediate rigid stage to the second intermedi-
ate rigid stage. This process continues until constraints have been
selected from the constraint spaces of every intermediate freedom
space and all the stages have been stacked together to form the full
serial flexure chain.
It is important that a suitable number of non-redundant con-
straints are selected from each freedom space’s constraint space
such that the rigid stage possesses the desired DOFs. If a freedom
space contains n DOFs, 6 − n non-redundant constraints should
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Fig. 12. Desktop lathe (A) and cross-section (B).
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Fig. 13. The desired motions that should be imparted on the hex nut b

e selected from the freedom space’s complementary constraint
pace. Not all constraints selected from the constraint space will be
on-redundant. The designer could select 6 − n constraints from the
onstraint space and then apply Gaussian elimination to ensure that
he wrenches of the constraints selected are all independent. Or the
esigner could use the constraint space’s sub-constraint spaces to
nsure constraint independence. Every constraint space possesses

 certain number of sub-constraint spaces that guide the designer
n selecting independent constraints. Every sub-constraint space
or any constraint space is derived and described in Hopkins [3].

.1. Lead screw flexure case study

In this section, a serial flexure system will be designed using the
teps of the FACT design process. Consider the desktop lathe shown
n Fig. 12A. A cross-section of the lathe is shown in Fig. 12B. A mech-
nism must be designed that transforms the lead screw’s rotation
nto the carriage’s translation. If the hex nut on the lead screw were

igidly attached to the carriage, the carriage would stick and slip as
t translates along the bearing rails because multiple elements of
he system would be constraining the same DOFs. A flexure system
hould be designed, therefore, that stiffly links the hex nut to the

Fig. 14. Freedom and constraint space of 2 DOF Type 2 (A). Two  intermediate free
exure system (A) and the freedom space of those desired motions (B).

carriage in certain directions while allowing for compliance in other
directions. In this way, imperfections in the lead screw’s geometry
and alignment are accommodated.

Step (1): identify desired motions: The flexure system should be
stiff along the axis of the lead screw such that the carriage simul-
taneously translates with the hex nut. The rotational motion about
the lead screw’s axis should also be stiff such that the friction
between the hex nut and threads of the lead screw is overcome
as the lead screw rotates. This avoids errors that manifest as back-
lash. The other two  translations and two rotations perpendicular to
the axis of the lead screw, shown in Fig. 13A, should be as compliant
as possible to accommodate for imperfections in the lead screw’s
straightness and alignment. The four DOFs shown in Fig. 13A  are,
therefore, the desired motions of the flexure system.

Step (2): identify freedom space: The freedom space that con-
tains these desired motions belongs to the 4 DOF column of the
chart from Fig. 5B and is Type 8. This freedom space and the desired
motions are shown in Fig. 13B. This freedom space was described

in detail in Section 4.1 and depicted earlier in Fig. 7C. The system’s
screws were not shown in Fig. 7C but are shown on the right side
of Fig. 13B  as green disks. The two dashed lines shown in Fig. 13B
are collinear.

dom spaces sum together to generate the freedom space of the system (B).
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ig. 15. Geometric constraints shape the ground and stage designs (A). The ground
nd stages shown with the desired DOFs (B).

Step (3): parallel or serial? Note that the freedom space of 4 DOF
ype 8 from the chart of Fig. 5B lies outside the parallel pyramid
nd has no complementary constraint space. In this case, therefore,
he designer has no choice but to synthesize a serial flexure system
s only a serial flexure system is capable of achieving the desired
OFs.

Step (4): choose intermediate freedom spaces:  The designer must
ow identify which freedom spaces exist within the freedom space
hown in Fig. 13B  that also lie within the parallel pyramid. These

reedom spaces will be the intermediate freedom spaces that the
esigner may  use to synthesize the serial flexure system. Every free-
om space maps to a comprehensive list of intermediate freedom
pace options from which the designer may  choose. If a designer

ig. 16. Orientation of the first intermediate freedom space (A) and its complementary c
he  main stage to the intermediate stage (C).

ig. 17. Orientation of the second intermediate freedom space (A) and its complementary 

he  intermediate stage to the ground (C).
 Engineering 35 (2011) 638– 649

is not familiar enough with the freedom spaces in the chart of
Fig. 5B to visually identify all of the intermediate freedom space
options for a given freedom space, Appendix A contains a com-
plete list of all of them. Note that according to Appendix A, the
intermediate freedom space options that exist within the Type 8
freedom space of the 4 DOF column of Fig. 5B include Types 4
and 5 in the 3 DOF column, Types 1 through 9 in the 2 DOF col-
umn, and Types 1 through 3 in the 1 DOF column. Ideally, only
two  intermediate freedom spaces should be selected so that the
serial flexure system will possess the fewest number of possible
stages/conjugated elements. If the designer wishes to avoid under-
constraint, the sum of the number of DOFs from each intermediate
freedom space should equal four as the system’s freedom space
consists of four DOFs. Many options would satisfy these require-
ments and would generate viable flexure concepts, but for the
purposes of this case study, the Type 2 freedom space from the
2 DOF column will be selected twice because it is less complex
than most of the other options and because we are familiar with
this freedom space from the example of Section 4.1.  This inter-
mediate freedom space and its complementary constraint space
are shown in Fig. 14A. The intermediate freedom space consists of
every parallel rotation line on a plane and a translation that is per-
pendicular to that plane. The constraint space consists of every pure
force wrench line that lies on the same plane and every pure force
wrench line that is parallel to the rotation lines represented by the

box of parallel lines. The pure force wrench lines that lie on the
plane (highlighted with thick blue lines) run in all directions on the
surface. The planes of the two intermediate freedom spaces are ori-
ented at 90◦ angles with respect to each other as shown in Fig. 14B.

onstraint space (B). Flexible constraints selected from the constraint space connect

constraint space (B). Flexible constraints selected from the constraint space connect
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Fig. 18. The flexure consists of three planar pieces (A). The final lead screw flexure (B).
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Fig. 19. The four DOFs of

hese intermediate freedom spaces combined generate the free-
om space of the system because the total number of independent
wists from both intermediate freedom spaces is four, which is the
umber of DOFs of the system’s freedom space. Note also that the
ystem will not possess any underconstrained elements because
he sum of the DOFs of both intermediate freedom spaces is also
our.

Step (5): design ground and stage(s): The flexure system should
e grounded to the carriage. The system should consist of two rigid
tages because two intermediate freedom spaces were selected.
he main stage that possesses the desired DOFs should clamp
round the hex nut. Finally, the entire system should fit within
he structural tube of the lathe shown in Fig. 12B and again in
ig. 15A. Some possible ground and stage designs that satisfy these
onditions are shown in Fig. 15B.

Step (6): select constraints from constraint space/s:  The first inter-
ediate freedom space from Fig. 14B is shown superimposed on

he system in Fig. 16A. The complementary constraint space of
his intermediate freedom space is shown in Fig. 16B. Two flex-
re blades and four wire flexures are selected from the constraint
pace. These flexible elements shown in Fig. 16C connect the main
tage to the intermediate stage.

The second intermediate freedom space from Fig. 14B is shown
uperimposed on the system in Fig. 17A. The complementary
onstraint space of this intermediate freedom space is shown in
ig. 17B. A flexure blade and four wire flexures are selected from

he constraint space. These flexible elements, shown in Fig. 17C,
onnect the intermediate stage to the ground.

The final lead screw flexure shown in Fig. 18 may  be fabricated
y cutting three planar pieces with a waterjet or wire EDM machine.
ad screw flexure (A)–(D).

Using FEA, images of the four desired DOFs are shown in Fig. 19.
These motions are much more compliant than the translation and
rotation about the lead screw’s axis. Note also, if the ground and
main stage are held fixed, the intermediate stage will be fully con-
strained because the system is not underconstrained.

6. Conclusions

In this paper we  demonstrated how FACT may  be applied to the
synthesis of serial flexure systems. More specifically, we described
how a comprehensive library of geometric shapes may  be used to
stack parallel flexure modules in series to achieve a desired set
of DOFs. Principles of underconstraint were described and incor-
porated into the FACT design process. A lead screw flexure was
synthesized as a case study.
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Appendix A.

This appendix lists all of the possible intermediate freedom

spaces that could be selected from within each freedom space in
the chart from Fig. 5B for synthesizing serial flexure systems. Note
also that any freedom space can be its own intermediate freedom
space.
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0 DOF Type 1 – None
1 DOF Type 1 – None
1 DOF Type 2 – None
1  DOF Type 3 – None
2  DOF Type 1 – 1 DOF Type 1
2 DOF Type 2 – 1 DOF Types 1, 3
2 DOF Type 3 – 1 DOF Types 1, 2
2 DOF Type 4 – 1 DOF Type 2
2 DOF Type 5 – 1 DOF Types 2, 3
2 DOF Type 6 – 1 DOF Types 1, 2
2 DOF Type 7 – 1 DOF Type 2
2 DOF Type 8 – 1 DOF Types 1, 2, 3
2  DOF Type 9 – 1 DOF Types 1, 2, 3
2  DOF Type 10 – 1 DOF Type 3
3  DOF Type 1 – 1 DOF Types 1, 3; 2 DOF Types 1, 2
3  DOF Type 2 – 1 DOF Types 1, 3; 2 DOF Type 2
3  DOF Type 3 – 1 DOF Type 1; 2 DOF Type 1
3  DOF Type 4 – 1 DOF Types 1, 2, 3; 2 DOF Types 1, 2, 3, 6, 7, 8, 9
3  DOF Type 5 – 1 DOF Types 1, 2, 3; 2 DOF Types 3 through 9
3 DOF Type 6 – 1 DOF Types 1, 2, 3; 2 DOF Types 2, 3, 5
3  DOF Type 7 – 1 DOF Types 1, 2; 2 DOF Types 3, 4, 6, 7
3  DOF Type 8 – 1 DOF Types 1, 2; 2 DOF Types 3, 4, 6, 7
3  DOF Type 9 – 1 DOF Types 1, 2; 2 DOF Types 1, 3, 6, 7
3  DOF Type 10 – 1 DOF Types 1, 2; 2 DOF Types 4, 6, 7
3 DOF Type 11 – 1 DOF Type 2; 2 DOF Types 4, 7
3 DOF Type 12 – 1 DOF Types 1, 2; 2 DOF Types 1, 6, 7
3 DOF Type 13 – 1 DOF Types 1, 2; 2 DOF Types 4, 6, 7
3 DOF Type 14 – 1 DOF Type 2; 2 DOF Types 4, 7
3 DOF Type 15 – 1 DOF Types 1, 2, 3; 2 DOF Types 2, 5, 6
3  DOF Type 16 – 1 DOF Types 2, 3; 2 DOF Types 5, 7
3  DOF Type 17 – 1 DOF Types 2, 3; 2 DOF Types 4, 5
3  DOF Type 18 – 1 DOF Types 2, 3; 2 DOF Type 5
3 DOF Type 19 – 1 DOF Type 2; 2 DOF Type 4
3 DOF Type 20 – 1 DOF Type 3
3  DOF Type 21 – 1 DOF Types 1, 2, 3; 2 DOF Types 2, 5, 8, 9
3  DOF Type 22 – 1 DOF Types 1, 2, 3; 2 DOF Types 2, 5, 9
4  DOF Type 1 – 1 DOF Types 1, 2, 3; 2 DOF Types 1, 2, 3, 6, 7, 8, 9; 3 DOF Types 1, 3
4  DOF Type 2 – 1 DOF Types 1, 2, 3; 2 DOF Types 1, 2, 3, 5, 6, 7, 8, 9; 3 DOF Types 1
4  DOF Type 3 – 1 DOF Types 1, 2, 3; 2 DOF Types 1 through 9; 3 DOF Types 4 thro
4  DOF Type 4 – 1 DOF Types 1, 2, 3; 2 DOF Types 3 through 9; 3 DOF Types 5, 7, 8
4  DOF Type 5 – 1 DOF Types 1, 2, 3; 2 DOF Types 2 through 9; 3 DOF Types 5, 6
4  DOF Type 6 – 1 DOF Types 1, 2, 3; 2 DOF Types 1 through 9; 3 DOF Types 4, 5, 7,
4  DOF Type 7 – 1 DOF Types 1, 2, 3; 2 DOF Types 3 through 9; 3 DOF Types 5, 8
4  DOF Type 8 – 1 DOF Types 1, 2, 3; 2 DOF Types 1 through 9; 3 DOF Types 4, 5
4  DOF Type 9 – 1 DOF Types 1, 2, 3; 2 DOF Types 1 through 9; 3 DOF Types 4, 5
4  DOF Type 10 – 1 DOF Types 1, 2, 3; 2 DOF Types 2, 5, 8, 9; 3 DOF Type 2
5  DOF Type 1 – 1 DOF Types 1, 2, 3; 2 DOF Types 1 through 9; 3 DOF Types 1 thro
5  DOF Type 2 – 1 DOF Types 1, 2, 3; 2 DOF Types 1 through 9; 3 DOF Types 4 thro
5  DOF Type 3 – 1 DOF Types 1, 2, 3; 2 DOF Types 1 through 9; 3 DOF Types 1, 2, 4,
6  DOF Type 1 – 1 DOF Types 1, 2, 3; 2 DOF Types 1 through 9; 3 DOF Types 1 thro
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